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Abstract 
 
 

The parameters of the original Bohr model of the hydrogen atom 

are applied in an extension presented for that model. 

In the first step the quanta of the magnetic field for each of the 

energy levels of the hydrogen atom are taken into account. A conse- 

quence of the presence of these quanta are the quanta of the magnetic 

flux being for any hydrogen energy state equal to a simple multiple of 

the flux quantum known from the theory of superconductors. 

In the second step a model of the electron and proton spin is devel- 

oped indepensently of the Dirac’s formalism. The model is an effect
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of modification of the Heisenberg uncertainty principle for energy and 

time which yields a minimal distance between the particles in an en- 

semble of each fermions kind.  This minimal distance has been next 

assumed  as equal to the radius of circulation of a spinning particle 

respectively for the electron and proton.case, and the speed  of the 

particle is then close to rhat of the speed of light.  This model gives 

proper values for the angular mechanical momentum and the magnetic 

moment for each of considered particle kinds. 

The third  application of the developed model concerns the time 

of energy emission connected with the electron transitions in the hy- 

drogen atom.  If  the energy transmitted between two  neighbouring 

quantum levels is considered  as a dissipated Joule-Lenz energy, the 

transmission time between the levels can be calculated in a definite 

non-probabilistic way.  The product of that time and the amount of 

transmitted energy approaches the Planck constant h for any consid- 

ered pair of the quantum states. 

Keywords: 
 
 
 
 

1 Introduction 
 
 
A look on the Bohr model. 

 
A little more than one hundred  years ago the Bohr model of the hydrogen 

atom has been developed.  Its spectacular success was due rather equally to 

the model simplicity as well as a tight agreement of the obtained results with
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the experimental spectroscopical data. 

 
The main idea of the model was very simple. If the hydrogen atom is 

composed of a positively charged nucleus and a negative electron particle, 

a dominant force in the atom is the electrostatic  force between the nucleus 

and electron. Since the nucleus is heavy and practically can be immobile, 

the light electron is moving about it along the circles called the orbits. The 

orbits are assumed to be planar similarly to the planetary orbits surrounding 

the Sun. 

The centrifugal force acting on the electron along its motion is compen- 

sated by the attractive electron-nucleus electrostatic force, so we have  - in 

the first step - a classical relation 
 
 

v2 e2 
m 

r 
= 

r2 

 
. (1) 

 
 
Here m is the mass of the electron and −e and e are respectively  the electron 

 

and nuclear charges, r is the radius of the orbit, v is the electron orbital 

velocity. A compensation of e by −e makes the atom equal to an electrically 

neutral system. 
 

The second step of the Bohr formalism makes a reference to the quantum 

theory:  the mechanical angula r momentum possessed  by the electron is 

quantized,  so 
 

L = Ln  = mvnrn = nn (2) 
 
 
where n is here a positive integer number.
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v 
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A system of equations (1) and (2) can be easily solved with respect to 
 
the unknown parameters r and v: 

 
 
 

r = rn = 
n2n2 

me2 (3) 
 
 
and  

 
e2 

v = vn = 
nn 

. (4) 
 
The formulae (3) and (4) yield the the time period of the electron circulation 

 
about the atomic nucleus: 

 
 

2πrn 2πn2n2  nn 2πn3n3 
T = Tn = = 

n 

 

me2 e2   = me4   . (5) 
 
 

Because of (2) only a discrete spectra of rn, vn  and Tn are possible. This 

property can be prolongated  to the expression of the electron energy 
 
 

Etot  = Ekin  + Epot (6) 
 
 
 
where  

 
mv2 

 

 
mv2 

 

 
1 me4 

Ekin  = =   n  =       (7) 
2 2 2 n2n2 

 
and  

 
e2  e2 

 

 
me4 

Epot  = − 
r 

= − 
r = − 

n2n2 . (8)
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Evidently  

 
1 me4 

 

 
me4 

Etot  = 2 n2n2 − 
n2n2  = −Ekin  (9) 

 
is also a quantized parameter. A negative energy spectrum of Etot   indicates 

the bound states of the electron in the hydrogen atom. Finally from (7) and 

(8) we obtain the virial relation 
 
 

2Ekin + Epot  = 0. (10) 
 
 
 

Having  
 
E = Etot  (11) 

 
 
we can calculate the differences of (11) and (9) for different pairs of numbers 

n, say n = nt  and n = ntt.  This gives 
 
 

1 me4     1 1 
\ 

∆E = Enf − Enff = − 2 n2n2 nt2  − 
ntt2 

. (12) 
 
 

Because of the Planck quantum theory there exists the relation 
 
 
 

∆E = hν (13) 
 
 
 
where  

 
h = 2πn  (13a) 

 
 
and ν is the frequency of the electromagnetic wave. 

 
An enormous  success of the Bohr theory was due to the fact that ν cal-
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culated for different pairs of nt  and ntt  in (12) could fit the experimental ν 

 
measured for the hydrogen atom with a very high accuracy,  see e.g. [Som- 

merfeld]. 

But the success of the Bohr model for the one-electron atom could not 

be extended  to other systems than hydrogen atom, or hydrogen-like  ions. 

A sharp difficulty came out already with the spectrum of the two-electron 

atom of helium, the obstacles became still more acute for the atomic systems 

having more than two electrons. In effect the modern quantum mechanics 

had to be developed  and applied and the Bohr theory remained suitable 

solely for the one-electron systems. 

But  even for such systems the limitations  of the model seemed to be 

rather evident; moreover not all of these difficulties could be removed by the 

quantum mechanics.  The main problem seemed to be a lack of insight into 

the time parameter which certainly accompanies any physical effect, therefore 

any quantum effect produced in the hydrogen atomic system, for example the 

phenomenon of the quantum transitions. 

The next point may concern a shortage of the treatment of the magnetic 

effects in the Bohr model;  see Sec. 2. Also any approach to the spin effect is 

absent in that model. But simulataneously the model remains a well-founded 

tool for further investigations. 

The aim of the paper was to demonstrate how at least a part of the 

shortcomings exhibited by the Bohr model could be removed with the aid of 

the model framework. 
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2 Magnetic field and the magnetic flux in the 
 
 

hydrogen atom 
 

A kind of asymmetry can be noted when the electromagnetic properties of 

the Bohr atomic model are considered. The electric field 
 
 

e m2e5 

|E- | = |E- n| = 2  = 
n 

 
n4n 4 (14) 

 
 
responsible for the electron-nucleus interaction is taken into account, whereas 

the magnetic field is not considered. But the presence of the magnetic field 

strength B in the atom can be easily detected on condition we note that 

a circular motion of any charged particle should produce such a field. The 

field B = Bn  in the central point of the nth orbit area is connected with the 

circular frequency Ωn of the motion by the formula (see e.g. [42]) 
 
 
 

Ωn = 
eBn . (15) 
mc 

 
 
On the other hand, Ωn, rn and Tn  are coupled together by the equation 

 
 

2πrn  
= Ωnrn eBn 

= n 
n2 = v e2 

= . (16) 
Tn  mc me2 nn 

 
 
Expressions (15) and (16) give 

 
 
 

Bn  = 
e  

m2c 
nn 

1 
n2n2 

e3m2c 
= 

n3n3 

 
. (17)
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A check of Bn  is obtained with the aid of the orbital magnetic moment 
 
 

e 
Morb  = 

2mc 
nn (18) 

 
 
which should give the electron energy (46) on the level n: 

 
 

e e3m2c e4m 
En  = −MorbBn = − 2mc 

nn n3n3   = − 2n2n2 . (19) 
 

Let us note that n entering the Bohr model is a result of quantization of the 

orbital angular momentum 
 

Ln  = nn. (20) 
 
 
 
3 Quanta of the magnetic flux absorbed/emitted 

in course of the electron transition 

The quanta of Bn  given by the formula (17) are rather complicated for further 

examinations. But instead of Bn  a quantum change of the magnetic flux Φ 

due to the change of the electron quantum level n may become of interest. 

Having Bn  from (17) and the area Sn  enclosed by the orbit n expressed by 

the relation 
 

Sn = πr2  = π n2 \2 

me2 n 

 
, (21)
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the magnetic flux is 

 
 

   n4 
4 e3m2c cnn 1 ch 

Φn = SnBn  = π 
m2e4  n = π 

n3n3 
= n.  (22) 

e 2  e 
 
 
Hence each orbit n provides us with a flux quantum (22) proportional to n. 

 
The quanta 

ch 
(23) 

2e 
 
are the well-known objects in the physics of superconductors [11, 5, 47]. 

 
It can be noted that the energy quanta 

 
 

eBn e   e3m2c 
  e4 

2  1 
2 mc2 

nΩn = n 
mc 

= n 
mc = mc 

n3n3 n2c2 n3  = α n3  , (24) 
 
 
due to transitions between the neighbouring oscillator levels in the magnetic 

field, occur coincident with the quanta of the transition energy in the Bohr 

atom calculated also for the neighbouring levels. We obtain from (46): 
 
 

me4 r 
1 1 

l 
me4 (n + 1)2 − n2 

∆E = En+1 − En  = − 2n2 (n + 1)2 − 
n2 

= 
2n2 

 

(n + 1)2n2 

me4 2n + 1 me4 
 2 

2   2 1 ∼=  2n2 n4  ≈ 
 

2n2 n3  = mc α n3 . (25) 
 
 
For large n the energies of (25) approach evidently the result of (24). 

 
A characteristic point is that the ratio of Morb   in (18) to Φ in (22) is a 
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p 2 

 
constant number for all quantum levels n: 

 
 

Morb ehn 
= chn 1 

: = e2 
. (26) 

Φn 4πmc  2e 2π mc2 
 
 
A similar constant behaviour concerns also the ratio of the orbital angular 

 
momentum Ln  to Φn: 

Ln  nch 1 e 
= nn : = . (27) 

Φn 2e  π c 
 

Let us note that an excitation energy of the electron spin or proton spin 
 
is very high. For the electron spin this energy will amount to 

 
 

eBs e   m2c3  
2
 

nΩs = n 
mc 

= n 
mc = mc , (28) 

en 
 
 
on the basis of a formula similar to (48) and B = Bs  from ( ).  A similar 

 
result for the proton case will become 

 
 

eBsp e m2c3 
nΩsp = n 

m c  
= n 

m c = mpc . (28a) 
en 

p p 
 
 
 

4 Energy of the electron spin-orbit interaction 
 
 

in the Bohr model 
 
 
This is the interaction energy between the orbital magnetic moment  Morb 

 
in (18) induced at the position of the proton nucleus and the spin magnetic
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r r n 

 
moment on the orbit equal to the Bohr magneton 

 
 

µ  =  en  
. (29) B  2mc 

 
 
The distance between two moments is represented by the length of the radius 

of the correspoding Bohr orbit; see (40). The influence of the proton magnetic 

moment on the moments (18) and (29) has been neglected.  The interaction 

energy between the moments becomes 
 
 

MorbµB 
= 

- 
   

e 

  2   
2

 1 1 e2n2 

= 
me2 \3 1      e8 

2  1 1       4 2  1 
3 2me 

n n  3 
n 4 m2c2 n n2n2 = mc 

4 n4c4 

n5  = 
4 

α
 mc 
 
(30) 

n5 . 

 
Evidently, because of  

 

α ≈ (137)−1, (31) 
 
 
the result in (30) is a number much smaller than a change of E given in (46) 

 
and (19) due to a small change of integer n; see (25). 

 

 
 
 

5 A proposal of the magnetic flux operator and 
 
 

its application 
 

Φ 
LB 

 
 
 

Bπr2 
= 

mΩr2 

 
 
 

πc 
= . (32) 

e 
 

Our proposal is that the operator for Φ should be proportional to that 

applied for LB .  The angular momentum along a circle performed with a 
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constant speed is dependent only on a single variable ϕ which is the angle 

about the axis parallel to B.  This implies that an operator for LB   is equal 

to (see e.g. [41, 40, 6]): 
 

L"'B  = 
n  ∂ 

. (33) 
i ∂ϕ 

 
The eigenfunctions of the operator in (33) are evidently 

 
 

(2π)−1/2 e±inB ϕ  (34) 
 
 
 
giving – for the integer nB  – the eigenvalues 

(nB |L"'B |nB ) = ±nB n. (35) 

In effect the average values of the operator for the magnetic flux become 
 
equal to 

πc ch 
(nB |Φ"' |nB ) = ± 

e  
nB n = ±nB  2e 

. (36) 
 
A characteristic point is that the result in (36) has no reference to the size 

of the magnetic field B defining Ω in ( ). 

A wave-mechanical treatment of the hydrogen atom implies  (see e.g. [6]) 
 
 

nB  = n − 1, n − 2, . . . , 1, 0, (37) 
 
 
 
where n is the quantum number defining the electron energy in the atom.
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But calculations done in the earlier Sections show that 

 
 
 

nB  = n  (38) 
 
 

as  the only correct choice for nB ; the minus sign in (35) and (36) holds 

in case of the change of the direction of B to an opposite one. In fact a 

special behaviour of the lowest inner shell (K-shell) of the atom is a quantum- 

mechanical effect absent in a semiclassical treatment of the atomic problem. 

It should be noted that the factor of 2e in the denominator of the last step 

in (36) is also a result of a quantum-mechanical calculation of the angular 

momentum in (35). But the same value for LB  = Ln  in (20) has been applied 

in the foundations of the Bohr orbital model,  see the end of Sec 12. 

Since for E- 
 
the formula 

 

equal to the electric field intensity along the orbit there holds 

∂Φ ∂(BS) 
1  

- -
 

− 
c ∂t 

= − = 
c ∂t 

E dl = 0, (39) 

 
so the electron energy parameter En, as well as the angular momentum and 

magnetic flux on any level n, are conserved;  see e.g. [18]. 

To this purpose an extension of the well-known Heisenberg principle of 

uncertainty for energy and time given by the relation [43, 41] 

 
 

∆E ∆t > n (40) 
 
 
 
is taken into account. In fact the formula (40) has been objected  on many
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x 

 
occasions [44, 15, 42] and numerous textbooks on quantum mechanics neglect 

 
(40) at all; see e.g. [11, 5]. An extension of (40) is [47, 27, 28]: 

2mc2 ∆E(∆t)2  > n2. (41) 

Here, as well as in (40), ∆E is the interval of energy and ∆t the interval of 
 
time taking part in the quantum process. 

If we assume that ∆E is the excitation energy of a free electron particle 

from the level E = 0 to the level E = ∆E, we have 
 
 

 p2 
∆E = 

2m 

 
(42) 

 
 
where px is the electron momentum. On the other hand we have 

 
 
 dx 

px = mvx = m 
dt

 
∆x ∼= m 
∆t  

(43) 
 
 
obtained in effect of one of the Hamilton equations 

 
 

dx ∂(∆E) = 
dt ∂px 

= px 
m 

 
. (44) 

 
 
A transformation of (43) gives 

 
 
 

∆t = m
 
∆x.  (45) 

px
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x 

 
The expression (45) substituted together with (42) into (41) gives [29] 

 
 

2mc2 px m 
(∆x)2 = m2c2(∆x)2  > n2. (46) 

2m p2 
 
 
This implies that  

 

∆x >  
n 

mc 

 
 
, (47) 

 
so the smallest admissible quantum of distance is 

 
 

∆x =  n 
. (48) 0 mc 

 
 

The smallest acceptable interval of time can be obtained from (48) by 

requirement that the distance ∆x0  is travelled with a maximal speed close 

to c, so 
∆x0 n 

∆t0  = = . (49) 
c mc2 

 
The formulae similar to (48) and (49) have been derived a time ago on both 

the experimental and theoretical footing [40, 18, 6, 17]. Instead of ∆x0  in 

(15) the Compton length 

∆xCompton  h 
0 = 

mc 
(48a) 

 
has been there proposed.  It is larger than (48) by a factor of 2π. Preliminary 

calculations on the hydrogen atom done with the aid of (41) are presented 

in [35].
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6 Elementary quantum of distance (48) and the 
 
 

electron spin 
 

We assume that the trajectory of the spinning electron particle is represented 

by a circle having the radius equal to ∆x0  in (48) (see [25]): 
 
 

n vc 
rc  = 

mc 
= Ω . (50) 

 
 
This distance is coupled in (50) with the circulation frequency 

 
 
 

Ωc = 
eBc (51) 
mc 

 
 
[cf. (23)] and the electron speed represented approximately by 

vc 
∼= c. (52) 

A general warning on the treatment of spin is that it should not be seeked 
 
as a result of the circulation effect of a particle about its own axis (see e.g. 

[15]), and this view is shared also in the present approach. But instead of 

the motion about an axis which crosses the particle body, a charged particle 

may perform its spontaneous circulation in the magnetic field about an axis 

located outside the particle mass. The sense of such behaviour is – as we 

shall see – that in effect of the particle interaction with the magnetic field 

created by the particle motion, the particle energy  becomes much lowered
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below the zero value of energy which can be assumed to be associated with 

the particle at rest. 

In  defining the position of the axis of the particle circulation in the 

magnetic field, the uncertainty relation for energy and time can be of use 

[20, 21, 22]. Beyond of time t and energy E, the principle contains also a 

reference to the particle mass m and the speed of light c: 
 
 

2mec2 ∆E(∆t)2  > n. (53) 
 
 

Evidently the rule (53) derived for electrons in [20, 21, 22, 26] does apply to 

the particles which obey the Fermi statistics. But, for example, instead of 

electrons of the mass m = me considered in [20, 21, 22, 26], we can have also 

the gas of the proton particles of the mass m = mp distributed in the field of 

a negative background which makes the gas electrically  neutral.  A reasoning 

of [20, 21, 22, 26] repeated in the case of an ensemble of the proton particles 

gives the result 
 

2mpc2 ∆E(∆t)2  > n. (54) 
 
 
This makes (54) different from (53) solely by a replacement of me in (53) by 

 
mp in (54). Certainly ∆E and ∆t in (54) refer to the proton particle. 

 
A consequence of the principle in (53) and (54) is a rule that two Fermi 

particles of the same kind cannot approach together to an arbitrarily  small 

distance but they should be separated at least by the interval which – in view
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e 

p 

of (53) – is equal to [26]  
 

∆x =  n (55) e m c 
 
for electrons, but becomes equal to 

 
 

∆x =  n (56) p m c 
 
 
for the protons case; see e.g. [44] for the proton mass, spin angular momen- 

tum and spin magnetic moment. 

The minimal distances (55) and (56) between particles represent respec- 

tively the Compton length of the electron and proton particle, on condition 

the rationalized Planck constant n is replaced by the original Planck constant 

h. The kind of the formulae given in (55) and (56) has been derived  before 

in [37, 7, 8]; see also [10]. 

In Sec.  12 we apply (55) and (56) to define the positions of the axes of 

a spontaneous particle circulation giving, respectively, the electron and the 

proton spin.  Before these motions take place we assume that the particle 

energy of the electron (Ee) and proton (Ep) is at zero: 

 
 

Ee = Ep = 0. (57)
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7   Spinning process of the electron and proton 
 

A general law of physics is that any particle tends to assume a possibly lowest 

level of energy. In case of a charged particle this can be attained in effect 

of the particle circulation about some axis along which the particle motion 

induces the presence of the magnetic field. This situation implies that the 

kinetic energy of the orbital motion is associated with a particle. The axis 

of the motion can be located outside the extension area of the particle mass. 

As a distance of the axis from the particle location (re  for the electron and rp 

for proton) let us assume that (55) and (56) hold respectively in the electron 

and proton case. 

The magnetic field B causes the velocity v along a circle normal to B, 

and the balance of the forces requires that 
 
 

v2 
eB = m 

r 

 
(58) 

 
 
where m = me or mp, v = ve or vp, and r = re  or rp. In effect the force in (58) 

represents an equilibrium between the force of the field and the mechanical 

force due to the acceleration of a particle toward the track center (see e.g. 

[42]). We postulate that 
 

re  = ∆xe (59)
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p 

 
in the case of the electron particle, and 

 
 
 

rp = ∆xp (60) 
 
 
 
in the proton case. 

 
The mechanical angular momenta of electron and proton become respec- 

tively 
 
 

Le  = mereve  = mer2ωe, (61) 
 

Lp  = mprpvp  = mpr2ωp. (62) 
 
 
For the sake of simplicity the same size of charge |e| for the electron and 

proton is assumed. 
 

The ωe  and ωp  in (61) and (62) are the electron and proton circulation 
 
frequencies equal to 

 
 

ωe  = 
| 

ωp  = | 

e|Bce 

mec 
e|Bcp 

mpc 

 
, (63) 
 
 
. (64) 

 
 
The Bce  and Bcp  are the strengths  of the magnetic field suitable for the 

electron and proton case. For both kinds of particles we assume that the 

strength of B is so large that electron or proton gyrate in the magnetic field 

with a speed close to c. This requirement for the particle velocity is dictated
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  - - 

by examination of the particle acceleration expressed in terms of the electric 
 

field E- 
 

and magnetic field B- 
 
[14]. In this case 

 
 

d-v 
dt 

 

e  
 

 
= 

m  
1 − 

v2 r 
E + 

c2 

1 r l 
c   

-v × B  − 
1 
-v(-vE- )

)
 

c2 

 
. (65) 

 
 
Evidently the acceleration (65) vanishes when the particle velocity becomes 

 
a constant v = c. Thus we have 

 
 

ve = reωe  = re 
| e|Bce 

mec 
e|Bcp

 

 
, (66) 

vp = rpωp  = rp 
|  mpc 

, (67) 

 
 
and  

 
ve = vp = c. (68) 

 
 

With the aid of (55) and (56) we obtain from (66), (67) and (68): 
 
 

B = Bce ∼= mec2 
= 

re|e| 
m2c3 

e (69) n|e| 
 
 
and  

B = Bcp 
∼= 

 

 
mpc2 

= 
rp|e| 

 
m2c3 

p , (70) 
n|e| 

 
on condition the absolute values of B are taken into account. The orbital radii 

 
re  and rp [see (59) and (60)] substituted together with the velocities of (68)

http://rcin.org.pl



22  

e 
∼ 

e m c 

p 
∼ 

p m c 

e  

e| 

 
into the formulae (61) and (62) for the angular momentum give respectively 

 
 

L  = m  
n  

c = n (71) 
e 

 
 
for the electron and  

 

L  = m  
n  

c = n (72) 
p 

 
for the proton particle. In effect we have 

Le  = Lp  
∼= n. (73) 

Evidently the formulae obtained in (71)–(73) do not depend on the par- 
 
ticle mass. But a mass dependent parameter  becomes the magnetic moment 

 
M of a particle. For the electron  case we obtain: 

 
 

Me  = |  
Le  = |e|n  

= MB  (74) 
2mec 2mec 

 
 
(which is the Bohr magneton) and for proton 

 
 

Mp  = |  
Lp  = |e|n  

, (75) 
2mpc 2mpc 

 
 
called also the theoretical nuclear magneton applied in considering the nu- 

clear particles [44]. The ratio between (75) and (74) is defined by 

 
 

Mp/Me  = me/mp  (76)
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e ce e 2 e
 

p cp p 2 p
 

which is not  very far from the ratio obtained from the experimental data 

for the magnetic moment  of electron and proton [44].  In many cases the 

experiments performed on the nuclear magnetic momenta Mn  give the ratio 

Mn/Me  not much different from me/mn  where mn  is the nuclear mass. 

The energy of a spinning particle in the  magnetic field is respectively 
 
represented by 

E  = −B  M  = − 1   m c2 
 
(77) 

 
 
for an electron, and by 

 
 

E  = −B  M  = − 1   m c2 
 
(78) 

 
 
 
for a proton.   Therefore the gain of energy in the magnetic field due to 

formation of the particle spin is large. This gain of energy is expensed to 

provide the kinetic energy to a spinning particle having its velocity close to c. 
 

 
 

8 Magnetic flux of a spinning particle, conser- 

vation of energy and quantization of the spin 

motion 

A parameter concerning spin which has its established experimental  coun- 

terpart is the magnetic flux. Let us choose for an elementary planar area of 
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e 

p 

e 

e 

m2 

p 

3 2 

that flux the circle 
 
 
 

Se = πr2  = π(∆xe)2  = π n  
\2

 

mec 

 
(79) 

 
 
for electrons, and the circle 

 
 
 

Sp = πr2  = π(∆xp)2  = π n  
\2

 

mpc 

 
(80) 

 
 
for protons. From (79), (80), as well as for the magnetic field strength taken 

 
respectively from (69) and (71), we obtain 

 
 
 

Φce = BceSe = m
2c3 

n|e| 
n2 

π 
m2c2 

1 hc 
= 

2 |e| 

 
(81) 

 
 
and  

 
Φcp = BcpSp = 

 

 

pc  
π  

n 

 
 

1 hc 
= 

 
 
(82) 

n|e| m2c2 2 |e| 
 
respectively in the electron and proton case. An evident result is that 

 
 

1 hc 
Φce = Φcp = 2 |e| . (83)

 
 
 

Therefore the flux extended over the elementary  areas in (79) and (80) 

does not depend on the particle kind represented by the particle mass. More- 

over, the flux calculated in (81) and (82) is equal to a constant quantum term 

observed experimentally  since a long time in superconductors [11]. 

The time derivative of the flux term is zero, so we have the fundamental
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c 

c 

relation of electrodynamics 
 
 1  

E- d-l = 
L 

d − 
dt 

 

B- dS- = 
S 

d − 
dt 

hc 
\ 

= 0. (84) 
2|e| 

 

 

Physically this means that a linear integral over E- representing the electric 
 
field along a circular path of the electron is equal to zero, therefore the energy 

of the circular motion in the magnetic field of B is conserved. 

Having the magnetic flux 
 
 
 

πr2Bc  = 
hc 

2|e| 

 
= Φc (85) 

 
 
the spin motion can be quantized according to a rule of the old quantum 

theory [42, 33]. It originates from a general rule given by Sommerfeld that 

momentum p- integrated over a closed path d-r of the particle motion should 

be a multiple of the Planck constant h: 
 
 1 

p- d-r = nh;  (86) 
 
 
 
here n is usually considered  as an integer number.  But according to [42] 

 
equation (86) can be transformed  into 

 
 

πr2|e|Bc 

c 

 
= nh.  (87) 

 
 
By taking into account  the first equation in (85) we obtain for (87) the

http://rcin.org.pl



26  

(∆x 

 
relation  

 
h 

= nh  (88) 
2 

 
from which the spin quantum number becomes: 

n = 1/2. (89) 

This is a well-known result confirmed experimentally by the measurements 
 
on the gyromagnetic ratio in ferromagnets [2] performed a time before the 

spin discovery [45]. 
 

 
 

9 Drift  velocity of a spinning electron in the 

electric field of the proton nucleus 

Till the present time no other field than Bc spontaneously created by a spin- 

ning particle has been considered. Now let us assume that  the spinning 

electron meets the electrostatic field of the proton nucleus. A minimal dis- 

tance which can appear between the electron moving particle and the proton 

being at rest is defined in (55) because (56) is too small to have a decisive 
 
influence. In this case 

 
 

e2 
eEce = 

min 

 

)2  = - e2 
 

n 
me c 

(emec)2 
= , (90) 2 n2
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B B 

where Ece  is the absolute value of the electric field acting on the electron. 

Another force acting on the electron is eBce where Bce  is the magnetic field 

intensity of the electron spin; see (69). Assuming that Ece is normal to Bce, 

the driving electron velocity obtained  as a result of the joined action of both 

fields is [18] 

vd = c 
| Ece × Bce | = c EceBce = c 

Ece 
 
. (91) 2 2 

ce ce Bce 
 
But it is easy to check from (69) and (90) that 

 
 

Ece e2 
= 1 

= α ≈ 
 
(92) 

Bce nc 137 
 
 
is the fine-atomic-structure constant [15, 40], so 

 
 

e2 
vd = c = 

nc 
e2 

. (93) 
n 

 
 

The result in (93) is precisely the electron velocity on the lowest orbit of 

the Bohr atom [3]. Therefore a combined action of the spin magnetic force 

of the electron and electrostatic force acting between electron and the proton 

nucleus,  gives the speed of electron equal to that possessed  on the lowest 

quantum state in the hydrogen atom. The spin action of the proton on the 

electron spin moment present on the orbit has been neglected. 

In effect the velocity along the lowest orbit of the Bohr’s hydrogen atom 

can be considered  as a consequence of a drift  motion being a result of su- 

perposition of many spinning rotations along very small orbits having their 
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e 

· 

2 2 

radii equal to (59) and travelled with a speed equal to c. The time necessary 
 
to travel along the Bohr orbit having the well-known radius 

 
 

n2 
aB  = 

m e2  (94) 
 
 
is 

2πaB 

 

 
2πn2  n 

 

 
2πn3 

T1 = 
v = = , (95) 

m e2  e2  m e4 
d e e 

 
whereas the travel time along the spin orbit calculated from (59) and (55) is 

 
equal to 

2πre n 
T2 = = 2π  . (96) c mec2 

 
In consequence the number of spinning circular motions which take place in 

 
course of the electron drift along the first Bohr orbit is equal to 

 
 

T1 2πn3 
= mec2 

= n c   =  1 ∼= 137.042  ≈ 18780. (97)
 

T2 mee4   · 2πn e4  α2 

 
 
This is a number independent of the mass me. A diagram presenting schemat- 

ically the motion of a spinning electron along the lowest Bohr orbit in the 

hydrogen atom is given in Fig. 1. The circular frequency of a spinning elec- 

tron is 
2π mec2 

= 
T2 n 

= 0.78 × 1021 sec−1.  (98) 

 
The mass me has to be replaced by mp in case of a spinning proton frequency
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Figure 1: A scheme representing  the motion of a spinning electron along the 
shortest (lowest) circular Bohr orbit of the hydrogen atom. The orbit circle 
is represented by a dashed line, the separation distance between two circles 
enclosing the motion is twice the radius re  given by the formulae (55) and 
(59). For the number of the spin oscillations along the orbit see formula (97). 
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10 Quanta  of energy change in the hydrogen 
 
 

atom and the intervals of time necessary to 

supply them 

The rate of change of the kinetic energy Ekin  of an electron in course of the 
 
time interval dt is [14] 

dEkin 

dt 

 

= eE- -v; (99) 
 

e is the electron charge, E- -intensity of the electric field, -v-the electron veloc- 

ity. The formula (99) can be transformed  into 
 
 

dEkin  = eE- -v dt = eE- d-l (100) 
 
 

where d-l is an element of the electron path. For a closed path of the electron 

present on a quantum level in the atom we obtain 
 
 1  

- -
 

Ekin  = e E dl = −Etot  = const (101) 
 
 
 
where Etot  is the total electron energy on the level. Relation (101) is satisfied 

because of the virial theorem 
 
 

2Ekin + Epot  = 0 (102) 
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which gives  
 

Etot  = Ekin  + Epot  = −Ekin.  (103) 
 
 
Epot  is the potential energy of the elctron. 

But  a situation of a constant  Ekin   in (101) can be changed  due to a 

transition process of the electron between two quantum levels. In this case 

the formalism of electrodynamics implies [14] 
 

 
1  

- - e  ∂ e ∆ 
 

B- df- 
∆Ekin = ∆e E dl −→ − 

c ∂t B- df- ∼= − c . (104) 
∆t 

 
 

The integral on the right-hand side of (104) concerns the magnetic field 

B extended over the area df- circumvented by the electron in course of its 

travel along a closed path. 

In the hydrogen atom any term of the magnetic flux is quantized according 
 
to the formula [30] 

B- df- = n hc 
 
(105) 

2  e 
 
where n is a quantum number of the level. Therefore 

 
 

∆ B- df- = ∆nhc 
. (106) 

2e 
 
 

In calculating (105) we noted the quantum properties of B in the hydrogen 
 
atom [30] which give 

 
B = Bn  = 

e3m2c 
n3n3 

 
, (107)
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n 

 
so Bn  are constant numbers for any n.  Moreover, it is assumed that Bn  is 

 
extended over a circular area 

 
 
 

df- = Sn = πr2 (108) 
 
 
 
circumvented by the electron on level n; the radius of the area is [43] 

 
 
 

rn = 
n2n2 

me2 . (109) 
 
 
In effect we obtain  

 
BnSn  = 

 

 
e3m2c 

π 
n3n3 

 
 
n4n4 hc 
m2e4  = n 2e 

 
 
(110) 

 
which is a result identical with (105). The quanta of (105) and (110) are well 

known because of their presence in superconductors [12]. 

The relaton (104) combined with  the virial  theorem in (102) and the 
 
result in (106) implies 

 
 

e hc  1 
−∆Ekin = ∆Etot = 

c 
∆n 2e ∆t  

(111) 
 
 
or 

1 
∆Etot ∆t = 

2 
h (111a) 

 
on condition we put  

 
∆n = 1. (112) 

 
 

If we note that both kinds of the electron orbital motion – a clockwise
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and counterclockwise – are equally possible, we may consider (111a) as a half 

of the result expected for both kinds of the circular motion. The both kinds 

of the motion taken together give evidently 

 
 

∆Etot ∆t = h. (113) 
 
 
 
The product in (113) is identical with that quoted in (  ). 

 
The aim of the present paper is to avoid a statistical way of calculations 

and try to approach the time of transition for an individual electron parti- 

cle. The first step on this way is to point out that formula (53) does not 

represent  the only manner on which the energy of a quantum system can 

be changed.  For, beyond of the radiation transition of energy, we can have 

also a dissipation process of that energy similar to production of the heat 

in course of a transport process of electrons in a metal.  In such a process 

the energy change is supplied by the electric current. In fact the stationary 

states in many quantum systems have a time-dependent periodic nature in 

general. A well-known example is the electron state in the hydrogen atom 

which semiclassically is considered to be a particle incessibly gyrating about 

the atomic nucleus;  see e.g. [43]. This implies a permanent electric current 

connected with such electron motion in any of its quantum states. 

In consequence, when the quantum state is changed, there exists also a 

change of energy supplied by the current. This change can be regulated  by 

the Joule-Lenz law for the production rate of the current dissipation energy 
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[9, 18]  
 

Q = ∆E = Ri2. (114) 
∆t 

 
Here R is the current resistance, i is the current intensity. 

 
In the present paper we demonstrate  that in quantum systems ∆E and 

∆t entering (114) are coupled together  in a definite way.  This property 

makes it possible to obtain the time interval ∆t associated with the energy 

change ∆E. 
e 

i = = 
Tn 

me5 

2πn3n3 

 
(115) 

 
for each quantum level n. 

The electron dissipation energy is assumed to be equal to the electron 

transition energy between two neighbouring quantum levels n + 1 and n: 
 
 

me4 r 
1 1 

l 
∆En = − 2n2 (n + 1)2 − 

n2 
. (116) 

 
 
This energy is equivalent  in  both quantum-mechanical  and semiclassical 

 
(Bohr’s) formalisms. 

 
But in the framework of quantum mechanics the time of electron tran- 

sitions between quantum levels of the atomic hydrogen, combined with the 

problem of intensity of transitions, is approached on the basis of a compli- 

cated probabilistic background; see e.g. [4]. 

In the present paper, however, we can limit the problem to a single elec- 

tron transition by calculating first the electric resistance associated with the
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orbit change. Next, having such resistance, it is easy to obtain the time rate 

with which the electron energy due to the orbit change has been left,  on 

condition we assume that the whole of the energy change is produced in the 

form of the Joule–Lenz heat. 

In effect we obtain the time interval needed to produce the Joule-Lenz 

heat connected with a given electron transition.  Though this time is not 

necessarily the time of radiation, nevertheless such calculation can give an 

estimate of an upper limit of the time associated with the electron transition. 

A simplification which we assume in calculations is that 
 
 
 

n    1 (117) 
 
 
 
which gives from (116)  

 
∆En = 

 

 
me4 

n2 

 
 
1 

. (118) 
n3 

 
The electric resistance connected with transition between n + 1 and n let 

 
be 

Vn 
R = (119) 

in 
 
where the potential change is 

 
 

V = ∆En 
e 

 
. (120)
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= 

 
This formula, together with (115) and (119), provides us with the resistance 

 
 

R = ∆En 
e2 

 
Tn = 

me4 

n2n3 
2πn3n3 

me4 

2πn 
e2     = 

h 
. (121) 

e2 
 
 

Expression (121) is a resistance result which is well-known from the in- 

teger quantum Hall effect: it has been observed for numerous planar free- 

electron structures; see e.g. [17]. It seems, however,  that the presence of the 

resistance amount in (121) has been neglected in former calculations on small 

quantum systems, including the hydrogen atom. 

A characteristic point is that R in (121) became fully independent of the 

quantum number n, as well as the size of the mass m. 
 

 
 

11 The time necessary for the Joule-Lenz heat 

expense and product of ∆E and ∆t 

According to classical electrodynamics  the time rate of the expense of the 
 
Joule-Lenz heat is equal to: 

 
 

Q = 
∆En 

 
= i2 R = e 

\2  h 
= 2πn3n3 \−2

  
h = h m2e8  

. (122) 
∆tn  

n
 Tn  e2 me4 (2π)2n6n6 

 
 
Evidently from (122) the time interval ∆t of the heat expense becomes 

 
 

∆En me4 (2π)2n6n6 2πn3n3 
∆tn = = 

Q n2n3 hm2e8  = me4 = Tn.  (123)
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n 

  1 1   

 
This time interval of the expense is – in the present approximation – equal to 

the time period Tn  of the electron circulation in the hydrogen atom; see ( ). 

It is of interest to multiply  the  energy interval ∆En  in (118) by ∆tn 
 
in (123). We obtain 

 
 
 

∆En ∆tn = 
me4 

n2n3 
2πn3n3 

me4 

 
= 2πn = h. (124) 

 
 
In the next Sections we show that results similar to (124) can be obtained 

for the free-electron particle in a one-dimensional potential box as well as the 

harmonic oscillator. 

A typical application of ∆tn is an expense rate of energy. With the aid 
 
of (123) and (124) we have 

 
 

(∆tn)−1 = T −1 = ∆En 

h 

 
. (125) 

 
 
Evidently in virtue of (125) the emission time rate of the energy ∆En is equal 

 
to 

∆En 

∆tn 

(∆En)2 
= 

h 

 
. (126) 

 
This rate can be compared  with quantum-mechanical results [4]. Since 

 
(126) is proportional to (∆En)2  in Table 1 we present the factors entering 

 

(∆En)2 dependent on n, i.e. the expressions 
 
    2 

(∆En)2  ∼ 
  

− 
  

 
(127)    (n + 1)2 n2  

http://rcin.org.pl



38  

 
calculated according to (117), for the  levels beginning with  n = 1 up to 

 
n = 5. 

The quantum-mechanical results for the total transition probabilities be- 

tween the quantum states 
 

(n + 1)p − ns, (128) 
 

where n = 1, 2, 3, 4, and 5, and probabilities are expressed in 108 sec−1  units, 

are [4]: 
 
 
 

2p − 1s 6.25 (129) 

3p − 2s 0.22 (130) 

4p − 3s 0.030 (131) 

5p − 4s 0.0075 (132) 

6p − 5s 0.0021 (133) 
 
 
 
 
 
Table 1: Expression (127) entering (∆En)2  in (126) calculated for different 
quantum levels n. 

n 
 
1 

expression (127) 
 

(3/4)2 

2 (5/16)2 

3 (7/144)2 

4 (9/400)2 

5 (11/900)2 

 
 

In Table 2 the ratios of (127), calculated for different pairs of n and n + 1,
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Table 2: Ratios of expressions (127) entering Table 1 calculated for different 
pairs of the level indices n and n+1 compared with the ratios of the transition 
intensity data given by the formulae (129)–(133). 

 
n n + 1 Indices ratio Ratios of 

expressions 
(127) 

Ratios of probabilities 
from the eqs. (19)–

(23) 

1 2 1 : 2 (3/4)2  : (5/36)2 (19) : (20) = 
 
2 

 
3 

 
2 : 3 

= 28.7 
(5/36)2  : (7/144)2 

6.25 : 0.22 = 28.4 
(20) : (21) = 

 
3 

 
4 

 
3 : 4 

= 8.16 
(7/144)2  : (9/400)2 

0.22 : 0.30 = 7.33 
(21) : (22) = 

 
4 

 
5 

 
4 : 5 

= 4.74 
(9/400)2  : (11/900)2 

0.30 : 0.0075 = 4.00 
(22) : (23) = 

   = 3.40 0.0075 : 0.0021 = 3.57 
 
 

are compared with the ratios of the quantum-mechanical data obtained for 

the same pairs of n and n + 1 entering (129)–(133). A parallelism of the 

quantum-mechanical results with those calculated from the present semiclas- 

sical theory is evident. 
 

 
 

12 Quanta of the dissipated energy and intevals 

of time necessary to produce them 

In the first step, the aim of the formalism developed in the present paper is 

to demonstrate that ∆t for an electron transition can be a defined quantity 

similar to ∆E and ν. To this purpose the ∆E is referred to the dissipation
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energy ∆Q which accompanies the electron transition by the equation: 

∆Q = ∆E  (134) 

Evidently ∆Q occuring in the transition seems to be of a typically emissive 
 
character. In short we assume that the emission of ∆E should not be nec- 

essarily of a radiation character dictated by ( ), but can materialize also in 

the form of ∆Q. Consequencies of such assumption  are illustrated on three 

examples concerning respectively  the hydrogen atom, a particle enclosed in 

the potential box and the harmonic oscillator. In Sec. 11 the results of the 

present Section are applied in calculating the electron acceleration produced 

in course of the quantum transitions performed in the mentioned three sys- 

tems. 

The energy differences 
 
 

∆E = En+1 − En  (135) 
 
 
 
between two neighbouring quantum states having the indices 

 
 
 

n + 1 and n  (136) 
 
 
 
(n     1) are mainly considered. We have 

 
 

me4 r 
1 1 

l 
me4 

∆E = − 2n2 (n + 1)2 − 
n2 

≈ n2n3 (137)
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n 

v 

 
for the hydrogen atom [43], 

 
 
 

∆E = h2 

8mL2 
[(n + 1)2 − n2] ≈ h2n 

4mL2 

 
(138) 

 
 
for a free particle having mass m enclosed in a one-dimensional potential box 

 
of length L [6], and 

 
 

3 1 
\ 

∆E = nω  n + 2 − n − 2 = nω  (139) 
 
 
for the harmonic oscillator having the frequency ω. 

The time periods of the electron particle circulation on the orbits are 

defined by a physical character of each of the above systems. They are 
 
 
 

Tn = 
2πn3n3 

me4 (140) 
 
 
for the case of electron in the hydrogen atom occupying the state n [43], 

 
 

2L 
Tn = = 

n 

2L 
 hn 
2mL 

4mL2 
= (141) 

hn 
 
 
for the particle of mass m being in state n in the potential box because of 

 
the relation 

m    v2 
En  = 

2 
h2n2 

= 
8mL2 , 

 
and  

 
Tn = T = 

 
 
2π 

(142) 
ω
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for all states n of the harmonic oscillator. 

 
A characteristic property of expressions (137)–(142) is that 

 
 

h 
∆E = 

Tn 

me4h 
= 

2πn3n3 

me4 
= 

n3n2 

 
(143a) 

 
 
holds for the atomic orbit n of the hydrogen  [see (65)], 

 
 

h 
∆E = 

Tn 

h2n 
= 

4mL2 

 
(144a) 

 
 
for a free particle (free electron) in state n in the box [see (66)], and 

 
 

h h 
∆E = = 

Tn T 
h 

= 
2π 

ω = nω  (145a) 
 
 

for the harmonic oscillator [see  (139) and (142)]. A common feature of 
 
(143a)–(145a) is that 

 
∆E = 

h 
. (146) 

Tn 
 

If we note that the resistance R connected with any of transitions exam- 
 
ined above can be defined by the ratio 

 
 
 V  ∆E 

R = = 
i ei 

 
(147) 

 
 
where V  is a potential and i is a current  intensity  given by the electron 

 
particle of charge e, so 

e 
i = , (148) 

Tn 
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T 

n 

n 

n 

we obtain  
 

∆E 
R =  

e2 

 
 

∆E  h 
Tn =  

e2    ∆E 

 
 

h 
= 

e2 

 
 
. (149) 

 
In the last step in (149) the result of (146) is taken into account. 

 
The R in (149) is equal to the well-known quantum of resistance examined 

experimentally in the planar free-electron structures [17]; some theoretical 

results connected with R are presented in [23, 24, 31]. 

Let the dissipation heat ∆Q of the quantum emission process satisfy the 
 
Joule–Lenz equation [16, 18] 

 
 

∆Q = Ri2. (150) 
∆t 

 
 
By putting  

 
∆Q = ∆E  (151) 

 
 
[see (134)] we obtain from (148)–(151) the following relation 

 
 

∆E h 
∆t 

= 
e2 

e 
\2 h 

= 
Tn  2 

 
(152) 

 
 
which gives  

 
∆    E T 2 

∆t 

 
 
= h (153) 

 
But because of (146) the formula (153) can be transformed  into 

 
 

 T 2 h 
= 

∆t ∆E 

 
= Tn 

 
(154)
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which implies that  

 
∆t = Tn.  (155) 

 
 
In effect of (155) the relation (153) can be presented in a more familiar form: 

 
 
 

∆E ∆t = h; (156) 
 
 
 
cf. here ( ). 

 
A comparison of the time rate of energy emission calculated according to 

the method presented above with the quantum-mechanical method is done 

in [32]. 
 

 
 

13 A check of the theory: acceleration of elec- 

trons obtained in  effect of their  quantum 

transitions 

The physics of the test is much similar to that entering the Tolman experi- 

ment [18]. The point is that the change of the electron energy in course of its 

transition between the quantum levels is accompanied by a change ∆v of the 

velocity which the electron has along its path. For example in the hydrogen 

atom the emission of energy from some level n + 1 to level n is associated with 

an increase of the tangential velocity along the orbit. Let us assume that the 

expense of energy connected with acceleration is approximately equal to the
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emission energy ∆E. In this case 

 
 

∆v 
∆E ≈ m 

∆t 
l (157) 

 
where the time of emission ∆t is also a time of the acceleration ∆v. Con- 

sequently the length l of the electron path covered in course of acceleration 

should approach that obtained during the electron circulation ∆t = Tn; see 

(155). In effect instead of (157) we should have a transformed relation 
 
 

∆E 
mln   
≈ 

|∆v| 
Tn 

 
(157a) 

 
 
where ln  is the path travelled in course of Tn.  The calculations of (157a) 

effectuated for the quantum  systems examined in Sec. 13 are presented below. 

They seem to confirm the validity of (157a). The absolute value of ∆v  is 

taken in (157a) in order to make this formula applicable to both positive and 

negative cases of acceleration; see [18]. 

Beginning with the hydrogen atom we have ∆E in the formula (137), the 

velocity in state n is [43] 
 
 

e2 
vn = 

nn 
, (158) 
e2  e2  e2 

|∆v| = 
nn − (n + 1)n ≈ 

n2n , (158a) 
 

∆t = Tn  (158b) 
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T 

is given in (140), and  

 
n2n2 

ln = 2πrn  = 2π 
me2 ; (159) 

 
rn is the nth orbit radius [43]. A substitution of parameters (137) and (159) 

 
into the left-hand side of (157a) gives the following expression 

 
 

∆E  ∆E 
= me4   1 

= me2  
. (160) 

mln m2πrn n2n3  m 2πn2n2 
 
 
On the other side, a substitution of the absolute value of ∆v given in (158a) 

and the results of (158b) and (140) give for the right-hand side of (157a) the 

formula 
1 e2 me4 

|∆v| 
n 

= . (161) 
n2n 2πn3n3 

 
Evidently both expressions (160) and (161) are equal: 

(160) = (161). 

A similar operation  can be repeated for the electron in the potential box. 
 
Here [see (141) and equation below of it] 

 
 
 

vn = 
2En 

\1/2 
= 

m 
2n2h2 

8mL2 

1 
\1/2

 

m 
nh 

= (162) 
2mL 

 
 
so 

n + 1 − n  h 
∆vn  = h = . (163) 

2mL  2mL
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x 

 
The time period in state n is that given in (141) and 

 
 
 

ln = 2L  (164) 
 
 
 
for any state n.Therefore the left-hand side of (157a) becomes 

 
 

∆E nh2 
= 1 1 nh2 

= 
 
(165) 

ml  4mL2  2L m 8m2L3 
 
 
and the right-hand side is 

 
 

∆vn ∆vn h 
= = nh  nh2 

= 
 
. (166) 

∆t Tn 2ml 4mL2 8m2L3 
 
 
In effect we obtain  

 
(165) = (166) 

 
 
which is a similar property to that calculated above in the case of the hydro- 

gen atom. 

The case of the harmonic oscillator is rather different than that of the 

electron in the hydrogen atom or the potential box because the velocity vn 

ceases  to be  a constant  number within  the oscillation time period T :  it 

changes gradually from zero value at the turning ponts of the oscillator to a 

maximal absolute value at the central point of the oscillator motion which is 
 
represented by the Hamiltonian: 

 
 

 p2 x2 
H = + k 

 
(167) 

2m 2 
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n 

n 

 
where k is the force constant. In consequence the formalism described in 

(157) and (157a) is applied solely to the velocity acceleration at a single 

point 
 

x = 0. (168) 
 

The electron velocity vn  in state n and point (168) is obtained from the 

formula 
 mv2 

2 
∼= nnω = En  (169) 

 
where En  is the oscillator energy in state n. This gives 

 
 
 

vn = 
2nnω 

\1/2 

m 

 
. (170) 

 
 
By considering solely the positive sign in (170) the increment of velocity due 

 
to the change of the quantum state becomes 

 
 

2nω 
\1/2  

1/2
  

1/2  2nω 
\1/2 1 

∆vn  
∼= m 

 
(n + 1) − n  =  

m 
 
(n + 1)1/2 + n1/2 

2nω 
\1/2 1 

∼= 
m 2n1/2 . (171) 

 
 

The length ln is  
 
ln = 4an (172) 

 
 
where an – the amplitude of the oscillator – is coupled to the oscillator energy 

 
in state n by the formula 

E  = 1   mω2 
n 2 

 

a2 (173)
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so 

 
an = 

 

2En 
\1/2 

mω2 
∼= 

 

2nnω 
\1/2

 

mω2 

 
 
. (174) 

 
In effect the left-hand side of equation (157a) becomes 

 
 
 

∆E =   nω 
ml  m4an 

= nω 
4m 

mω2 \1/2
 

2nnω 

 
(175) 

 
 
and the right-hand side of (157a) is 

 
 

∆vn ∆vn 

= 
2nω 

\ 
= 

1/2 1 ω 

∆t T m  2n1/2  · 2π 
. (176)

 
 
 
In consequence we obtain an approximate equality of both sides of (157a) 

 
represented by the relation 

 
 

4 × (175) = 2π × (176) 
 
 
 
but not precisely the relation 

 
 
 

(175) = (176). 
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14 Energy emission and its time in the case of 
 
 

∆n 1 
 
 
In preceding Sections the case of the neighbouring quantum states n + 1 and 

 
n has been mainly considered. An opposite situation is the case of 

∆n  1. (177) 

For example for the hydrogen atom the situation (177) implies 
 
 
 

∆E = me4 

2n2n2 

 
; (178) 

 
 

see (65) where n + 1 is replaced by an almost infinite number n + ∆n. The 
 
formula (178) is n/2 times larger than (65) and for n = 1 we have 

 
 
 

∆E = ∆E1 = 
me4 

. (179) 
2n2 

 
 
Assuming that the end state of the energy emission has the index n = 1 the 

 
time interval of the emission  becomes [see (68)] 

 
 
 

∆t = T1 = 
2πn3 

me4 . (180)
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The length of the electron path covered within the time period T1 is 

 
 

n2 
l1 = 2πr1  = 2π 

me2 ; (181) 
 
 

see (84). 

Our aim is to check the validity of the formula (157a) for the case of the 

emission from the state n     1. In this case the absolute value of the electron 

velocity change between n     1 and n = 1 is 
 
 

e2 
∆v1 = n 

1 1 
\ 

1 
− 

n + 1 
∼= 

e2 
. (182) 

n 
 
 
We  substitute on the left-hand side of (157a) the quantities ∆E1  and l1 

 
respectively from (179) and (181) so 

 
 

∆E1 ∆E1 
= me4  1 

= me2  
. (183) 

ml1 m2πr1 2n2 m 2πn2 
 
 
On the right-hand side of (157a) a substitution of ∆v1  calculated from the 

formula (182) should be done together with the time expression for ∆t given 

in (180). We obtain the acceleration expression 
 
 

∆v1 ∆v1  e2 
= = me4  . (184) 

∆t T1 n 2πn3 
 
 
We find that the left-side of (157a) presented in (183) differs from the right-

http://rcin.org.pl



52  

hand side presented in (184) solely by a factor of 2: 
 
 

2 × (183) = (184). 
 
 
 

It is easy to demonstrate that  a particle in the potential box and the 

harmonic oscillator submitted to the check given by the equation (157a) do 

not satisfy this equation. For an electron in the potential box the energy 

∆E coming from a transition between the state n       1 and state n = 1 

is approximately proportional to n2  [the left side of (157a)], whereas the 

velocity change entering the right-hand side of (157a) is solely proportional 

to n. A similar discrepancy between the both sides of (157a) occurs for the 

harmonic oscillator. Here the transition energy between n     1 and n = 1 is 

approximately proportional to n but the velocity change in the central point 

of the oscillator is approximately proportional only to the square root of n. 

It should be noted that for the transition ∆n  1 in the hydrogen atom 
 
the product of ∆E [see (179)] and ∆t [see (180)] gives 

 
 

me4 2πn3  h 
∆E ∆t = ∆E1 T1 =  

2n2 me4  = 2 . (185) 
 
 
This result is different from a similar product calculated in the case on ∆n = 1 

 
[see (81)] solely by the factor of 1/2. 
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-  
r 

15 Poynting’s vector in the hydrogen atom and 
 
 

the emission time 
 
 
We define [16, 18, 9]  

 c  r 
- -

 
S-p  = 

4π 

l 
E × B  (186) 

 
as Poynting’s vector. The time rate of the loss of energy is [9] 

 
 

dQ 1 d
 

 c  
1  r 

- - -
 

dt  
= − 

 
8π dt (E2 + B2) dτ + 

4π 

l 
E × B  dS. (187) 

S 
 
 

A well-known formal asymmetry of the Bohr model of the hydrogen atom 
 
is the presence of the electric field strength 

 
 

e 
|En| = 2 

n 

 
(188) 

 
 
in the orbit plane for any quantum state n, but this presence is combined 

with the absence of a similar magnetic field strength Bn. In fact Bn  are also 

present in the hydrogen atom if we note that the electron is circulating 

along the orbit n having the radius rn [see (84)] with the velocity vn  [see 

(83)]. In 

effect we obtain the relation 
 
 

2πrn 

Tn 

 
= ωnrn 

 
= vn 

 
(189)
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n 

T 

[Tn  given in (68)] which supplies the frequency 
 
 

2π vn e2    me2 
ωn  = 

n 
= = . (189a) rn  nn n2n2 

 
 
With  the electron circulating with frequency (189a) is associated the field 

 
strength Bn  according to the well-known formula [42]: 

 
 
 

ωn  = 
eBn . (190) 
cm 

 
 
In effect  

 
Bn  = 

 

 
e3m2c 
n3n3 

 
 
(191) 

 
which is the size of a vector normal to the orbit plane. 

A substitution of En  and Bn  into the expression (186) gives for the abso- 

lute value of the Poynting’s vector the expression 
 
 

 c  r 
- - 

l c  e  e3m2c 
|S-p| = 4π En  × Bn = 

4π r2 

 
n3n 3  . (192) 

 
 

Since En  and Bn  are numbers constant in time, the time derivative of the 

expressions E2  and B2  composed of these vectors being on the right-hand 

side of (187) should vanish. There remains solely the surface integral of the 

Poynting vector value given in (192).This is a toroidal surface which encloses 

the electron orbit as the torus axis. Approximately the torus surface becomes
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n 

∆t  n5 

equal to a surface of a thin cylinder having its axis length of the size 

2πrn. (193) 

On the other side, the cross-section of the toroidal cylinder is dictated by 
 
the radius (see e.g. [18]) 

e2 
re  = 

mc2 (194) 
 
of the electron particle which moves along the orbit.  In effect the toroidal 

surface is approximated by the product of (193) and the circumference of the 

cross-section of the torus cylinder which is 

 
 

2πre. (195) 
 
 

The value of the Poynting vector for a thin electron orbit can be assumed 

as a constant number given in (192), therefore a non-vanishing term on the 

right of (187) becomes equal to 
 
 

c e  e3m2c e2  e8m2 

|S-p|2πrn2πre  = 4π r2 
 
n3n 3   2πrn2π  

mc2 
= π 

n5n5 
. (196) 

 
 
This is a product of (192), (193) and (195). In effect the equation (187) has 

 
the form 

dQ ∆Q e8m2 

dt  
≈ = |S-p|2πrn2πre  = π n5 . (197) 

 
Since the emitted energy in course of the electron transition between levels

http://rcin.org.pl



56  

n + 1 and n is [see (65)] 
 
 

me4 
∆Q ≈ ∆E ≈ 

n2n3 , 
 
 
the emission time for that energy is 

 
 
 

∆t = ∆Q πe8m2 \−1 
= me4 n5n5 n3n2 

= 
 
(198) 

n5n5 n2n3  πe8m2 πme4 
 
 
where the term taken in brackets is that calculated in (197). 

The result of (198) should be compared with that given by the quantum- 

mechanical formula (81). This gives 
 
 

h 
∆t = 

∆E 
h h 

= 
∆Q 

= 
me4 

 

n2n3 = 
2πn3n3 

me4 

 
(199) 

 
 
which is a number larger by the factor of 

 
 
 

2π2n  (200) 
 
 
 
than that of (198). 

 
This is an expected situation because the emission rate described by the 

Poynting vector is not restricted to a single transition from level n + 1 to level 

n [a limitation  which exists in calculations leading to (199)] but concerns 

emission from n to any level below n. 

It seems of interest to demonstrate that Bn  in the hydrogen atom can be 
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n 

e 

n 

1 

n e 

  obtained with the aid of the Biot–Savart law [16, 18]. For a constant current 
 

intensity j̃n  along the nth orbit, we have from the Biot–Savart law 
 
 
 

Bn  = ̃jn 
-rn × d-rn 

cr3 

 
. (201) 

 
 

The current j̃n  along the orbit is defined by the formula 
 
 
 

j̃n  = evnQSe  = evn 
Ve 

 
Se (202) 

 
 
where  

 

Q−1  ∼ Ve (203) 
 
 
is the volume occupied by the electron particle and 

 
 
 

Se = πr2 (204) 
 
 
 
is the cross-section area of both of the volume Ve and the electron orbit. 

Since the integral of -rn × d-rn  leads to result proportional to r2 , and rn is 
 

a constant applied in (84), we obtain from (201) and (202): 
 
 

1 1 e2 me2 mc2 e3m2c 
Bn  = evn cr  r = e 

nn cn2n2 e2     = (205) 
n3n3 

 
 
which is a formula identical to that given in (191). 

 
* Deficiency of the time intervals for electron transitions in the hydrogen 

atom and their removal. 
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  A deficiency of the quantum theory. also that applied in the Bohr atom, 

was that any calculation of ∆E in (13) could not be combined with a calcu- 

lation of the time interval deltat necessary to perform the electron transition 

between the levels n’ and n” entering the formula (12). This lack was dic- 

tated by the very foundations of the quantum theory which was mainly of a 

probabilistic nature in its approach to the intensity of transitions from n’ to 

n” or vice versa. This statistical background of the transition time between 

quantum levels was characteristic  not only for quantum mechanics but also 

existed in the old quantum theory devloped by Planck [ ] and Einstein [ ]. 
 

 
 

16 Absorption time  of energy ∆E  compared 

with the emission time 

Contrary to the emission effect, the process of the electron promotion from 

level n of a lower energy En   to level n + 1 having its energy En+1  higher 

than En   can be never spontaneous  because of the conservation of energy: 

the energy amount 
 

∆E = En+1 − En  (206) 
 
 
should be first supplied to the electron on level n in order to begin a rise of 

that electron to level n + 1.  Consequently some interaction time between, 

for example, a photon carrying ∆E and the electron on n can be expected. 

In result of that interaction the En  is increased by ∆E and the electron way
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from level n to n + 1 may begin. A calculation of the mentioned interaction 

time seems to be outside of possibility of the present method, but the time 

necessary for an electron to travel from n to n + 1 is accessible on the basis 

of the Ohm’s law [ ]. The point is that the electron velocity vn  on the orbit 

n is slowed down to similar velocity vn+1  on the orbit n + 1, so the velocity 
 
difference 

e2 1 1 
\ 

e2 
∆v = vn − vn+1  = n n 

− 
n + 1 ≈ nn2 (207) 

 
should be cancelled.  The problem of the velocity change (207) is similar to 

that entering the Tolman experiment  [ ] where the original current  i in a 

solenoid having resistance R loses its velocity ∆v within the time interval ∆t 

according to the formula 
 

i ∆t = m L 
∆v. (208) 

e  R 
 
Here L is the length of the path travelled by the current. 

 
If we assume that L is the length of the electron orbit n, so 

 
 

n2n2 
L = 2πrn  = 2π 

me2 (209) 
 
 
and the current intensity on the level n is 

 
 

e 
i = (210) 

Tn 
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the formula (208) gives: 

 
 

e 
∆t = m 2πn2n2   1 e2  2πn 

= 
 

e2  = e (211) 
Tn e me2 R nn2 eh 

 
 
where for R has been substituted the resistance 

 
 

h 
R = 

e2 

 
(212) 

 
 
characteristic for the energy dissipation; see Sec.   . In effect we obtain from 

 
(211): 

 
∆t = Tn  (213) 

 
 
which is the transition time known from the emission  process;  see (  ).  In 

effect an application of the Ohm’s law gives the interval ∆t necessary to 

satisfy the second law of the Newtonian dynamics; see Sec. 
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1 

 

17 Transition time between the electron levels 
 
 

in the atom compared with  the relaxation 

time  characteristic for the electron trans- 

port process 

Let us note that the effective electric field E- eff  which gives the Ohm relation 

with the electric current -j on the orbit n, viz. 
 
 

-j = λE- eff (214) 
 
 
 
where λ is a constant, should satisfy the relation [Matveev] 

 
 1  

E- 
 
 
eff 

 

d-l = |E- eff | 
 
2πrn = Ri = E 

 
(215) 

 
 
 
where E is the electromotive force. The rate of loss of the dissipated energy 

 

∆Q is 
∆Q = Ri2  = 1 e2l |E- eff |2  = e2l R2i2  

(216) 
∆t  2 m(v) 2 m(v) (2πrn)2

 
 
where l is the mean free path of electron between its two collisions, say similar 

to that with the metal atoms, and (v) is the average velocity of the random 

electron motion. From (216) we obtain 
 
 

1 l 1 
= m 

(2πrn)2 (217) 
2 (v) R e2 
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where the ratio  
 
l 
(v) 

 
 
= τ  (218) 

 
is called the relaxation time of the electron transport. 

A substitution of the resistance R from (212) characteristic for the dissi- 

pation process of energy into (217) gives 
 
 

2m 
τ = 2π 

n 
n2n2 \2 

me2 = 
2m 4π2 
n 

n4n4 

m2e4 

 
= 8π2 

n4n3 

me4 

 
. (219) 

 
 
This τ is longer than the transition time 

 
 
 

∆t = Tn = 
2πn3n3 

me4 (220) 
 
 
chracteristic for an individual emission process between states n + 1 and n 

 
of the hydrogen atom by the factor 

2πn.  (221) 

But it should be noted that τ  in (219) is due mainly to the idea of many 
 
electron collisions expected to be met in course of the electron random path
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Calculation of the Einstein probability coefficient 
 
 

for an electron transition 
 
 
The reaction of the atom to the radiation field should be understood  as a 

reaction existent  in a given stationary state [Kramers-Heisenberg].   Since 

transitions between two stationary states are very short in their duration, 

the detailed nature of transitions becomes of only slight importance in the 

description of the  optical phenomena. In  general, when irradiated by a 

monochromatic light, an atom is expected to emit spherical waves distributed 

into surrounding space. 

Let the oscillating dipole have a moment P- (t) which is a complex vector 
 
dependent on the frequency ν and the time-independent electric field vector 

E- . For the total intensity of light scattered per unit of time one can apply 

the formula 
(2πν)4 

S = 
3c3 

(P- P- ∗) (S1) 
 

where P- ∗ is the complex conjugate vector to P- . From the point of view of 

the quantum radiation theory [Bohr, Kramers, Slater] the irradiated atom 

acts as a source of spherical waves where frequencies νq are associated with 

energy jumps 
 

hνq (S2) 
 
 
characteristic for Bohr frequency condition. This kind of radiation acts as a 
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q 

 
 
 
 
 
classical dipole whose moment is represented by the real part of the expression 

 
 
   

A-q e2πiνq t.  (S3) 
q 

 
 

The amplitude vectors A-q   are linked to the Einstein probability coeffi- 
 
cients aq by means of the relation 

 
 

(2πνq )4 (2πνq )4  
2
 

aq hνq = 
3c3  (A-q A-∗) = 3c3  |A-q | . (S4) 

 
 

Here the vector A-q  refers to an individual dipole frequency νq . 
 

But the energy relation [see (S1) and Kuhn] 
 
 

dE (2πνq )4 

dt 
= 

3c3 
|A-q |2 (S5) 

 
 
represents the energy dispersed per unit time with the frequency νq . When 

νq concerns the emissive transition between two neighbouring quantum levels 

in the hydrogen atom (∆n = 1) we obtain 
 
 

dE  
dt 

∆E ∼= = 
∆t 

(∆E)2 
(S6) 

h 
 
 
because the formula  

 
1 ∆E 

= 
∆t  h 

 
 
(S7) 

 
is satisfied in this case; see (  ). A substitution of the result of (S5)–(S7) into 
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(S4) gives the relation 

 
 
 

aq hνq = aq ∆E = 
(∆E)2 

(S8) 
h 

 
 
so 

 
aq = 

 
 
∆E 

. (S9) 
h 

 
A characteristic point is a change of aq obtained in (S9) for transitions 

 
∆n > 1. If the interval ∆E refers invariably to ∆n = 1, we have for ∆n > 1 

 
the relation 

 
∆n ∆E ∆t ≈ h (S10) 

 
 
so 

1 
∆t 
≈ 

 
 
∆n ∆E 

. (S11) 
h 

 
The intensity of the energy emission for ∆n > 1 is 

 
 

∆n ∆E 
∆t 

(∆n ∆E)2 
= 

h 

 
(S12) 

 
 
and the energy emitted in this case is given by the equation 

hνq = ∆n ∆E. (S13) 

In effect the formula (S8) is replaced by the relation 
 
 

(∆n ∆E)2 
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from which  
 
aq = 

 
 
∆n ∆E 

. (S15) 
h 

 
This means that aq behaves in a way similar to that presented in (S9): its 

change is dictated by the change of energy interval ∆E valid in the case of 

∆n = 1 to the interval ∆n ∆E which is approximately valid for transitions 

having ∆n > 1. 
 

 
 

18 Summary 
 
 
The Bohr model of the hydrogen atom has been revisited with the aim to 

develop it. 

In the first step the quanta Bn  of the magnetic induction have been taken 

into account. In fact these quanta can lead to the same spectrum  of electron 

energy as the original Bohr model. First of advantages of the Bn  calculation 

was to show that the quanta of the magnetic flux identical to those which 

are well-known  in superconductors are present  also on any energy level of 

the hydrogen atom. The next advantage of Bn  was their use in an approach 

to calculate the the emission time of energy from the levels of the atom, see 

Sec.  . 

Another extension of the original Bohr model concerned the electron and 

proton spin. Instead of the Dirac theory, a modification of the Heisenberg 

uncertainty principle for energy and time has been applied for the fermions 
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by assuming that any transition velocity in a system should not exceed the 

speed of light. In effect a minimal distance between the fermion particles in 

a fermion ensemble has been derived. The idea of spin came from the as- 

sumption that a spontaneous magnetization  can be obtained by any fermion 

particle due to its circulation along a circle having its radius equal to a min- 

imal distance acceptable for a given fermions kind. As a consequence correct 

expressions for the spim angular momentum and magnetic moment could be 

obtained equally for the electron and proton particles. Simultaneously the 

paradox of the equal angular  momentum  porsessed by the electron and pro- 

ton could be explained  - a problem which seemed to trouble the physicists 

since a long time [  ]. 

The last step of the development of the Bohr model concerned the cal- 

culation of the time intervals spent by electrons in their transitions between 

individual quantum levels. Here a probabilistic-and-statistical way of ap- 

proach to the transition time, applied both in the old and modern quantum 

theories, has been abandoned. Instead if it a well-known electrodynamical 

formula for the dissipation  energy considered as the energy ∆E entering the 

electron transition has been applied. For a small distance between the quan- 

tum levels in the atom, viz. represented by the pair of states having indices 

n and n + 1, this treatment leads to the transition time interval ∆t between 

n + 1 and n represented by the formula
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For the transitions which are between n and n + ∆n, where ∆n > 1 does 

not exceed much unity, we obtain 

 

∆n ∆E ∆t ∼= h, (223) 
 
 
 
on conditions ∆E is the energy difference between the neighbouring levels. 

A characteristic point is that for both relations (222) and (223) we obtain 

 

∆t ∼= Tn  (224) 
 
 
 
where Tn  is the Bohr time period of circulation along the level n. 

 
 
 
Appendix: Decay time of a high-frequency oscil- 

lator found to be close to the elementary interval 

of time 

In the Kramers–Heisenberg  search on dispersion properties of radiation by 

atoms there was Appendix introduced the decay time τ of a classically oscil- 

lating electron with frequency ν: 
 
 

3c3m 
τν  = 

8π2e2ν2  (A1) 
 
 

Let us assume that ν is so large that its reciprocal value attains the size 
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ν 

ν 

 
of the decay time τν  given in (A1), so 

 
 

1 
τν  = 

ν 
. (A2) 

 
 

The relation (A2) substituted to (A1) gives the following equation for τν : 
 
 

3c3mτ 2 
τν  =    ν 

8π2e2 

 
(A3) 

 
 
from which  

 
1 3c3m 
τ   

= 8π2e2 

 
 
. (A4) 

 
Our aim is to show that the expression (A4) does not differ much from 

 
the reciprocal value of the elementaty time derived in (  ) which is 

 
 

1 
∆t0 

mc2 
= 

n 

 
. (A5) 

 
 

By multiplying the expression 1/τν  in (A4) by α and putting it equal to 
 
(A5) we obtain the equation 

 
 
 

α  αc3m 
τ   

= 3 8π2e2 

1 
= 

∆t0 

mc2 
= 

n 

 
(A6) 

 
 
from which  

 
8π2 

α = 
3 

 

 
e2 

cn ≈ 

 

 
8π2 

3 

 
 

1 
137 

 
 
= 0.24. (A7)
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