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ANALYTICAL DEVELOPMENT OF FRESNEL’S OPTICAL THEORY OF CRYSTALS.
[Philosophical Magazine, XL (1837), pp. 461—469, 537—541; xii. (1838), pp. 73—83, 341—345.]

z
The following is, I believe, the first successful attempt to obtain the full development of Fresnel’s Theory of Crystals by direct geometrical methods. Hitherto little has been done beyond finding and investigating the properties of the wave surface, a subject certainly curious and interesting, but not of chief importance for ordinary practical purposes. Mr Kelland, in a most valuable contribution to the Gaml)ridge Philosophical Transactions* , has incidentally obtained the difference of the squares of the velocities of a plane front in terms of the angles made by it with the optic axes. I have obtained each of the velocities separately, and in a form precisely the same for biaxal as for uniaxal crystals.

* See Lond. and Edinb. Phil. Mag. Vol. x. p. 336.
S. 1

I have also assigned in my last proposition the place of the lines of vibration in terms of the like quantities, and that in a shape remarkably convenient for determining the plane of polarization when the ray is given. For at first sight there appears to be some ambiguity in selecting which of the two lines of vibration is to be chosen when the front is known. If p be the perpendicular from the centre of the surface'of elasticity let fall upon the front, ta the angles made by the front with the optic planes, ∈ι, the angles between its due line of vibration and the optic axes, I have shown that 
so that all doubt is completely removed. The equation preparatory to obtaining the wave surface is found in Prop. 6 by common algebra, without any use of the properties of maxima and minima, and various other curious relations are discussed.Without the most careful attention to preserve pure symmetry, the expressions could never have been reduced to their present simple forms.
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2 Analytical Development of [1

Analytical Reduction of Fresnel’s Optical Theory of Crystals.

Index of Contents.In Proposition 1, a plane front within a crystal being given, the two lines of vibration are investigated.In Proposition 2 it is shown that the product of the cosines of the inclinations of one of the axes of elasticity to the two lines of vibration, is to the same for either other axis of elasticity in a constant ratio for the same crystal; and the two lines of vibration are proved to be perpendicular to each other.In Proposition 3, a line of vibration being given, the front to which it belongs is determined; and it is proved that there is only one such, and consequently any line of vibration has but one other line conjugate to it.In Proposition 4, certain relations are instituted between the positions of, and velocities due to, conjugate lines.In Proposition 5, the angles made by the front with the planes of elasticity are found in terms of the velocities only.In Proposition 6, the above is reversed.In Proposition 7, the position of the planes in which the two velocities are equal (viz. the optic planes) is determined.In Proposition 8, the position of a front in respect to the optic axes is expressed in terms of the velocities.In Proposition 9, the problem is reversed, and it is shown that if Vj, be the two normal velocities with which any front can move perpendicular to itself, and tj, the angles which it makes with the optic planes, then

In the 10th the angle made by a line of vibration with the axes oi elasticity is expressed in terms of the two velocities of the front to which it belongs.In the 11th Proposition the velocity due to any line of vibration is expressed in terms of the angles which it makes with the optic axes, viz.
In the 12th Proposition ej, Rrθ separately expressed in terms of tι, ∙In the Appendix I have given the polar or rather radio-angular equation to the wave surface, from which the celebrated proposition of the ray flows as an immediate consequence.
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IJ Fresneιs Optical Theory of Crystals. 3

Proposition 1.
If lx ÷ my + nz=Q {a)

be the equation to a given front, to determine the lines of vibration therein.It is clear that ix x, y, z be any point in one of these lines, the force acting on a particle placed there when resolved into the plane must tend to the centre. Consequently the line of force at x, y, z must meet the perpendicular drawn upon the front from the origin. Now the equation to this nernendionla.r is (1)and the forces acting at x, y, z are α⅛, b^y, c-z parallel to x, y, z, so that the equation to the line of force is
From (2) we obtain (2)

(3)(4)(5)Hence
but by equations (1)
therefore (^)

(a)Also we havetherefore
or
And in like manner interchanging b, y, m with c, z, n

1—2
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4 Analytical Development of [1

Hence if , be the two systems of values of - , -, then
are the two lines of vibration required.

Proposition 2.By last proposition it appears that
(0

(d)andtherefore
therefore
And therefore the two lines of vibration are perpendicular to each other,H.B. Equations (c) and (c?) must not be overlooked.

Proposition 3.
Λ line of vibration is given [that is , are given ] and the position of 

the front is to be determined.Let lx + my + nz = (i be the front required, then lx^ + my^ + nz∙^^ = 0, and
Eliminating n vfQ get

therefore
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1] Fresneιs Optical Theory of Crystals. δIf now we make Xγ 
and therefore 
and in like manner 
therefore 
is the equation required.

Proposition 4.
, having each only one value, shows that only one front corresponds to the given line of vibration. Let y^, ¾ correspond to ^ι, 2/1, forthe conjugate line of vibration, then the equation to the front may be expressed likewise by 

so that
Proposition 5.

To find ω, φ, y∣r, the angles made by the front with the planes of elasticity 
in terms of v^, v.^,.By the last proposition

Now, by Proposition 2,
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6 Analytical Development of [1therefore (cos wf

Similarly,

Proposition 6.
To find Vγ, terms of ω, φ, y∣r.By the last proposition 

therefore
Just in the same way 

so that Vι^, v∕ are the two roots of the equation
Cor. Hence the equation to the wave surface may be obtained by making
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Fresnels Optical Theory of Crystals. 7or if we please to apply Prop. 5, we may make

or, if we please *,

Proposition 7.
To find when v^=v.^.By Prop. 4,
Hence when Vγ = v.2 we have, generally speaking,
Nowtherefore + + would = 0, which is absurd.The only case therefore when can = is when one of those terms of, 0 1 7 1 1 Xχ .2^1 0 7equation (^) becomes : thus suppose Vi = b, then we have - = — = , andwe can no longer infer ~ = — .Let now (<wι, <∕>ι, ψ1)(ω.2, φ2, ψ2) be the two systems of values which ω, φ, 

y∣r assume when υ2 = V2 = b, then applying the equation of Prop. 5 we have

so that b must correspond to the mean axis.
[*  See below, p. 27. Ed.]
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8 Analytical Development of [1

Proposition 8.tι, i∙2 being the angles made by the front with the optic planes, to find 
ι,γ, tg in terms ofBy analytical geometrycos = cos ω. cos + cos φ . cos φj + cos ι∕r. cos i/tj

and similarly

Proposition 9.To findVι, Vi in terms of iγ,By the last proposition 

therefore
Again,
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1] Fresnels Optical Theory of Crystals. 9therefore
buttherefore

Thus for uniaxal crystals where + = 180°
Cor. Hence we may reduce the discovery of the two fronts into whicha plane front is refracted on entering a crystal to the following trigonometrical problem.Let a sphere be described about any point in the line in which the air front intersects the plane of incidence. Let the great circle PI denote the latter plane, IF the former, 0Λ, OC also great circles, the planes of single velocity. Suppose IGH to be one of the refractedfronts intersecting 0A, OC in G and II, then

The double sign will give rise to two positions of the refracted front IGH.The propositions which follow are perhaps more curious than immediately useful.
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10 Analytical Development of [1

Proposition 10.
To determine the portion of a line of vibration in terms of the two 

velocities of its corresponding front.
ΙJ ZWe have here to determine the quantities , (of Prop. 1) in terms ofVι, v^, or on putting Xι+yiΛ-Zγ=l, Xι,y-i,, are to be found in terms of v^, v^-By Prop. 3 

and by Prop, δ 

therefore
Let α, β, 7 be the angles made by the given line of vibration with the elastic axes, then 

divided by 
and therefore
(where it is to be observed that the reduction of the denominator is simply the effect of a vast heap of terms disappearing under the influence of contact with the magic circuit (p? — b^}, (δ≡ — c≡), (c≡- α≡), a simpler instance of which was seen in Proposition 5).In fact the coefficient of . v^
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1] FresneVs Optical Theory of Crystals. 11that of

The term in which neither nor enters
The coefficient of 

and that of each of whichHence 
in like manner (cos β'f = &c.and

Proposition 11.€1, eg being the angles between a.ny line of vibration and the optic axes, 
required the velocity dive to that line in terms ofBy analytical geometry, 
therefore

Hence and in like manner, for the conjugate line of vibration
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12 Analytical Development of [1

Proposition 12.
To find €1, ∈2 terms of

but by Prop. 9
therefore
multiplied by

and we have seen that
therefore
therefore
and in like manner

where for the sake of neatness are left unexpressed in terms of tj, ι^.
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1] Fresnels Optical Theory of Crystals. 13This is the simplest form by which the position of the lines of vibration can be denoted.
Cor. From the last proposition it appears that
Hence we may construct geometrically for the two planes of polarization.Let I, K be the projections of the two optic axes on a sphere, E the projection of the normal to the front, P the projection of one line of vibration; then
Draw PEG the circle of which 

P is the pole, meeting PK, PI produced in Q and F.Then cos PK = sin KG,and cos PI = sin IF,therefore sin AG _ sin KE sin FI sin IEtherefore sin KG _ sin IFsin KE sin IEtherefore
^ViKEG≈3inIEFtherefore KEG^IEF or 180°- IEF. But PEF≈PEG, therefore EP bisects either the angle IEK or the supplement to it.These two positions of EP give the two planes of polarization. The construction is the same as that given in Mr Airy’s tracts, and originally proposed, I believe, by Mr MacCullagh.
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14 Analytical Development of [1

ADDENDUM.If in the equation of Prop. 6, viz.
we change a, b, c, v into and consider v to be the lengthof a line drawn perpendicular to the plane 
the equation to the extremity thereof must be 
where ω, φ, ψ denote the angles between the radius vector r, and the axes of £c, y, z, so that the equation may be written 
which is that of the wave surface.But we have seen that 
therefore the equation to the wave surface may be written 
where h, ig denote the angles between the radius vector υ and the two lines which would be the optic axes if a, b, c were changed into -, r, - so that 

Q∕ 0 Cif e be the inclination of either to the mean axis of elasticity

These lines I shall call by way of distinction the prime radii*.
* Upon the authority of Professor Airy I have appropriated the term optic axes to the lines 

normal to the fronts of single velocity.
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1'1 Fresneιs Optical Theory of Crystals. 15Coκ. 1. If Γι, be the two values of r corresponding to the same values of t], 62 we have 

which proves the celebrated problem of two rays having a common direction in a crystal.
Cor. 2. The intersection of any concentric sphere with the wave surface is found by making r constant. Hence ⅛ι + 1,.2, becomes constant, and therefore rti ± ri^ = constant. Hence the curve of intersection is the locus of points, the sum or difference of whose distances from two poles when measured by the arcs of great circles is constant; the poles being the points in which the prime radii pierce the sphere.In three cases these spherico-ellipses or spherico-hyperbolas become great circles:(1) When tj + = the angle between the two poles, in which case thecurve of intersection is the great circle which comprises the two poles.(2) When i2 = ^, when the locus is a great circle perpendicular to the former and bisecting the angle between the optic axes.(3) When + = 180®, when the locus is a great circle perpendicular to the two above, and bisecting the supplemental angle between the two axes.Various other properties may be with the greatest simplicity deduced from the radio-angular equation. The hurry of the press leaves me time only to subjoin the following

Proposition.

To find the inclination of the radius vector to the tangent plane, in terms of 
the angles which the radius vector makes with the prime radii.Let 0 be the centre of the wave surface, 0A, OB the two prime radii, 
OP any radius vector. Let 0P = v, POA = tj, POB = b,,, and let the inclination of the planes POA, P0B = μ',

then(taking only the positive sign for the sake of brevity).
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16 Analytical Development of [1Let 0Q, OR be the two adjacent radii vectores, so assumed that
QOA = POA, QOB = POB + ^l^,

ROB = POB, ROA=POA+Zt,,,and let p, q, r, a, 1) be the projections of P, Q, R, √4, B on a sphere of which 0 is the centre, then it is clear that
qpa = 90°, rpδ = 90°,draw qm perpendicular to p6, then pm = δt2, and therefore

In like manner
Now the angle QPO

also

therefore
therefore

In like manner
therefore Also it is clear that rpq = apb = μ>. And to find the inclination of OP to RPQ, 'nq have only to describe a sphere of which P is the centre, and intersecting PQ, PR, PO in Q', 

R', O'.Then R'O'Q = μ, and
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1] Fresneιs Optical Theory of Crystals. 17Draw O'N perpendicular to R'(f, then O'N measures the inclination of the radius vector to the tangent plane*.

* 0' is the projection of the ray and R'O' of the tangent plane. Therefore O'N being 
perpendicular to R'Q' represents their inclination.

s. 2

And 
therefore 
therefore 
and therefore
Let A OR the angle between the optic axes = 2e, then by mere trigonometry 
therefore the tangent of the inclination between the radius vector and the normal

In like manner the tangent of the inclination between the same radius vector and the normal at the other point of the wave-surface pierced by it
We may, in the same way, find the inclination of the tangent plane to either of the prime radii, and to the plane which contains them both, in terms of tj and the former by a remarkably elegant construction;but the final expressions do not present themselves under the same simple aspect.If we call φ the angle between the ray and the front, we may still further reduce by substituting for its values in terms of tι, and we shall obtain
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18 Analytical Development of [1And if 7Γι, 7r2 be the inclinations of the normal to the two prime radii, it may be shown that . — . ∙ ucos 7Γι = COS φ sin + sin φ cos sin ,
cos 7r2 = cos φ sin <2 + sm φ cos sm S ∙z

Cor. 1. For uniaxal crystals = 90° and tι + i2 = 180°, so that theztangent of the inclination of normal to radius vectorfor one point,and = 0 for the other.
Cor. 2. For every point in the circular section which passes through the poles sin = 0, and for the other two circular sections Cγ + i2 = θ θr 180°.Therefore every point in the three circular sections is an apse.
Cor. 3. When a nearly =c, is very small; and therefore the

Cb Gnormal and radius vector very nearly coincide.
Cor. 4. Referring to fig. 4 we see that 0'A^ bisects the angle R'0'Q'. Now R'0, Q'O are respectively perpendicular to the planes passing through 

O' and the optic axes; and therefore the meridian plane as we may term it, that is, the plane containing both the ray and the normal, always bisects the angle formed by the two planes drawn through the ray and the two optic axes.
Cor. 5. When

bγ or ^2 — 0,i2 or iγ = e.And therefore φ assumes the form , λvhich indicates that the extremities of the four prime radii are singular points.In concluding for the present it behoves me to state that one step has been omitted in the foregoing paper*,  viz. the actual performance of the eliminations which lead to the rectilinear equation to the wave-surface. But Mr Archibald Smith’s elegant and brief Memoir in the Cambridge 
Philosophical Transactions^ of last year leaves nothing to be desired further on that head.

[*  See below, p. 27. Ed.] [+ Vol. vι. Also Phil. Mag. April, 1838, p. 335. Ed.]
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IJ Fresneιs Optical Theory of Crystals. 19That I have not exhibited it in its proper place (Prop. 6) arises only from my respect to the principle of literary propriety. With this important blank supplied the Analytical Theory may be pronounced to be complete.For all errors and imperfections in what precedes my excuse must be press of time and a total want of the materials to be derived from consulting works of reference.
Since writing the above I have had an opportunity of reading the paper of our 

living Laplace inserted as part of the Third Supplement to his System of Rays in 
the Transactions of the Royal Irish Academy, in which the principal foregoing 
results are obtained by aid of a more refined and transcendental analysis.

The nature of the four singular points is there discussed and the existence of 
four circles of plane contact demonstrated.

The former may be very easily shown thus : when ⅛ is very small = 2e — ⅛ cos ψ 
very nearly, ψ denoting the inclination of the plane in which e is reckoned to the 
plane in which i, is reckoned.

Hence 

therefore

Take ψ constant and let the abscissa; and ordinates be reckoned respectively along 
and perpendicular to the prime ray.

Then 

or, if we change the origin to the other extremity of the prime ray.

so that the equation becomes

2—2

www.rcin.org.pl



2 0  A n al yti c al  D e v el o p m e nt  of  [ 1

H e n c e  at  e a c h si n g ul ar p oi nt  t h e s urf a c e is t o u c h e d b y  a c o n e, t h e e q u ati o n t o 

t h e g e n er ati n g  li n e of  w hi c h  is gi v e n  b y  t h e a b o v e, t h e e xtr e m e  a n gl e  b et w e e n  it 
a n d t h e pri m e  r a y b ei n g

7 Γ

W h e n  b  —  a,  ∖j∕  al w a ys  =  θ  a n d  t h e c o n e  r et ur ns i nt o a  pl a n e.

A g ai n,  l et us  s u p p os e t h at t h e p ositi o n  of  a n y p er p e n di c ul ar  fr o m t h e c e ntr e  

is gi v e n,  a n d  t h at of  t h e c orr es p o n di n g  r a di us v e ct or  r e q uir e d.

L et  O A,  O B*  d e n ot e  w h at  w e  h a v e  t er m e d t h e o pti c  a x es, b ut  w hi c h  it will  b e  
m or e  a gr e e a bl e t o a n al o g y  t o t er m t h e pri m e  p er p e n di c ul ars  fr o m c e ntr e, a n d  l et 
O P  b e  t h e gi v e n  n or m al. T a k e  O Q,  O R  c o nti g u o us p er p e n di c ul ars  fr o m c e ntr e  
i n pl a n es  P O Q,  R 0 P,  p er p e n di c ul ar  t o P 0 A,  P O B  r es p e cti v el y, t h e n t h e i n cli n ati o n 
of t h e t w o f or m er will  b e t h e s a m e as t h at of t h e t w o l att er, a n d m a y  b e  

t er m e d ∕ χ,

L et  q,  ⅛  n o w  d e n ot e  t h e a n gl es  P 0 A,  P O B  r es p e cti v el y, t h e n

T h e  r a y will  b e  f o u n d b y  j oi ni n g 0  wit h  t h e i nt ers e cti o n of  t hr e e pl a n es  dr a w n  

at  P,  Q,  R,  p er p e n di c ul ar  t o O P,  0 Q,  O R,  r es p e cti v el y.

N o w  fr o m Pr o p.  9  it a p p e ars  t h at

usi n g  o nl y  o n e  si g n f or t h e s a k e of  si m pli cit y, w hi c h  w e  m a y  d o  b y  t hr o wi n g t h e 

a m bi g uit y  u p o n  t h e w a y  i n w hi c h  ij or  ⅛  is m e as ur e d,  als o

L et  δij  =  δ ⅛, t h e n it is cl e ar  t h at O Q  =  O R,  a n d  
t h e i nt ers e cti o n of  t h e t w o pl a n es  p er p e n di c ul ar  t o 

O Q,  O R  is t h er ef or e a li n e p er p e n di c ul ar  t o t h e 
pl a n e  Q 0 R,  a n d  t o t h e li n e w hi c h  bis e cts  t h e a n gl e  

Q 0 R.

I n f a ct if w e  dr a w  Q T,  R T  p er p e n di c ul ar  t o O Q,  O R  r es p e cti v el y i n t h e pl a n e  
Q 0 R,  t h e i nt ers e cti o n i n q u esti o n  p ass es  t hr o u g h T  a n d is p er p e n di c ul ar  t o 0 T ; 

als o
O T = O Q.  3 g c Q ^ R 0 Q}  =  0 Q

t o t h e first or d er  of  s m all n ess.

* O A,  O B  ar e  n ot  e x pr ess e d  i n t h e fi g ur e.

w w w.r ci n. or g. pl



1] Fresneιs Optical Theory of Crystals. 21

Now it is easy to see (just as on p. 16) that 

and also 

therefore ROP = QOP and therefore POT is perpendicular to Q01i.

Hence the problem is reduced to finding L the intersection of two lines TL, PL 
drawn in the same plane POT.

Now because OTL^ OPL are each right angles, a circle may be made to pass 
through Z, T, P, 0.

Hence the angle
OP × POTPLO = PTO = ta..--'^^^^

and OL = OP. sec POL.

Also the position of the plane POL is known, and therefore the radius is 
completely determined in magnitude and position.

It may be worth while also to remark that the above constructions enable us 
to form a series of equations between the magnitude of the radius and its incli
nations to the two prime perpendiculars.

In fact, if we call tt^, tt.j the two inclinations in question 

and of course if we call the angle between the two prime normals 2E

Cor. 1. When ⅛ or ⅛ = 0, tan POL assumes the form which may be 

interpreted analogously to the method used in the reverse problem, but may be 
more elegantly illustrated by

Cor. 2. Which is that the meridian plane POT (that is, the plane in which 
both normal and radius lie) bisects the angle formed by ROP, QOP, and therefore
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22 Analytical Development of [1

that formed by the planes drawn through the normal and the two prime normals 
to which these two are perpendicular.

Now we have found (Cor. 4, page 18), that it also bisects the angle formed by
the two planes passing through the 
radius and the two prime radii. Hence 
when the ray is given, we may find 
by the easiest geometry the normal 
and the tangent plane, and vice versa.

Thus suppose (TV, TV') (7?, R'') to be 
the projections of the prime perpen
diculars and prime radii on a sphere 
concentric with the wave surface.

Let n be the projection of any 
given perpendicular on the same

sphere; join nN, nN'; bisect NnN' by nM, which will be the meridian plane.
Draw from R', R'TV perpendicular to nM and make R'T = TV. Produce RV

to meet Mn in r, then RrM ~ R rM, and 
therefore r is the projection of the radius. 
Just in the same way when r is given we 
may find n.

Now suppose n to come to N, then 
the position of the meridian plane nM 
becomes indeterminate, and r from a point

becomes a locus, subject to the condition that R'rN = RrN. From r draw rD 
perpendicular to rN.

Then it is clear that because rN bisects RrR'

and therefore D is a fixed point and ND a fixed length, and

therefore the projection of the locus of r upon a plane drawn at TV perpendicular 
to the line joining N with the centre 0 is given by the equation

TV being the origin and the projection of ND the prime radius ; which is the 
equation to a circle passing through TV, and whose diameter = ON cot ND.

Hence at the extremity of each prime perpendicular the tangent plane meets 
the surface in a circle passing through that extremity and whose radius = cot α, 
α being to be found from the equation

that is
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1] Fresneιs Optical Theory of Crystals. 23

Just in the same way it may be shown that the trace of the perpendiculars to 
the tangent planes of the surface at the point where it is pierced by any prime 
radius upon a plane perpendicular to that radius at its extremity, is also a circle 
passing through it, and curved in an opposite direction from the circle of plane 
contact nearest to it.

Hence the enveloping cone at these points may be described as being perpen
dicular to the circular cone, formed by drawing lines from the centre to the above 
described circle; that is every generating Hub of the one will be perpendicular to 
the generating line which it meets of the other.

More generally it easily appears from fig. 6 that if a series of great circles 
(representing meridian planes) be taken intersecting the great circle NRR'N' 
in a fixed point, a plane perpendicular to the radius passing through that 
point, will intersect the cone of ι∙ays as well as the cone of perpendiculars corre
sponding to those meridian planes, in two circles. So that there exist an indefinite 
number of circular cones of rays corresponding to circular cones of perpendiculars 
touching each other in a line lying in the plane containing the extreme axes, and 
having their circular sections perpendicular to that line.

The cusps are explained by the cone of rays degenerating into a right line, and 
the circles of plane contact by the cone of perpendiculars so degenerating.

Furthermore I observe in conclusion that when a ray is given it follows from 
the general geometrical construction above that there will be two meridian planes 
according as we take R with R', or with a point 180° from R', and consequently 
these two planes will be perpendicular to each other.

And similarly when a normal is given there will be two meridian planes per
pendicular to each other.

Thus the planes passing through any radius and the two normals at the points 
where it pierces the wave surface, are perpendicular to each other, as are also the 
two planes passing through any normal and its two corresponding radii.

Moreover a glance at fig. 2 will show that the two lines of vibration 
corresponding to any front lie respectively in the two meridian planes passing 
through the perpendicular to that front or, in other words, the intersection 
of a plane drawn through either ray belonging to a front perpendicular thereunto 
is always a line of vibration in that front.

This has been noticed, I think, by Sir William Hamilton for the particular case 
of the singular points.

As two fronts belong to every ray, so two rays pertain to every front. And 
from what has been said above it appears that the two lines of vibration in any 
front are the projections of its two rays upon its own plane.
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24 Analytical Development of [1

Note 1.In the paper above, it is shown that the meridian plane, that is, the plane containing the ray and normal, always passes through a line of vibration in the corresponding point. Now the line of force called into action by a displacement in the line of vibration clearly lies in this very plane; for the resolved part of it lies in the line of vibration itself.Harmony and analogy concur in suggesting that as two of these four lines are perpendicular to each other, so are also the other two, or in other words, that the ray is always perpendicular to the direction of unresolved force.The following investigation verifies this conjecture.Let X, y, z be the coordinates of a point taken at distance unity from the origin and in any line of vibration; then the cosines of the angles made by the line of force with the axes are as α⅛: ⅛≡y; c⅛ respectively.Let α be the inclination between the line of vibration and the line of force, then
Let thenNow let α, β, γ be the angles of inclination between the coordinate planes and the front in which the line of vibration lies, and λ some quantity to be determined. I have shown in Prop. 3 that if 

then will and thereforeAgain, 
therefore

Now
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I 1] FresneTs Optical Theory of Crystals. 25

I And in Mr Smith’s investigation of the form of the wave surface (already 
I alluded to*)  by great good fortune I find ready to my hand

r being the radius vector to the point whose tangent plane is parallel to the point in question.Hence
p being the length of the perpendicular from the centre upon the tangent plane, for p = v.Hence (cot ω)^ = the square of the cotangent of the angle between radius vector and normal.Or, in other words, the line of force is as much inclined to the line of vibration as the ray is to the normal.Now the normal is perpendicular to the line of vibration, and all four lines lie in one plane.Therefore the ray is perpendicular to the line of force. Q. E. D.I may be allowed to conclude this long paper with a summary of some of the most remarkable consequences which I have extricated from Fresnel’s hypothesis.(1) The two meridian planes corresponding to any given radius are perpendicular to each other∙j*.(2) So are the two corresponding to any given normal.(3) Every meridian plane bisects the angle formed by two planes drawn through the radius and the two prime radii.(4) It also bisects the angle formed by two planes drawn through the normal and the two prime normals.(δ) Each meridian plane contains one line of vibration and the corresponding line of force.(6) The ray is perpendicular to the line of force.All these conclusions, except the fourth, are, I believe, original.

* See above, p. 18.
+ I have defined the meridian plane to be that which contains radius vector and normal 

belonging to the same point.
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26 Analytical I)eιnilopment of [1The theory of external and internal conical refraction follows immediately as a particular consequence from the third and fourth combined as already shown; the same propositions also enable us to draw a tangent plane to any point of the wave surface by mere Euclidean geometry. May not some of these conclusions serve to suggest to physical inquirers the question, Has the theory been started from the most natural point of view?
Note 2. Investigation * of the Wave Surface·Since the appearance of the preceding parts, I have succeeded in completing the self-sufficiency of my method by deducing the equation to the wave surface from the expressions given in Prop. 5 for the angles between a front and the principal planes in terms of its two velocities. If these angles be ω, φ, ψ, and the two velocities v^, v^ we found

Let the tangent plane to the wave surface be written
then

>)t

(/5)

(?)Let

* This investigation supplies the step which Mr Tovey was desirous should appear in the 
Magazine. [Phil. Mag. March, 1838, p. 261. Er>.]

t In lieu of we might write in the denominator without affecting the result.

X Observe, that and so on for the rest.

www.rcin.org.pl



1] FresneVs Optical Theory of Crystals.then equation (7) "becomesand equation (yS)
and equation (a) may be written under two forms, viz.

(1)
(2)
(3)(4)
(5)
(6)
σ)
(8)
(9)

(10)

or From (1)From (2)
From (3) and (1)From (2) and (4)
From (5) and (6)
From (7) and (8)
From (9) and (10)

(11)
(12)From (11), interchanging· (a, x, with (δ, 7, ∙υ) we have

Finally, from (11) and (12) we have
that is
the equation required.
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