ON THE CARDINAL POINTS OF AN OPTICAL INSTRUMENT.

By E. G. Gallop, M.A., Fellow of Gonville and Caius College, Cambridge.

The chief object of the following communication is to explain an elementary method of establishing the fundamental properties of the cardinal points of any optical instrument symmetrical about an axis. The method is also applied to determine the foci and focal lengths of a system of refractors, whose focal lengths and principal foci are given. The distinguishing feature of the investigation is that the relative. positions of the refracting surfaces are defined by means of the distances between their principal foci instead of the distances between the surfaces themselves; some considerable simplification in the formulæ is thereby effected. To illustrate the method, the necessary formulæ for finding the cardinal points of an eye are set out at full length.

It is proposed, therefore, to establish the following known properties of an optical instrument.

If F and F^{\prime} be the first and second principal foci, Q any point on the axis, Q^{\prime} its image, m the magnification of a small object placed at Q, reckoned negative if the image is inverted,

$$
\frac{\mathbf{1}}{m}=-\frac{F Q}{f}=-\frac{f^{\prime}}{F^{\prime \prime} Q^{\prime}} \cdots \ldots \ldots \ldots \ldots(1)
$$

and therefore

$$
F Q \cdot F^{\prime} Q^{\prime}=f f^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots
$$

where f and f^{\prime} are the first and second focal lengths, and are such that

$$
\frac{f}{\mu}=\frac{f^{\prime}}{\mu^{\prime}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .(3)
$$

where μ and μ^{\prime} are the absolute refractive indices of the initial and final media. It is understood that lines measured from the first principal focus are to be regarded as positive, if measured opposite to the direction in which light passes through the instrument; and that lines from the second

YOL. XXIII.
principal focus are positive, if measured in the opposite direction.

These properties are easily established for a single refracting surface. To establish them for any system of refracting surfaces it will therefore be sufficient to show that, if they hold for each of two refracting systems S_{1} and S_{2}, they hold for the combination of the two.

Let F_{1} and F_{1}^{\prime} be the first and second principal foci of the first system S_{1}, f_{1} and f_{1}^{\prime} the focal lengths, μ and μ_{1} the refractive indices of the first and last media of S_{1}. Let F_{2} and F_{2}^{\prime} be the foci, f_{2} and f_{2}^{\prime} the focal lengths of S_{2}, and let μ_{1} and μ^{\prime} be the indices of the first and last media of S_{9}.

Hence

$$
\frac{f_{1}}{\mu}=\frac{f_{1}^{\prime}}{\mu_{1}} \text { and } \frac{f_{2}}{\mu_{1}}=\frac{f_{2}^{\prime}}{\mu^{\prime}} .
$$

Let $F_{2} F_{1}^{\prime}=c$, so that c, being measured from a first principal focus, is positive if light travels in the direction from F_{1}^{\prime} to F_{2}^{\prime}. Let Q be a point on the axis, q its image in S_{1}, Q the image of q in S_{2}. Let m_{1}, m_{2} be the successive linear magnifications of a small object at Q; m the total magnification, so that $m=m_{1} m_{2}$. Then

$$
\frac{1}{m_{1}}=-\frac{F_{1} Q}{f_{1}}, \frac{1}{m_{2}}=-\frac{F_{2} q}{f_{2}},
$$

Therefore

$$
\begin{aligned}
\frac{1}{m} & =\frac{F_{1} Q}{f_{1}} \frac{F_{2} q}{f_{2}} \\
& =\frac{F_{1} Q}{f_{1} f_{2}}\left(c-F_{1}^{\prime} q\right) \\
& =\frac{F_{1} Q}{f_{1} f_{2}}\left(c-\frac{f_{1} f_{1}^{\prime}}{F_{1} Q}\right) \\
& =\frac{c}{f_{1} f_{2}}\left(F_{1} Q-\frac{f_{1} f_{1}^{\prime}}{c}\right)
\end{aligned}
$$

Now take a point F on the axis, such that

$$
F_{1} F=\frac{f_{1} f_{1}^{\prime}}{c}
$$

and write

$$
f=-\frac{f_{1} f_{2}}{c} ;
$$

then

$$
\frac{1}{m}=-\frac{F Q}{f}
$$

Similarly it may be proved that

$$
m=-\frac{F^{\prime} Q^{\prime}}{f^{\prime}}
$$

where F^{\prime} is a point on the axis, such that
and

$$
\begin{aligned}
& F_{2}^{\prime} F^{\prime}=\frac{f_{2} f_{2}^{\prime}}{c} \\
& f^{\prime}=-\frac{f_{1}^{\prime} f_{2}^{\prime \prime}}{c}
\end{aligned}
$$

Hence Q^{\prime} is determined by the relation

$$
F Q \cdot F^{\prime} Q^{\prime}=f f^{\prime}
$$

Al_{50}
and therefore

$$
\frac{f}{f^{\prime}}=\frac{f_{1} f_{2}}{f_{1}^{\prime} f_{2}^{\prime}}=\frac{\mu}{\mu_{1}} \frac{\mu_{1}}{\mu^{\prime}}=\frac{\mu}{\mu^{\prime}},
$$

$$
\frac{f}{\mu}=\frac{f^{\prime}}{\mu^{\prime}} .
$$

Now F is conjugate to F_{2} with respect to the system S_{1}, since $F_{1} F \cdot F_{1}^{\prime} F_{2}=f_{1} f_{1}^{\prime}$. Hence rays from F in the first medium would pass through F_{2} after being refracted by S_{1}, and would be parallel to the axis after passing through S_{2}. Hence F is the first principal focus as usually defined. Similarly F^{\prime} is conjugate to F_{1}^{\prime} with respect to S_{2}, and is therefore the second principal focus of the combination. It follows therefore, by induction, that the formulæ (1), (2), (3) must hold for any system of refracting surfaces, since they are known to hold for a single refractor.

The principal points H, H^{\prime}, or points of unit magnification, are determined by the equations

$$
F H=-f, F^{\prime} H^{\prime}=-f^{\prime} .
$$

It follows immediately, from Helmholtz's formula connecting the magnification at a point with the inclinations to the axis of a ray through the point before and after refraction (Heath's Optics, Art. 50), that the points N, N^{\prime}, determined by the equations

$$
F N=-f^{\prime}, F^{\prime} N^{\prime}=-f
$$

possess the property that any incident ray through N emerges through $N^{\prime \prime}$ parallel to its original direction. These points N, N^{\prime} are the nodal points.

The preceding results may be used to obtain the foci and focal lengths of any system of refractors, whose foci and focal lengths are given. Let F_{1} and F_{1}^{\prime}, F_{2} and $F^{\prime}, \ldots, F_{n}$ and F_{n}^{\prime} be the principal foci of the refractors; f_{1} and $f_{1}^{\prime}, \ldots, f_{n}$ and f_{n}^{\prime} their focal lengths; and let $F_{2} F_{1}^{\prime}=c_{12}, F_{3} F_{2}^{\prime}=c_{23}, \ldots, F_{n} F_{n-1}=c_{n-1, n}$, so that c_{12} is positive if the direction from F_{2} to F_{1}^{n} is opposite to the direction of light. Let $F_{1 r}, F_{1 r}{ }^{\prime}, f_{1 r}, f_{1 r}{ }^{\prime}$ be the foci and focal lengths of the combination of the refractors numbered $1,2,3, \ldots, r$.

$$
\text { Then } \begin{aligned}
& F_{2}^{\prime} F_{13}^{\prime}=\frac{f_{2} f_{2}^{\prime}}{c_{12}} ; \\
& \begin{aligned}
F_{3}^{\prime} F_{13}^{\prime} & =\frac{f_{3} f_{3}^{\prime}}{F_{8}^{\prime} F_{12}^{\prime}}=\frac{f_{3} f_{3}^{\prime}}{c_{23}-F_{2}^{\prime} F_{12}^{\prime}} \\
& =\frac{f_{2} f_{3}^{\prime}}{c_{23}-} \frac{f_{2} f_{2}^{\prime}}{c_{13}} ; \\
F_{4}^{\prime} F_{14}^{\prime} & =\frac{f_{4} f_{4}^{\prime}}{F_{4} F_{13}^{\prime}}=\frac{f_{4} f_{4}^{\prime}}{c_{34}-F_{3}^{\prime} F_{12}^{\prime}} \\
& =\frac{f_{4} f_{4}^{\prime}}{c_{34}-\frac{f_{3} f_{3}^{\prime}}{c_{23}}-\frac{f_{2} f_{2}^{\prime}}{c_{12}} ;}
\end{aligned}
\end{aligned}
$$

and generally

$$
F_{n}^{\prime} F_{1 n}^{\prime}=\frac{f_{n} f_{n}^{\prime}}{c_{n-1, n}-} \frac{f_{n-1} f_{n-1}^{\prime}}{c_{n-2, n-1}-} \cdots-\frac{f_{2} f_{2}^{\prime}}{c_{12}} .
$$

Using the principle of the reversibility of a ray of light, we can now write down the formula to find $F_{1 n}$, viz.,

$$
F_{1} F_{1 n}=\frac{f_{1} f_{1}^{\prime}}{c_{12}-} \frac{f_{2} f_{2}^{\prime}}{c_{23}-} \frac{f_{3} f_{3}^{\prime}}{c_{34}-\ldots}-\frac{f_{n-1} f_{n=11}^{\prime}}{c_{n-1, n}}
$$

The foci of the combination of n refractors are therefore determined. The focal lengths are determined by the following equations:-

$$
f_{12}=-\frac{f_{1} f_{2}}{F_{2} F_{1}^{\prime}}, \quad f_{18}=-\frac{f_{3} f_{12}}{F_{3}^{\prime} F_{12}^{\prime}},
$$

$$
\begin{aligned}
& f_{14}=-\frac{f_{4} f_{13}}{F_{4}^{\prime} F_{13}^{\prime \prime}}, \\
& f_{1 n}=-\frac{f_{n} f_{1, n-1}}{F_{n} F_{1, n-1}}
\end{aligned}
$$

whence $f_{1 n}=(-1)^{n-1} \frac{f_{1} f_{2} f_{3} \ldots f_{1}^{\prime}}{F_{2}^{\prime} F_{1}^{\prime} \cdot F_{8}^{\prime} F_{12}^{\prime} \cdot F_{4}^{\prime} F_{13}^{\prime} \ldots F_{n} F_{1}^{\prime}, n-1}$.
Or the focal lengths may be expressed in terms of the given quantities in the following way. From the above equations

$$
\begin{aligned}
-\frac{f_{1} f_{9}}{f_{12}} & =c_{12} \\
\frac{f_{3}}{f_{13}} & =-\frac{1}{f_{18}} F_{8} F_{12}^{\prime}=-\frac{1}{f_{12}}\left(c_{23}-F_{2}^{\prime} F_{12}^{\prime}\right) \\
& =-\frac{1}{f_{18}}\left(c_{23}-\frac{f_{2} f_{2}^{\prime}}{c_{18}}\right)
\end{aligned}
$$

and therefore

$$
\frac{f_{1} f_{2} f_{3}}{f_{13}}=c_{12} c_{23}-f_{2} f_{2}^{\prime}
$$

$$
\text { Again, } \begin{aligned}
-\frac{f_{4}}{f_{14}^{\prime}} & =\frac{1}{f_{13}}\left(c_{34}-F_{3}^{\prime} F_{13}^{\prime}\right) \\
& =\frac{1}{f_{13}}\left(c_{34}-\frac{f_{3} f_{3}^{\prime}}{F_{3}^{\prime} F_{13}^{\prime}}\right) \\
& =\frac{1}{f_{13}}\left(c_{34}+f_{3} f_{3}^{\prime} \frac{f_{15}}{f_{3} f_{12}}\right)
\end{aligned}
$$

whence $(-1)^{3} \frac{f_{1} f_{2} f_{3} f_{4}}{f_{14}}=c_{34} \frac{(-1)^{2} f_{1} f_{2} f_{3}}{f_{13}}-f_{3} f_{3}^{\prime} \frac{(-1) f_{1} f_{2}}{f_{13}}$.
And generally

$$
\begin{aligned}
&(-1)^{n-1} \frac{f_{1} f_{3} \cdots f_{n}}{f_{1, n}}=c_{n-1, n} \frac{(-1)^{n-2} f_{1} f_{2} \cdots f_{n-1}}{f_{1, n-1}} \\
& \quad-f_{n-1} f_{n-1} \frac{(-1)^{n-3} f_{1} f_{2} \cdots f_{n-2}}{f_{1, n-2}}
\end{aligned}
$$

It follows from these equations that

$$
\frac{(-1)^{n-1} f_{1} f_{2} \ldots f_{n}}{f_{1, n}}
$$

is equal to the numerator of the last convergent to the continued fraction,

$$
c_{12}-\frac{f_{2} f_{2}^{\prime}}{c_{23}-\frac{f_{3} f_{3}^{\prime}}{c_{84}}-\cdots-\frac{f_{n-1} f_{n-1}^{\prime}}{c_{n-1 n}} .}
$$

If therefore K denotes this last numerator,

$$
\begin{equation*}
f_{1 n}=(-1)^{n-1} \frac{f_{1} f_{2} \ldots f_{n}}{K} \tag{A}
\end{equation*}
$$

Similarly,

$$
f_{1 n}^{\prime}=(-1)^{n-1} \frac{f_{1}^{\prime} f_{2}^{\prime} \ldots f_{n}^{\prime}}{K^{\prime}}
$$

where K^{\prime} is the numerator of the last convergent to

$$
c_{n-1, n}-\frac{f_{n-1} f_{n-1}^{\prime}}{c_{n-2, n-1}-} \cdots-\frac{f_{2} f_{2}^{\prime}}{c_{12}} .
$$

Now it has been proved that, if μ and μ_{n} are the indices of the first and last media,

$$
\frac{f_{1 n}}{f_{1 n}}=\frac{\mu}{\mu_{n}}=\frac{\mu}{\mu_{1}} \frac{\mu_{1}}{\mu_{g}} \cdots \frac{\mu_{n-1}}{\mu_{n}}=\frac{f_{1} f_{2} \ldots f_{n}}{f_{1}^{\prime} f_{2}^{\prime} \cdots f_{n}^{\prime}} .
$$

It follows therefore that $K=K^{\prime}$, an equation which leads to a known property of continued fractions.

It is easily deduced that the formulæ which determine the positions of $\vec{F}_{1 n}$ and $F_{1 n}{ }^{\prime}$ may be written

$$
\begin{aligned}
& F_{1} F_{1 n}=\frac{f_{1} f_{1}^{\prime}}{K} \frac{\partial K}{\partial c_{12}} \ldots \ldots \ldots \ldots \ldots(B), \\
& F_{n}^{\prime} F_{1 n}^{\prime}=\frac{f_{n} f_{n}^{\prime}}{K} \frac{\partial K}{\partial c_{n-1, n}} \ldots \ldots \ldots \ldots\left(B^{\prime}\right)
\end{aligned}
$$

The equations $(A),\left(A^{\prime}\right),(B),\left(B^{\prime}\right)$, with the relation $f_{\text {in }} / \mu=f_{12}^{\prime} / \mu_{n}$, contain all the necessary information.

For example, in the case of four refracting surfaces,

$$
K=c_{12} c_{23} c_{34}-c_{12} f_{3} f_{3}^{\prime}-c_{34} f_{2} f_{2}^{\prime},
$$

$$
\begin{gathered}
f_{14}=-\frac{f_{1} f_{2} f_{3} f_{4}}{K}, f_{14}^{\prime}=-\frac{f_{1}^{\prime} f_{2}^{\prime} f_{3}^{\prime} f_{4}^{\prime}}{K}=\frac{\mu_{4}}{\mu} f_{14}, \\
F_{1} F_{14}^{\prime}=\frac{f_{1} f_{1}^{\prime}}{K}\left(c_{23} c_{34}-f_{3} f_{3}^{\prime}\right), \quad F_{4}^{\prime} F_{14}^{\prime}=\frac{f_{4} f_{4}^{\prime}}{K}\left(c_{12} c_{23}-f_{2} f_{2}^{\prime}\right) .
\end{gathered}
$$

It will be found that frequently the formula obtained here will be more convenient for numerical calculation than those usually given in treatises on Optics.

Thus, to find the cardinal points for an eye we may proceed as follows. Let r_{1}, r_{2}, r_{3} be the numerical values of the radii of curvature of the cornea, and the anterior and posterior surfaces of the crystalline lens. Let $\mu, \mu_{1}, \mu_{2}, \mu_{3}$ be the refractive indices of air, the aqueous humour, crystalline lens and vitreous humour. Let a be the distance between the anterior surfaces of the cornea and lens, b the thickness of the lens.

Then

$$
\begin{array}{ll}
f_{1}=\frac{\mu_{1}}{\mu_{1}-\mu}, & f_{1}^{\prime}=\frac{\mu_{1} r_{1}}{\mu_{1}-\mu}=f_{1}+r_{19} \\
f_{2}=\frac{\mu_{1} r_{2}}{\mu_{2}-\mu_{1}}, & f_{2}^{\prime}=\frac{\mu_{2} r_{3}}{\mu_{2}-\mu_{1}}=f_{2}+r_{29} \\
f_{3}=\frac{\mu_{2} r_{3}}{\mu_{2}-\mu_{3}}, & f_{3}^{\prime}=\frac{\mu_{3} r_{3}}{\mu_{2}-\mu_{3}}=f_{3}-r_{3}
\end{array}
$$

Write

$$
\begin{array}{r}
c_{1}\left(=-c_{12}\right)=f_{1}^{\prime}+f_{2}-a, \\
c_{2}\left(=-c_{23}\right)=f_{2}^{\prime}+f_{3}-b, \\
K=c_{1} c_{2}-f_{2} f_{2}^{\prime} .
\end{array}
$$

Then the first principal focus is in front of the cornea at a distance from its anterior surface equal to

$$
f_{1}-\frac{f_{1} f_{1}^{\prime} c_{2}}{K}
$$

The second principal focus is behind the crystalline lens at a distance from its posterior surface equal to

$$
f_{3}^{\prime}-\frac{f_{3} f_{3}^{\prime} c_{1}}{K}
$$

The first and second focal lengths are given by

$$
f=\frac{f_{1} f_{2} f_{3}}{K}, \quad f^{\prime}=\frac{f_{1}^{\prime} f_{2}^{\prime} f_{3}^{\prime}}{K}=\frac{\mu_{3}}{\mu} f
$$

The first principal point and the first nodal point are at distances f and f^{\prime} respectively behind the first principal focus. The second principal point and the second nodal point are at distances f^{\prime} and f respectively in front of the second principal focus.

The formulæ have here been adapted so that each letter shall represent a positive quantity in the case of the normal human eye.

NOTE ON KIRKMAN'S PROBLEM.

By A. C. Dixon, M.A.
I Do not know whether it has been remarked that the solutions of Kirkman's Problem may be divided into two classes as follows:

Suppose one of the school girls to receive an apple, another an orange, another a pear, and another a plum, and each of the others two, three or four of these fruits, no two receiving alike and none receiving two of a kind. Then it is possible for thirty-five triads to be formed, each of which will have an even number of each kind of fruit, and the triads may be broken up into seven sets of five each including all the girls.

Let us denote the girls by $a, b, c, d, e, f, g, h, i, j, k, l, m, n, o$ or $\alpha, \beta, \alpha \beta, \gamma, \delta, \gamma \delta, \alpha \gamma, \alpha \beta \gamma \delta, \beta \delta, \alpha \delta, \beta \gamma \delta, \alpha \beta \gamma, \alpha \gamma \delta, \alpha \beta \delta, \beta \gamma$. Then the following is such an arrangement-

$$
\begin{aligned}
& \text { abc .adg .aej.afm.ahk .ain.alo, } \\
& \text { def .bhm.bdo.bgl .bjn .bfk.bei, } \\
& \text { ghi .cij .cfh.cen .cdl .cgo .clcm, } \\
& \text { jkl .eloo .gkn.dik.egm.djm.dhn, } \\
& \text { mno.fln .ilm.hjo .fio .ehl .fgj. }
\end{aligned}
$$

In each triad if the second notation is used there will be an even number (2 or 0) of each of the symbols $\alpha, \beta, \gamma, \delta$.

In this arrangement let us take any two triads containing: the same letter, as alo, fio. Then if a, f, i, l are taken in pairs

