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19 Abstract 

20 Air pollution emissions in the urban area are causing significant adverse health effects. To effectively 

21 mitigate /ocal adverse health effects, the sources of air pollution and their contribution to loca I air 

22 quality must be quantified. In this study, we estimate both exposure and emission-to-exposure 

23 relationships for severa/ air pollutants and for tour different emissions source categories in Warsaw, 

24 Poland. The emission-to-exposure relationship was illustrated by using the intake fraction (iF) 

25 concept. The exposure and iFs were predicted for primary particulate matter (PPM), nitrogen oxides 

26 (NOx), su/fur dioxide (SO2), Benso [a] Pyren (BaP), nickel (Ni), cadmium (Cd), and lead (Pb). The 

27 dispersion of pollutants was forecasted with CALPUFF dispersion model and by using the year 2005 

28 meteorological data. The emission uncertainties were propagated through the dispersion model 

29 with the Monte Carlo techniques. The exposure and iFs were calculated by combining the population 

30 data with the predicted annual average air pollution concentrations. The population average 

31 exposure for fine particulate matter (PM2.5) was 7.1 µg/m 3 (95% confidence interval 6.6 -7.5 µg/m 3). 

32 67% of this exposure was due to emissions from linear sources and 94% due to primary PM 

33 emissions, including resuspended PM. The predicted mean iFs varied from the 0.03 (NOx from point 

34 sources) to 47 (resuspended primary PM2.5 from linear sources) per million . The intra-urban 

35 variation of iF varied from 4.8 to 129 fold so that variation was highest for primary PM2.5 emitted 

36 from the other point sources and lowest for BaP and Cd emitted from the high point sources. These 

37 results show that, from the loca I emission sources, (i) traffic is contributing most of the exposure, 

38 and that (ii) the iF variation between sources and pollutants is substantial inside the urban a rea. The 

39 iF variation means that spatial emission mitigation actions would have different impact for loca I air 

40 quality. 

41 Highlights 

42 • We estimated exposure and emission-to-exposure relationships for several air pollutants in 

43 

44 

Warsaw, Poland, together with their estimated probability distributions due to emission 

inventory uncertainties; 

45 • lntake fraction concept was used to describe the emission-to-exposure relationship; 

46 • The highest intake fractions were predicted for the traffic emissions. This means that 

47 emission from traffic has higher potency to expose people than air pollution emissions from 

48 other sources; 

49 Keywords (max 6) 
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53 Abbreviations 

54 BaP 

55 CALPUFF 

56 Cd 

57 EEA 

58 EU27 

59 HIA 

60 1AM 

61 iF 

62 IMPACT 

63 Ni 

64 NOx 

65 Pb 

66 PITF 

67 PM 

68 PMlO 

69 PM2.5 

70 PM_N 

71 PM_S 

72 PPMlO 

73 PPMlO_R 

74 

75 PPM2.S_R 

76 502 

77 

Benzo [a] pyrene 

Steady-state meteorological and air quality modeling system 

Cadmium 

European Environment Agency 

European Union 27 member states 

Health lmpact Assessment 

Integrated Assessment Model 

lntake fraction 

IMPact Assessment of Chemical Toxicants -model 

Nickel 

Nitrogen oxides 

Lead 

Population lnhalation Transfer Factor 

Particulate matter 

Particulate matter with aerodynamic diameter less than 10 µm 

Fine particulate matter with aerodynamic diameter less than 2.5 µm 

Nitrate {NO 3) aerosol (particulate matter) 

Sulfate (SO ; ) aerosol (particulate matter) 

Primary PMlO 

Primary PMl0 caused by particie resuspension from the road surfacesPPM2.5 

Primary PM2.5 

Primary PM2 .5 caused by particie resuspension from the road surfaces 

Sulfur dioxide 



78 1. lntroduction 

79 Air quality forecasting models and integrated assessment models (1AM) are used to support air 

80 quality management decisions (e.g. http://gains.iiasa .ac.at/; ApSimon et al., 2002) . These models are 

81 applied for the ana lysis of air pollution mitigation policies, for example, to indicate where the 

82 required air quality limits will be exceeded, and what emission mitigation strategy should be applied 

83 to reduce the adverse health effects caused by the air pollution. 

84 The important part of 1AM is to predict the dispersion of air pollution from the source to human 

85 breathing zone. The common way to incorporate this information to 1AM is to use source-receptor 

86 matrices. The source-receptor matrix describes the change in the pollutant concentration (receptor) 

87 in relation to the unit variation of emission intensity (source). One of the modifications to traditional 

88 source receptor relationships is the intake fraction (iF) concept (Bennett, et al. 2002a). The iF is 

89 defined as an "integrated incrementa/ intake of a pollutant released [ram a source category and 

90 summed over all exposed individuals" (Bennett, et al. 2002a). The iFs can be estimated for different 

91 pollutants and for different source categories (e.g. Bennett et al., 2002b, Ta inio et al., 2009). For the 

92 air pollution, iFs are commonly predicted by combining the outdoor concentration data with the 

93 population density data. 

94 

95 Dispersion models and IAMs contain severa I uncertainties which might have impact also on resulting 

96 regulatory decisions. Previous studies have revealed (Russel and Dennis, 2000) that major 

97 uncertainties (measurement or estimation error) in dispersion models are due to the meteorological 

98 data and the emission inventory. Emission inventory for urban a rea usually encompasses various 

99 emission source categories, which are characterized by specific technological parameters, the 

100 com position of emitted compounds, emission intensity, and the range of uncertainty of emission 

101 data. The propagation of these emission uncertainties through the dispersion models is necessary to 

102 predict all the uncertainties in the 1AM. 

103 The variability is also an important factor, together with uncertainty, when planning mitigation 

104 actions. Previous studies have shown that the iF variation between emission source categories (e.g. 

105 Tainio et al., 2009; Taimisto et al., 2011) and intra-urban variation within the source categories (e.g. 

106 Greco et al., 2007) can be 10 to 100 fald. For example, Greco et al. (2007) find out that the iF 

107 variation for traffic related primary fine particulate matter {PM2 .5) is from 0.8 to 53 per mil lion for 

108 Boston, US. This result shows that not just the emission source category variation but also the intra-

109 urban variatio n of emission-to-exposure relationship is important to be taken into account; 

110 especially for those source categories for which the location of emissions could be changed or the 

111 mitigation actions could be targeted to spatially smaller a rea . 

112 In this study, we predict the contribution of loca I air pollution emissions for the air pollution 

113 concentrations in Warsaw, Poland. Main focus will be on estimation of (i) the impact of emission 

114 uncertainties for the predicted air pollution concentration, (ii) population exposure to air pollution in 

115 Warsaw, (iii) intake fractions (iF) for different air pollutants and for different emission source 

116 categories, and (iv) prediction of intra-urban variation of iF for different pollutant. From the different 

117 air pollutants, we will consider primary and secondary PMlO and PM2.5, Benza [a] Pyren (BaP), 

118 nickel, cadmium, and lead. 

119 



120 2. Materiał and methods 

121 The dispersion of air pollutants over the study a rea is predicted with the CALPUFF model 

122 (http://www.src.com/calpuff/calpuffl.htm). The emission uncertainties are propagated through the 

123 CALPUFF model by using Monte Carlo algorithms (Hanna et al., 1998, Moore and Londergan, 2001). 

124 After the dispersion modeling, the predicted air pollution concentration fields are combined with 

125 population data to calculate exposure and iFs for different air pollutants and source categories. 

126 Details of each phase are described in the following chapters. 

127 2.1. Emission data 

128 In the integrated assessment models, it is important to know what is the impact of the model 

129 uncertainty on model results. The emission inventory is one of the mai n sources uncertainty in the 

130 dispersion models. The emission uncertainty is especially important in the urban areas where 

131 emission field is usually characterized by spatial concentration of a number of emission sources. 

132 These differ in many parameters, such as: technological characteristics, emission intensity, 

133 com position of pollutants and also in range of emission uncertainty. For this reason, emission field 

134 for this study was split down into four categories: 

135 • High point sources (represent energy sector, power and heating pants -

136 relatively low uncertainty), 

137 • Other point sources (industrial sources - medium uncertainty), 

138 • Area sources (represent e.g. urban residential sector and same distributed industrial sources 

139 - high uncertainty), 

140 • Linear sources (urban transportation system - high uncertainty). 

141 The mai n pollutants considered in the sequel (primary and secondary) are shown in Table 1. The 

142 total emission field is composed of 16 high point sources (mainly heating plants), 1017 other 

143 industrial point sources, 877 a rea sources of the residential sector and 1156 linear sources of the 

144 urban transportation system. Location of point sources relates to their spatial coordinates. Area and 

145 linear sources are represented by 1km x 1km elements of spatial discretization of the domain. 

146 The emission volumes and uncertainties for different pollutants are shown in Table 2. The emission 

147 uncertainty for each source category was individually generated for each pollutant by assuming 

148 norma I distribution. To avoid creating technologically unrealistic sets of emission data (Page et al., 

149 2003; Holnicki et al., 2010), the Monte Carlo sampling took into account correlations between key 

150 compounds for each source category. 

151 2.2. Forecasting of air pollution concentrations 

152 CALPUFF model computations were performed for 2005 emission and meteorological datasets, 

153 with 1 hr time interval of the input data. Annual mea n concentrations of different air pollutants 

154 were predicted for 563 receptor points located at 1 km x 1 km grid discretization nodes over the 

155 Warsaw (Figure 1). Monte Carlo technique was used to propagate emission uncertainty through the 

156 dispersion model. Simulations were performed for 2000 randomly generated sets of input emission 

157 data and then utilized by atmospheric transport model CALPUFF. The results of CALPUFF calculations 

158 were recorded in a database (Holnicki et al., 2010) that contain information from annual average 



159 concentrations and standard deviation of each pollutants emitting from four source categories for 

160 each 563 receptor point. This information was later used to calculate the exposure and iFs (see 

161 description below). 

162 2.3. Validation of the dispersion model 

163 

164 Dispersion model performance was validated by comparing predicted air pollution concentrations 

165 with the observations. Figure 2 presents comparison of predicted averaged concentration of 

166 particulate matter (PM10) with measurement values registered at monitoring stations. Locations of 

167 monitoring stations are shown in Fig u re 1. The dashed lines show ranges of the factor of 2, usually 

168 adopted in comparison of modeling and observed atmospheric pollution data. The predicted PMl0 

169 concentrations were following the measured concentrations. Contribution of the inflow of PMlO 

170 from emission sources located outside computational domain was included in this comparison as an 

171 average regional PMlO concentration. 

172 

173 2.4. Estimation of population average exposure 

174 The exposure of Warsaw population to different air pollutants was estimated by comparing the 

175 population data with the forecasted air pollution concentrations. Population data was obtained from 

176 the European Environment Agency (EEA) (EEA, 2009). The spatial resolution of EEA population data 

177 is 100 m x 100 m and it covers all EU27 countries. The population of study area was estimated from 

178 the EEA population data by taking 1 km buffers around each 563 receptor points and then 

179 calculating the population around each receptor point. Each 100 m x 100 m population grid was 

180 joined only for one receptor point to avoid double counting. The population of Warsaw over all the 

181 receptor points was 1790872. These calculations were dane with the ESRI ArcMap version 9.3. 

182 Average concentrations of air pollutants were estimated by calculating the average air pollution 

183 concentrations over the 563 receptor points. Exposure was calculated by assuming that outdoor 

184 concentration of air pollutants represents the population exposure. The exposure was estimated by 

185 calculating the population weighted air pollution concentration with following equation: 

186 

187 

188 

E = ~- CiPOPi 
~l Pop 

189 In this equation, E is the exposure for air pollution (unit: µg/m3 or ng/m3), C; is forecasted air 

190 pollution concentration (unit: µg/m 3 or ng/m3) in the receptor point i, Pop; is the number of 

191 population in the receptor point i. Both average concentration and exposure were calculated for 

192 each pollutants and for each emission source category. 

(1) 

193 The forecasted annual average air pollution concentrations and standard deviations for the forecasts 

194 were downloaded from the dedicated database to the Monte Carlo simulation program Analytica 

195 version 4.3 (http://www.lumina.com/). The concentration uncertainties were propagated through 



196 the model with 1000 iterations. Correlations were taken into account so that for the same pollutant 

197 emitted from the same sources, the iterations for different receptor points had approximately 90% 

198 correlation. Thus, we assume that forecasted concentrations e.g. for primary PM2.5 due to linear 

199 sources correlate between different receptors. 

200 2.5. lntake fraction (iF) 

201 The iF was calculated with the equation : 

202 

203 iF = ._., . c,Pop,BR 
L..1 Q (2) 

204 

205 where iF is the intake fraction; C; is the predicted concentration increase of air pollutant in a 

206 receptor point i (g/m 3) ; Pop; is the population number in receptor point i; BR is the average 

207 breathing rate; and Q is the emission strength (g/s). A breathing rate of 20m3/day/person was used 

208 in all the calculations. 

209 The iFs were estimated separately for four different emissions source categories and for different air 

210 pollutants. For SO2 and NOx the emissions were multiplied with the factors 0.67 and 0.48, 

211 respectively, to take into account the differences in chemical com position of inhaled PM versus 

212 emitted PM (see Table 1). Thus, the iF takes into account that molecular weight will increase due to 

213 chemical reactions in the atmosphere. 

214 3. Results 

215 3.1. Air pollution concentrations and exposure 

216 The average concentrations and exposure for different air pollutants are presented in Figure 3. From 

217 the four modeled emissions source categories, linear and a rea sources were contributing most to 

218 the predicted air pollution concentrations. Only for PM_S the high point sources emission category 

219 was more significant emission source than linear or a rea sources. 

220 Average exposure to PM2.5 air pollution was 7.1 µg/m3 (95% confidence interval 6.6-7.5) . From this 

221 exposure, 94 % was due to PPM2.5 emissions and 67% due primary PM2.5 and precursor gas 

222 emissions from the linear sources. The contribution of secondary aerosols and point sources for the 

223 average PM2.5 exposure was 6% and 8%, respectively. The results indicates that, from local sources, 

224 the PPM2.5 emission from traffic is the most prominent target for emission mitigation actions while 

225 high point sources has only minor impact for loca I air quality. 

226 For BaP, Cd, Ni and Pb the linear sources were contributing 56% to 100% of to tal exposure. Point 

227 sources were having only minor impact to exposure also for these pollutants. 

228 For almost all the pollutants and source categories, the exposure, calculated as a population 

229 weighted outdoor concentrations, was higher than average concentrations of the same pollutants 

230 (Figure 3). For the primary PM and Pb emitted from the linear sources, the exposure was 

231 approximately 65% higher than average concentration. For the BaP, Cd and Ni the opposite was true 

232 so that exposure levels were 11% lower than average concentrations. For the area sources, exposure 



233 was 1% to 6% higher than average concentration for all the pollutants. These results show that, on 

234 the average, population and emissions are correlated in the study a rea but that there are also 

235 exception for this rule. 

236 The emission uncertainties were contributing only little to the uncertainty of the average 

237 concentration estimates (Figure 3) while for the individual receptor point the impact was greater. 

238 For example, Figure 4 illustrates the PM10, PM-5 and PM-N concentrations, contributions of 

239 different source categories and resulting concentration uncertainties for receptor No. 275. All 

240 predicted concentration estimates are much more uncertain than the average concentrations for 

241 the se same pollutants in study a rea (comparison of Figures 3 and 4). This is due to location of this 

242 receptor in the a rea of intensive car traffic and substantial contribution of very uncertain linear 

243 sources in the resulting concentration, especially for PM10 and PM-N. On the other hand, relatively 

244 low uncertainty for PM_S follows from substantial contribution of more certa in point sources 

245 (com pa re Table 2 and Figure 4). 

246 

247 3.2.lntake fractions 

248 The intake fractions (iF) for different source categories and air pollutants are presented in Table 3. 

249 The highest iF was observed for the PPM10 and PPM2.5 emissions from linear sources. After linear 

250 sources, the highest iFs were predicted for the a rea sources followed by other point sources and 

251 high point sources. The difference in average iF between linear sources and high point sources was 

252 50 fold for PPM2.5. This means that, per emission volume, the PPM2.5 emission from linear sources 

253 is 50 times more harmful than similar emission from the high point sources, if same exposure-

254 response function is assume for both PMs. However, this calculation took into account only local 

255 population and re suit would be different if the dispersion outside the Warsaw was taken in to 

256 account. 

257 For BaP, Cd and Ni the iFs were highest for the a rea sources and second highest for the linear 

258 sources. 

259 The intra-urban variation of iF was large (Table 3). For PPM2.5, the lowest iF predicted for one 

260 emission source was O.OS per million and highest 100 per million. The difference between smallest 

261 and highest predicted iF for PPM2.5 emitted from other point sources was approximately 120 fold 

262 showing great differences in exposure potentia I between individual sources (Figure 5). 

263 4. Discussion 

264 We have examined the concentration of different air pollutants and the exposure of loca I population 

265 for these air pollutants in Warsaw, Poland . From the four modeled source categories, the emissions 

266 from linear sources were causing most of the exposure for most of the pollutants. The importance of 

267 the linear sources over the other sources is mainly due to high correlation of emission location with 

268 population location, and low emission height. This can be observed from our results by comparing 

269 the iF estimates for linear sources with iF estimates for other source categories (Table 3) . However, 

270 for some air pollutants, especially for Cd, Ni and Pb, the a rea sources had higher iF than linear 

271 sources. Even for these pollutants, the linear sources were contributing more to the exposure, in 



272 comparison to a rea sources, due to higher emission volumes (Table 2). All these results highlight the 

273 importance of the traffic to the loca I air quality, exposure and population health. 

274 The substantial emission uncertainties were contributing only small amount of uncertainty for the 

275 predicted air pollution concentrations. For example, for the receptor 275 the PPMlO concentration 

276 uncertainty was ±18 but for the average PPMlO concentration over the study a rea, the uncertainty 

277 was± 6%. This uncertainty is much lower than the± 40% emission uncertainty that was assumed for 

278 the PPMlO emission for the linear and a rea sources (Table 2) . 

279 The ± 6% concentration uncertainty is small in comparison to other uncertainties in the IAMs. For 

280 example, the Wang et al. {2006) predicted iFs for four different source categories in China. As a part 

281 of the study they performed a set of sensitivity analyses. Highest uncertainties were related to the 

282 size of the modeling domain (+200-300% impact for mean iF estimates), population resolution (-49%, 

283 +95%) and to half-life of SO2 (+55%) (Table 5, Wang et al., 2006). These uncertainties are not 

284 necessary relevant for the present study but they illustrate the range of uncertainties commonly 

285 found in 1AM studies. When the health effect estimation is included in 1AM, the uncertainties can be 

286 even larger. For example, in Ta inio et al. {2010) study the mea n predicted premature mortality due 

287 to primary PM2.5 emission from Fin land was 209 deaths per year and uncertainty range from 6 to 

288 739 deaths per year. This corresponds -97%, +350% uncertainty around the mea n estimate. 

289 The intra-urban variation of iF was much larger than the impact of the emission inventory 

290 uncertainty (Table 3, Figure 5). The difference between smallest and highest predicted iF varied 

291 between 5 to 130 fold for different pollutants and sources. The variation was highest for the PM air 

292 pollution emitted from other point sources and smallest for Cd and BaP emitted from the high point 

293 sources. In generał , the iF variation was highest for the linear sources and a rea sources. 

294 The intra-urban variation of iF for different pollutants are similar to the iFs estimated in previous 

295 studies. For example, Greco et al. {2007 estimated iFs separately for 23 398 road segments inside the 

296 Boston, US, and the dispersion of primary PM2.5 was calculated within 5000 m from the road 

297 segments. The iF variation between segments was 0.8 to 53 per million while the mea n was 12 per 

298 million. In present study, the respective va lues for linear sources were 1.5, 100 and 38 per million. 

299 Together these studies show that the iF variation inside the urban a rea is significant and this will 

300 have impact for emission mitigation actions that are targeting only part of the city (e.g. congestion). 

301 Also for the a rea sources the iF variation predicted in present study is similar to iF variation 

302 predicted in previous studies. In Vancouver, Canada, the iF va lues for wood burning were estimated 

303 to be 13 per million (geometrie mea n) and uncertainty range 6.6 to 24 per million (one geometrie 

304 standard deviation) (Ries et al., 2009). In Ries et al. {2000), the iFs were based on measured 

305 concentration and a land use regression model designed to estimate spatial variation of wood burn 

306 related primary PM2.5 in the study a rea. In Lai et al. {2000) a cumulative population inhalation 

307 transfer factor's (PITF) for the hypothetical urban a rea was calculated. For outdoor sources they 

308 estimated PITF va lues between 4.4. and 44 per million, depending on the wind speed. The definition 

309 of PITF is identical with iF so that the units are comparable. Both of these estimates are similar to 

310 mea n and variation of lf for PPM2.5 due to a rea sources predicted in present study (Table 3). 

311 For high point sources, Wang et al. (2006) estimated iFs for 49 different power plants from six 

312 different urban areas in China. The average iF for TSP was 3.0 per million and variation from 0.41 to 



313 17.9. The representative values for high point sources from the present study were 0.81, O.OSO and 

314 3.1 per million, respectively. Thus, our iFs are approximately in order of magnitude !ower than the 

315 iFs estimated in Wang et al. (2006) study. The Wang et al. study took into account exposure within 

316 50 km from the sources so the one magnitude differences might be due to larger study domain and 

317 larger population density. 

318 The literature search in the lntake Fraction Data base (http:/ /www.ktl.fi/expoplatform/) and in the 151 

319 Web of Knowledge (http:/ /apps.webofknowledge.com/) revealed only limited amount of iF studies 

320 for other air pollutants than PM. For meta Is, Spada ro and Rab! (2004) used a multimedia pathway 

321 model to estimate exposure and iFs for metals in average European setting. For the Cd, Ni and Pb 

322 they estimated iFs equal to 3.9, 3.9 and 7.1 per million, respectively. In present study, the average iF 

323 for these same meta Is were 5.9, 5.9 and 40 per million, respectively. Although Spada ro and Rabl 

324 (2004) study was based on average central-European condition and present study to urban 

325 condition, the iF estimates are close to each other for Cd and Ni. For Pb the difference is substantial 

326 and probably due to high portion of Pb emissions emitted from the linear sources. 

327 For BaP, previo us studies have used different methods to estimate the iF through different exposure 

328 routes. Humbert et al. (2009) estimated iF for BaP, and a number of other pollutants, using 

329 multimedia, multi-pathway model IMPACT North America (version 1.0). The iF for BaP for urban 

330 setting was 5.0 per million. Maximum estimated iF for urban setting was 30 per million . In the 

331 present study the average iF for BaP was 6.0 per million. The other study from North America 

332 assumed average iF for BaP to be 24 per million (Bennett et al., 2002b). However, the later iF was for 

333 air release taking inio account exposure through the ingestion. This suggests that the iF for BaP 

334 could potentially be higher if also other exposure routs beside the inhalation would be taken into 

335 account. 

336 4.1. Uncertainties 

337 The main non-quantified uncertainties were recognized to be the amount of population, lack of 

338 population location data and indoor-outdoor penetration of pollutants. Also, the influence of 

339 variations in year weather conditions was not considered. 

340 In the present study, the population of Warsaw was assumed to be 1.7 million. This estimate is also 

341 close to officia! population count, generated by the city of Warsaw. However, the Warsaw has large 

342 non-officia I populations that live in the city but are registered in ot her parts of the country. 

343 Unofficial estimates have assumed thai real population might be 3 mi Ilion, or even more. lf the true 

344 population of Warsaw is significantly higher, it means thai the iFs calculated in the present study 

345 underestimate the true exposure by underestimating the amount of people in study area. Also, non-

346 officia I population might live in different areas of the city than officia I one, which would re suit in 

347 changes both in iFs and exposure estimates. Unfortunately, the importance of this uncertainty is 

348 impossible to quantify with the current amount data. 

349 The other main uncertainty relates to assumption of population location . We assumed that the 

350 outdoor concentrations of pollutants in people's home address represent their exposure. This bias 

351 the exposure estimates both upward and downward. The infiltration of pollutants from outdoor to 

352 indoor is reducing the exposure for outdoor originated pollutants because only some of the 

353 pollutants penetrate indoor. This bias our iF estimates upward. On the other hand, people spend 



354 time outside of their homes, including both more and less polluted microenvironments. This will bias 

355 our results to both upward and downward . 

356 One option to estimate the impact of the se uncertainties is to com pa re our results with the studies 

357 that take these different microenvironments into account. The Loh et al. (2009) used three different 

358 models to predict iFs for benzene emitted from traffic in Helsinki, Finland. The mea n iFs for personal 

359 measurement model, spatial time activity model and simple box model were 39 per million, 10 per 

360 million and 7 per million, respectively. The highest iF were predicted with models that took into 

361 account benzene concentration in different microenvironments (e.g. home, work, traffic) . In present 

362 study we estimated exposure only based on outdoor concentration of pollutants. The results from 

363 Loh et al. (2009) suggests that the iF estimates for linear sources would have been higher also in 

364 Warsaw, if the exposure in different microenvironments, especially in traffic, would have bee n taken 

365 into account. 

366 4. Conclusions 

367 In this study we have predicted concentrations for different air pollutants in Warsaw, Poland, taking 

368 into account emission uncertainties. We also estimated emission-to-exposure relationship for these 

369 pollutants using intake fraction (iF) method. To our knowledge this is the first such study made in 

370 Warsaw and one of only few studies in the world that have considered iF variation between different 

371 emissions sources. All our results have highlighted the important role of traffic for the air quality in 

372 Warsaw. The emissions of traffic are high, iF for traffic is higher than for other source categories and, 

373 consequently, traffic is mai n source for most of the air pollutants modeled in this study. From the 

374 four emission source categories, high point sources were having only minor impact for loca I air 

375 quality. The iF variatio n between different emissions sources was significant. This indicates that 

376 spatially restricted emissions mitigation actions could have major impact for local air quality and, 

377 consequently, to population health. Such emission mitigation action would be e.g. congestion 

378 changes, that would reduce the emissions from those areas where they have largest impact for 

379 population health. 
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439 7. Figure captions 

440 Figure 1: Study a rea, location of the receptor points and the location of the monitoring stations. 

441 Figure 2: Predicted vs. measured annual averaged PMlO concentrations (µg/m3) in 2005. 

442 Figure 3: Average concentration and exposure estimates for different air pollutants. The unit varies 

443 between the pollutants. The mea n and 95% confidence interval are shown. For some air pollutants, 

444 the uncertainty range was too small to be drawn. For acronyms see Table 1. 

445 Figure 4: Uncertainty range and emission sources share for a) particulate matter (PMlO) 

446 concentrations, b) and PM_S concentration, and c) PM_N concentration for the receptor 275. 

447 Figure 5: lntake fraction (iF) variation between different PPM2.5 emission sources. Largest iFs are 

448 predicted for linear and a rea sources. 

449 



450 8. Tables 

451 Table 1: Air pollutants considered in the present study. Primary pollutants were inputs to the 

452 dispersion model. The secondary pollutants were the outputs of the dispersion model, and the 

453 concentrations for these pollutants were measured in receptor locations. For SO2 and NOx the 

454 emissions and concentrations have different chemical composition, and this difference was taken 

455 into account when calculating the iFs. 

456 

Primary pollution (emissions} Secondary pollution (concentrations) 

PPM2.5 (primary particulate matter (PPM) PPM2.5 (PM2.5 concentration caused by the PPM2.5 

with aerodynamic diameter s 2.5 µm) emissions) 

PPM2.S_R (PPM2.5 raised by road traffic - PPM2.S_R 

second ary emission) 

502 (sulfur dioxide} PM_S (sulfate (SO 4} aerosol) 

NOx (nitrogen oxides) PM_N (nitrate (NO 3) aerosol} 

PM2.5 = PPM2.S+PPM2.S_R+ PM_S+PM - H 

PPMl0 (primary particulate matter with PPMlO 

aerodynamic diameter$ 10 µm) 

PPMlO_R (PPMl0 raised by road traffic - PPMl0_R 

secondary emission) 

PMlO = PPMl0+PPMl0_R+ PM_S+PM - H 

BaP (Benso [a] Pyren) BaP 

Ni (nickel) Ni 

Cd (cadmium) Cd 

Pb (lead) Pb 

457 



458 Table 2: Emission volumes and uncertainties ( 95% confidence interval in brackets). Normal 

459 distribution was assumed. 

460 

461 

Number of 

sources 

PPM2.S 

PPM2.5_R 

PM_S 

PM_N 

PPM10 

PPMlO_R 

BaP 

Cd 

Ni 

Pb 

Unit 

# 

g/s 

g/s 

g/s 

g/s 

g/s 

g/s 

g/s 

µg/s 

µg/s 

µg/s 

Linear 

sources 

1156 

15.97 (± 40%) 

26.09 (± 40%) 

15.53 (± 30%) 

157.2 (± 40%) 

24.15 (± 40%) 

151.4 (± 40%) 

0.04 (± 50%) 

0.2 (± 50%) 

1.96 (± 50%) 

106 (±50%) 

High point Other point 

Area sources sources sources 

877 16 1017 

84.29 (± 40%) 7.61 (± 25%) 15.06 (± 30%) 

- - -

45.77 (± 30%) 885.9 (± 15%) 83.15 (± 20%) 

22.09 (± 40%) 191.5 (± 20%) 28.81 (± 30%) 

157 (±40%) 20.77 (± 25%) 54.19 (± 30%) 

- - -

0.02 (±50%) - O.Ol (±40%) 

0.02 (± 50%) - O.Ol (±40%) 

0.06 (± 50%) - -

0.11 (± 50%) - -



462 Table 3: lntake fractions (iF) for different pollutants and source categories. Both mea n and variatio n 

463 are shown. Variation represents the minimum and maximum iF calculated for individual sources 

464 inside the study area. For example, for PPM2.5 due to linear sources, the minimum calculated iF for 

465 any single source a rea was 1.5 per million. For acronyms see Table 1. 

466 

467 

468 

Pollutant 

PPM25 

PPM25_R 

PM_S 

PM_N 

PPMlO 

PPMlO_R 

BaP 

Cd 

Ni 

Pb 

Linear 

sources 

38 (1.5-100) 

47 (1.6-114) 

0.34 

(0.018-0.75) 

0.78 

(0.083-1.6) 

38 

(1.5-102) 

46 

(1.6-115) 

5.6 

(1.3-25) 

5.7 

(1.5-25) 

5.7 

(1.5-25) 

40 

(1.5-102) 

Area High point 

sources sources 

9.8 0.81 

(1.6-63) (0.050-3.1) 

0.12 0.013 

(0.029-0.44) (0.00080-0.041) 

0.45 0.029 

(0.17-0.91) (0.0017-0.11) 

10 0.71 

(1.6-64) (0.051-3.1) 

-
9.7 1.2 

(1.6-64) (0.31-1.5) 

11 1.2 

(1.6-64) (0.31-1.5) 

11 

(1.6-64) 

11 

(1.6-64) -

Other point All 

sources sources 

6.6 

(0.52-67) 
13 

47 

0.066 

(0.013-0.44) 
0.027 

0.21 
0.36 

(0.045-1.6) 

6.2 
11 

(0.53-68) 

46 
-

3.3 

(1.6-12) 
6.0 

3.3 

(1.6-12) 
5.9 

5.9 

40 
-



469 Figures 
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482 Figure 3 (continues): 
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485 Figure 4 
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