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Abstract

High uncertainty of greenhouse gases national inventories cause
problems in credible fulfilment of the Kyoto Protocol obligations
to decrease or limit emission of these gases, as well as in use of
Kyoto flexible mechanisms, which include emission trading among
Parties. In this paper it is proposed to model the uncertainty using
the fuzzy set approach, and specifically using the fuzzy numbers to
represent the uncertainty of the inventory values. This approach
is a generalization of the earlier proposed interval approach to this
problein.
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1 Introduction

Emissions of many pollutants can not be measured directly and must
be estimated. This is the case of greenhouse gases, considered in this
paper.

Estimates of emissions are calculated with sufficiently good accuracy
only for some particular emission sources, for instance large electricity
or power plants. Emissions for other sources are not known accurately
enough. For example, uncertainty of emission of some gases may be as
large as 50%, and for N2O even more than 100%, [7].

In the Annex I to the Kyoto Protocol [13] the Parties agreed to reduce
the national emissions by specified percents. The Protocol also specifies
possibility of trading the emissions between the Parties. However, large



uncertainties of emissions question credibility of checking fulfilment of
the Kyoto targets, and of the emissions trade as well.

These problems have been already addressed in the literature, see
[6] for a review of techniques, and specifically (3] and [11] for solutions
closer in spirit to the present paper. The uncertainty in these papers
has been modeled using either uncertainty intervals or stochastic normal
distribution. Stochastic model has been discussed in [3] and in {11}.
Regarding the emission commitments checking, practically same result
has been derived in both papers. However, different prerequisites for the
emissions trade have been used in these papers. Consequently, different
formulas have been obtained. In [11] the principal idea was that during
the trade the seller’s uncertainty is appropriately transformed to the
buyer and included in its commitment checking. In (3] the idea was
to secure that the common for both Parties probability of exceeding
emission commitments are the same before and after the trade. Within
the framework presented in [11] and also in this paper, it was shown that
the stochastic approach provides a complicated and practically useless
formula for the emission trading rule.

In addition, recent findings from the Monte Carlo analysis, {12, 17],
indicate that the distributions of uncertainty often do not resemble the
stochastic normal distribution. They can be strongly nonsymetric.

In this paper a fuzzy approach is used. It can be considered as a
generalization of the interval one. The fuzzy set calculus basically in-
herits the rules from the interval calculus, and this way provides linear
dependencies in the derivations. At the same time, the fuzzy variables
may be shaped appropriately to have more concentrated distributions
than the interval ones and better approximate the real distributions.
Moreover, the fuzzy variables may be easily shaped to be nonsymmet-
ric, which corresponds to the Monte Carlo distributions presented in
[12, 17]. Complications involved in using nonsymmetric fuzzy variables
are much smaller in comparison to the stochastic non-Gaussian and non-
symmetric distributions. There is much less of underlying algebra. In
this paper only symmetric fuzzy variables of a special class are con-
sidered. Application of nonsymmetric fuzzy variables will be published
elsewhere.

It is perhaps worth to mention that the choice of distribution is
not only of a theoretical question. It finally results in valuation of the
uncertainty, and therefore influences the costs of emission reduction.

Using the fuzzy approach new rules for checking emission commit-
ments and emission trading has been obtained. They generalize the




rules preseuted in [9] and reduce to them when the fuzzy variables are
equivalent to the uncertainty intervals. The results of application of
these rules are compared to those obtained earlier, for the uncertainty
intervals. The final conclusion is that a convenient interval uncertainty
approach can be equivalently applied, but using much higher noncom-
pliance risk.

The organization of the paper is as follows. In section 2 we formu-
late the problem and introduce some basic notation. Then, in section
3, we shortly review the interval type of uncertainty results and recall
conditions for checking emission commitment and formulas for so called
efficient emissions, which can be directly traded, without taking into ac-
count the emission uncertainty. In section 4 a family of fuzzy numbers is
introduced. They are used to model the national inventory uncertainty
and form the basis for derivations of generalized compliance and emis-
sion trading rules. These rules are compared to the interval approach
rules. Section 5 concludes.

2 Notation and problem formulation

Basically, the total emission by a party is calculated by summing up
emissions from every type of contributing activity and subtracting the
gases absorbed by siuks. Yearly emissions Z;(¢) of every type of activ-
ity, labelled here with the consecutive numbers ¢, are computed as the
product
Ti(t) = ¢i(t)ai(t)

where a;(t) is the activity measure (e.g. in tons of material used) and
&;(t) is its emission factor, both in the year t. On the national scale both
values on the right hand side are unsure, giving rise to uncertainty. The
nature of the uncertainty is a complicated one. It originates from a lack
of exact knowledge of some variables as well as from imperfect modeling
of often poorly known processes. Table 1 gives uncertainty assessments
for few countries. Full details can be found in [4, 5].

In the sequel by z(¢) we denote the real, unknown emission of a party
in the year ¢ and by £(¢) its best available estimate. To simplify notation
the time argument ¢t will be dropped in the sequel.

The Kyoto Protocol declaration requires that each Party should re-
duce a prespecified percent of its basic year emission within the given
period (around 20 years). However, some countries are granted a pos-
sibility of stabilizing the emission at the basic year level or even of a



Country | Kyoto reduction | Uncertainty
Austria 8 12
Holland 8 5
Norway -1 21
Poland 6 6
Russia 0 17
U.K. 8 19

Table 1: Examples of Kyoto reduction commitments and published un-
certainty estimates of national emissions, in per cents.

limited increase of its emission.

Let us denote by § the fraction of the party emission that is to be
reduced in the commitment period according to its obligation. The
value of & may be negative for parties, which were alloted limitation of
the emission increase. Denoting by z, and z. the emissions in the basic
and commitment year, respectively, the following inequality should be

satisfied
zc— (1 -6z, <0 (1)

As neither z, nor x;, are known precisely enough, only the difference of
estimates can be calculated

:%c - (1 - 6):%1) (2)

where both z. and £, are known with low accuracy.

3 Interval type uncertainty

Compliance. Assuming that the uncertainty intervals at the basic
and the commitment years are 2d, and 2d., respectively, we have

Ty € [:i'b - db):ﬁb + db]7 T € lic - dc: ic + dc‘
Using the interval calculus rules, we get
Ze — (1 = 8)xy € [DT — dpe, DE + dye

where
DE=5%.~(1—08)Zy (3)



and
dpe = de + (1~ 6)dy, (4)

However, the emission estimates in the basic, &3, and the commitment,
I, years are dependent on each other. Thus the values of dj,. are usually
much smaller than those resulting from the above expression. In [11] it
was proposed to modify (4) into

dpe = (1 = () (de + (1 — )ds) (5)

where 0 < ¢ < 1 is an appropriately chosen variable. This case will be
also considered in this paper.

(b)

Figure 1: Full compliance, (a), and the compliance with risk «, (b), in
the interval uncertainty approach.

To be fully credible, that is to be sure that (1) is satisfied, the party
should prove Dz + dp, < 0. We say that the party is compliant with risk
a, if Dz + dpe < 2ady., that is, not bigger part of its distribution than
« lies above zero, see Fig. 1 for the geometrical interpretation. After
simple algebraic manipulations this gives the condition

E+ (1 - 2a)d6c < (1 - é)ib (6)

Thus, to prove the compliance with risk a, the party has to satisfy its

obligation with the inventory emission estimate increased by the value

(1—2w)dpe, dependent on its uncertainty measure expressed by dp.. This

value can be interpreted as emissions unreported due to uncertainty.
The condition (6) can be also rewritten as

f‘:f?c/i‘bg 1—6—(1—2a)Rbc



where # is the estimated reduction factor and Rp. = dp./Ep is the half
relative uncertainty interval. Thus, the compliance with risk « can be
formally reduced to the form (2) by redefinition of the reduction factor

8 — 8 =6+ (]. — QQ)RbC (7)

Emission trading. Admitting the above compliance proving policy
it is possible to consider uncertainty in the emission trading. The main
idea of this propoesition consists in transferring the uncertainty to the
buyer together with the traded quota of emission and then including it
in the buyer’s emission balance.

Let us denote by RS = 42 /27 the relative uncertainty of the seller
and by ES the traded amount of estimated emission. This emission
amount is associated with uncertainty BS Rf . Before the trade the buy-
ing Party checks the following condition

8+ (1 - 2a)dE < (1 &)af
After the transaction the condition changes into
22 — B+ (1-20)[dE + E°RZ) < (1 - &)af

Due to the partial cancellation of the subtracted estimated emission
and its uncertainty in the buyer’s emission balance the effective traded
emission is

Eepy = E°[1 ~ (1 - 20)RY] (8)
Thus, the bigger seller’s uncertainty is, the less purchased unit is ac-
counted for the buyer. Expression (8) reduces emissions estimated with
an arbitrary precision to globally comparable values, which can be di-
rectly subtracted from country’s estimated emission. This way it is
possible to construct a market for the effective emissions, see [11].

4 A fuzzy type uncertainty

Although the interval approach provides a very simple and convenient
solution, its criticism is sometimes aimed at low precision of defining the
uncertainty intervals. Similarly to inventory calculation, also calculation
of the uncertainty intervals is inexact and its accuracy is of the same
order as that of the inventory calculation.

The uncertainty of the interval ends can be modeled using fuzzy set
approach. A common way for this is to use so called fuzzy interval



with the trapezoidal membership function, like that presented on Fig. 2.
The uncertainty of the interval ends is modeled by linear change of the
membership function from 0 to 1 at the interval ends.
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Figure 2: An example of a fuzzy interval.

However, in this paper the fuzzy numbers are used to model imper-
fect knowledge of the uncertainty. A fuzzy number is a particular case of
a fuzzy interval and may be also considered as a straight generalization
of an ordinary number, whose value is unsure. This is the situation,
which we spot in the greenhouse gas inventories.

An usual problem with the fuzzy set approach is to determine the
membership function. Here, we introduce a membership function depen-
dent on a parameter. By fixing the parameter, a function which best fits
the experimenter expectation can be obtained. Moreover, this function
can well fit distributions obtained from the Monte Carlo simulations, as
shown in the sequel.

Let us consider a family F of fuzzy numbers A7 = {(z,u)(z))|z €
supp A7} indexed by a variable v € Ct = {v € C|y > 0}, with the
support supp A7 = (d4,d%]. Fig. 3 depicts examples of {4y representing
a fuzzy nummber 0, for few values of v. The membership function is
chosen there as

i@ = (1 )7

with dY, = —d4 and dy = d4. This is a special LR type fuzzy number
as defined in {1}, with L = R. As can be seen, the introduced family
can model a wide arrays of fuzzy uncertainties. It can be generalized to
nonsymmetric membership functions, if different values of v and d4 are
used for two branches, left and right.

For the symmetric case, it was suggested on the basis of Monte Carlo
simulations [16] that distribution of the inventory error is close to the
Gaussian one. Yet, as seen in Figs. 4 and 5, a membership function from
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Figure 3: Membership functions for v = 0, 0.5, 1 and 2.

the proposed family can also give good fit to Monte Carlo simulation
data, presented originally in [15] and [16].
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Figure 4: Fit of a membership function pj(z) for v = 2.43 and dg4
14.46 to the histogram from [15], centered and normalized.

Compliance. Let us assume now that the uncertainty of ; and Z,
are of the fuzzy type with the membership functions from the family F,

that is they are fuzzy numbers 2] and £} where
&y = {(z, 1, (x))|= € supp &
supp & = [ — dy, Zp + db)
_ ]ZE - i‘bl

i, (@) = (1 _d;__)v

and similarly
&7 = {(z, 1}, (z))|z € supp 7}

































