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Abstract 

High uncertainty of greenhouse gases national inventories cause 
problems in credible fulfilment of the Kyoto Protocol obligations 
to decrease or limit emission of these gases, as well as in use of 
Kyoto flexible mechanisms, which include emission trading among 
Parties. In this paper it is proposed to model the uncertainty using 
the fuzzy set approach, and specifically using the fuzzy numbers to 
represent the uncertainty of the inventory values. This approach 
is a generalization of the earlier proposed interval approach to this 
problem. 

Keywords: Greenhouse Gases, Inventory, Uncertainty, Fuzzy Nu­
mbers. 

1 Introduction 

Emissions of many pollutants can not be measured directly and must 
be estimated. This is the case of greenhouse gases, considered in this 
paper. 

Estimates of emissions are calculated with sufficiently good accuracy 
only for some particular emission sources, for instance large electricity 
or power plants. Emissions for other sources are not known accurately 
enough. For example, uncertainty of emission of some gases may be as 
large as 50%, and for N20 even more than 100%, [7]. 

In the Annex I to the Kyoto Protocol [13] the Parties agreed to reduce 
the national emissions by specified percents. The Protocol also specifies 
possibility of trading the emissions between the Parties. However, large 
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uncertainties of emissions ąuestion credibility of checking fulfilment of 
the Kyoto targets, and of the emissions trade as well. 

These problems have been already addressed in the literature, see 
[6] for a review of techniąues, and specifically [3] and [11] for solutions 
closer in spirit to the present paper. The uncertainty in these papers 
has been modeled using either uncertainty intervals or stochastic norma! 
distribution. Stochastic model has been discussed in [3] and in [11]. 
Regarding the emission commitments checking, practically same result 
has been derived in both papers. However, different prereąuisites for the 
emissions trade have been used in these papers. Conseąuently, different 
formulas have been obtained. In [11] the principal idea was that during 
the trade the seller's uncertainty is appropriately transformed to the 
buyer and included in its commitment checking. In [3] the idea was 
to secure that the common for both Parties probability of exceeding 
emission commitments are the same before and after the trade. Within 
the framework presented in [11] and also in this paper, it was shown that 
the stochastic approach provides a complicated and practically useless 
formula for the emission trading rule. 

In addition, recent findings from the Monte Carlo analysis, [12, 17], 
indicate that the distributions of uncertainty often do not resemble the 
stochastic norma! distribution. They can be strongly nonsymetric. 

In this paper a fuzzy approach is used. It can be considered as a 
generalization of the interval one. The fuzzy set calculus basically in­
herits the rules from the interval calculus, and this way provides linear 
dependencies in the derivations. At the same time, the fuzzy variables 
may be shaped appropriately to have mare concentrated distributions 
than the interval ones and better approximate the real distributions. 
Moreover, the fuzzy variables may be easily shaped to be nonsymmet­
ric, which corresponds to the Monte Carlo distributions presented in 
[12, 17] . Complications involved in using nonsymmetric fuzzy variables 
are much smaller in comparison to the stochastic non-Gaussian and non­
symmetric distributions. There is much less of underlying algebra. In 
this paper only symmetric fuzzy variables of a special class are con­
sidered. Application of nonsymmetric fuzzy variables will be published 
elsewhere. 

It is perhaps worth to mention that the choice of distribution is 
not only of a theoretical ąuestion. It finally results in valuation of the 
uncertainty, and therefore influences the costs of emission reduction. 

Using the fuzzy approach new rules for checking emission commit­
ments and emission trading has been obtained. They generalize the 
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rules presented in [9] and reduce to them when the fuzzy variables are 
equivalent to the uncertainty intervals. The results of application of 
these rules are compared to those obtained earlier, for the uncertainty 
intervals. The finał conclusion is that a convenient interval uncertainty 
approach can be equivalently applied, but using much higher noncom­
pliance risk. 

The organization of the paper is as follows. In section 2 we formu­
late the problem and introduce some basie notation. Then, in section 
3, we shortly review the interval type of uncertainty results and recall 
conditions for checking emission commitment and formulas forso called 
efficient emissions, which can be directly traded, without taking into ac­
count the emission uncertainty. In section 4 a family of fuzzy numbers is 
introduced. They are used to model the national inventory uncertainty 
and form the basis for derivations of generalized compliance and emis­
sion trading rules. These rules are compared to the interval approach 
rules . Section 5 concludes. 

2 N otation and problem formulation 

Basically, the total emission by a party is calculated by summing up 
emissions from every type of contributing activity and subtracting the 
gases absorbed by sinks. Yearly emissions x;(t) of every type of activ­
ity, labelled here with the consecutive numbers i, are computed as the 
product 

x;(t) = c;(t)ći;(t) 

where ći;(t) is the activity measure (e .g. in tons of materiał used) and 
c;(t) is its emission factor, both in the year t . On the national scale both 
values on the right hand sicie are unsure, giving rise to uncertainty. The 
nature of the uncertainty is a complicated one. It originates from a Jack 
of exact knowledge of some variables as well as from imperfect modeling 
of often poorly known processes. Table 1 gives uncertainty assessments 
for few countries. Full details can be found in [4, 5]. 

In the sequel by x(t) we denote the real, unknown emission of a party 
in the year t and by i( t) its best available estimate. To simplify notation 
the time argument t will be dropped in the sequel. 

The Kyoto Protocol declaration requires that each Party should re­
duce a prespecified percent of its basie year emission within the given 
period (around 20 years). However, some countries are granted a pos­
sibility of stabilizing the emission at the basie year level or even of a 
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Country Kyoto reduction Uncertainty 
Austria 8 12 
Holland 8 5 
Norway -1 21 
Poland 6 6 
Russia o 17 
U.K. 8 19 

Table 1: Examples of Kyoto reduction commitments and published un­
certainty estimates of national emissions, in per cents. 

limited increase of its emission. 
Let us denote by ó the fraction of the party emission that is to be 

reduced in the commitment period according to its obligation. The 
value of ó may be negative for parties, which were alloted limitation of 
the emission increase. Denoting by Xb and X e the emissions in the basie 
and commitment year, respectively, the following inequality should be 
satisfied 

Xe - (1 - ó)xb ::::'. O (1) 

As neither Xe nor Xb are known precisely enough, only the difference of 
estimates can be calculated 

(2) 

where both Xe and Xb are known with low accuracy. 

3 Interval type uncertainty 

Compliance. Assuming that the uncertainty intervals at the basie 
and the commitment years are 2db and 2de, respectively, we have 

Using the interval calculus rules, we get 

where 
Di:= Xe - (1 - ó)i:b (3) 
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and 
(4) 

However, the emission estimates in the basie, Xb, and the commitment, 
Xe, years are dependent on each other. Thus the values of dbc are usually 
much smaller than those resulting from the above expression. In [11] it 
was proposed to modify ( 4) into 

(5) 

where O ~ ( ~ 1 is an appropriately chosen variable. This case will be 
also considered in this paper. 

Di: . 
... . .... ....... . .... .. . ............ . . ......... .. ... . .... .. .. . .... . ......... ·j . ... .. .. .... . .... .. . .. ....... .. ... .. .. 

I 

1a: · 2dbc 
~:-:- :-:-:-: -:-: -:-: -:-: -: -:-:-:-:-:-:-:-:-:-:-:-: -: -:-:-:-:-: -:Y-:-:-:' ...... ... ... ......... . .... ... . . . .... . 

Di: O Di:+ dbc 

(a) 

(b) 

Figure 1: Full compliance, (a), and the compliance with risk o:, (b), in 
the interval uncertainty approach. 

To be fully credible, that is to be sure that (1) is satisfied, the party 
should prove Di:+ dbc .S O. We say that the party is compliant with risk 
o:, if Di: + dbc .S 2o:dbc, that is, not bigger part of its distribution than 
o: lies above zero, see Fig. 1 for the geometrical interpretation. After 
simple algebraic manipulations this gives the condition 

(6) 

Thus, to prove the compliance with risk o:, the party has to satisfy its 
obligation with the inventory emission estimate increased by the value 
(1 - 20:)dbc, dependent on its uncertainty measure expressed by dbc· This 
value can be interpreted as emissions unreported due to uncertainty. 

The condition (6) can be also rewritten as 
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where f is the estimated reduction factor and Rbc = dbc/ib is the half 
relative uncertainty interval. Thus, the compliance with risk a can be 
formally reduced to the form (2) by redefinition of the reduction factor 

8 81 = 8 + (1 - 2a)Rbc (7) 

Emission trading. Admitting the above compliance proving policy 
it is possible to consider uncertainty in the emission trading. The main 
idea of this proposition consists in transferring the uncertainty to the 
buyer together with the traded quota of emission and then including it 
in the buyer's emission balance. 

Let us denote by Rf = df /if the relative uncertainty of the seller 
and by fj;S the traded amount of estimated emission. This emission 
amount is associated with uncertainty f};S Rf. Before the trade the buy­
ing Party checks the following condition 

xf + (1 - 2a)dfc ~ (1 - 8)xf 

After the transaction the condition changes into 

x: - fj;S + (1 - 2a)[dfc + jj;S R~] ~ (1 - 8)xf 

Due to the partia! cancellation of the subtracted estimated em1ss10n 
and its uncertainty in the buyer's emission balance the effective traded 
emission is 

· s s Eeff = E [1- (1- 2a)Rc] (8) 

Thus, the bigger seller's uncertainty is, the less purchased unit is ac­
counted for the buyer. Expression (8) reduces emissions estimated with 
an arbitrary precision to globally comparable values, which can be di­
rectly subtracted from country's estimated emission. This way it is 
possible to construct a market for the effective emissions, see [ll] . 

4 A fuzzy type uncertainty 

Although the interval approach provides a very simple and convenient 
solution, its criticism is sometimes aimed at low precision of defining the 
uncertainty intervals. Similarly to inventory calculation, also calculation 
of the uncertainty intervals is inexact and its accuracy is of the same 
order as that of the inventory calculation. 

The uncertainty of the interval ends can be modeled using fuzzy set 
approach. A common way for this is to use so called fuzzy interval 
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with the trapezoidal membership function, like that presented on Fig. 2. 
The uncertainty of the interval ends is modeled by linear change of the 
membership function from O to 1 at the interval ends. 

X 

m-d m m+d 

Figure 2: An example of a fuzzy interval. 

However, in this paper the fuzzy numbers are used to model imper­
fect knowledge of the uncertainty. A fuzzy number is a particular case of 
a fuzzy interval and may be also considered as a straight generalization 
of an ordinary number, whose value is unsure. This is the situation, 
which we spot in the greenhouse gas inventories. 

An usual problem with the fuzzy set approach is to determine the 
membership function. Here, we introduce a membership function depen­
dent on a parameter. By fixing the parameter, a function which best fits 
the experimenter expectation can be obtained. Moreover, this function 
can well fit distributions obtained from the Monte Carlo simulations, as 
shown in the sequel. 

Let us consider a family :F of fuzzy num bers A 'Y = { ( x, µ} ( x)) lx E 

supp A--Y} indexed by a variable -y E c+ = b E Gb :::: O}, with the 
support supp A--Y = [d~ 1 d'.4]. Fig. 3 depicts examples ofµ} representing 
a fuzzy number O, for few values of -y. The membership function is 
chosen there as 

µ}(x) = (1 - ~~r 
with d~ = -dA and d'.4 = dA. This is a special LR type fuzzy number 
as defined in [1], with L = R. As can be seen, the introduced family 
can model a wide arrays of fuzzy uncertainties. It can be generalized to 
nonsymmetric membership functions, if different values of -y and dA are 
used for two branches, left and right. 

For the symmetric case, it was suggested on the basis of Monte Carlo 
simulations [16] that distribution of the inventory error is close to the 
Gaussian one. Yet, as seen in Figs. 4 and 5, a membership function from 
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Figure 3: Membership functions for , = O, 0.5, 1 and 2. 

the proposed family can also give good fit to Monte Carlo simulation 
data, presented originally in [15] and [16]. 

µ}(x) 

X 

-12 -8 -4 o 4 8 12 

Figure 4: Fit of a membership function µ}(x) for,= 2.43 and dA = 
14.46 to the histogram from [15], centered and normalized. 

Compliance. Let us assume now that the uncertainty of i:b and Xe 
are of the fuzzy type with the membership functions from the family :F, 
that is they are fuzzy numbers i:J and i:J where 

and similarly 

i:J = {(x,µJb(x))/x E supp i:l} 

supp xl = [i:b - db, Xb + db] 

µ"! (x) = (l _ /x - i:b/), 
X/, db 

i:J = {(x,µJjx))/x E supp i:J} 

8 
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X 

-12 -8 -4 o 4 8 12 

Figure 5: Fit ofa membership function µ} (x) for 1 = 1.91 and dA = 13.7 
to the histogram from [16], centered and normalized. 

supp xJ = [xc - de, xc + de] 

µJ)x) = ( 1 _ lx :c±cl f 
In the above, the membership functions have been normalized to take 
the value 1 in the core. This can be done by an appropriate calibration 
of the distribution data. 

Then, calculating the difference in analogy to (2) a fuzzy number 
Dx'Y is obtained 

Dx'Y = xJ - (1- c5)x;;' = {(x,µ1x..,(x))lx E supp Dx'Y} (9) 

with the support 

supp Dx'Y = [Dx - dbc, Dx + dbc] 

and the membership function 

'Y ()-( lx-Dxbl)'Y 
flDi'Y X - l - ----

dbc 

(10) 

(11) 

where Dx and dbc are given by (3) and (5), respectively. The proof of 
expressions (9) to (11) may be clone easily using slight generalization of 
the addition and multiplication mies on fuzzy numbers. 

For this case we say that a party is compliant with risk a when not 
bigger than the ath part of the area under the membership function 
(11) lies above zero. Simple calculations show that this area is placed 

g 



1 
within the distance y = (2a)-,+i dbc from the right end of the interval 
[Dx - dbc, Dx + dbcl, see Fig. 6. Thus we get the following condition 

or in a more explicit form 

(12) 

As before, it can be also transformed to the form 

giving rise to redefinition of the reduction factor 

1 

ó óp = ó + [1 - (2a)-,+1 ]Rbc (13) 

This formula can be interpreted as an extension of the formula (7), as 
it reduces to (7) when 1 = O. 

X 

Figure 6: Graphical interpretation of the ath part of the area under the 
membership function. 

Emission trading. After derivations analogous to the interval case 
we end with the effective reduction for the fuzzy type uncertainty 

(14) 

It is again an extension of the formula (8) for the interval case. In 
comparison with the interval case it provides smaller differences between 

'S Eef f and E , see Table 2. 
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c;ount. une. .lHLta V. ~ ~--J 

ó [%] ,=O ,=0.5 ,=1 , = 1.5 ,=2 1 = 2.5 
AT 12 0.904 0.965 0.973 0.978 0.981 0.984 
NL 5 0.960 0.986 0.989 0.991 0.992 0.993 
NO 21 0.832 0.939 0.953 0.961 0.967 0.971 
PL 6 0.952 0.983 0.986 0.989 0.991 0.992 
RU 17 0.864 0.951 0.962 0.969 0.973 0.977 
UK 19 0.848 0.945 0.957 0.965 0.970 0.974 

Table 2: Comparison of the ratio EeJt/ Es for the interval and fuzzy 
approaches for a = 0.3 and data from Table 1. 

Equivalence of approaches. Let us notice that actually the fuzzy 
approach formulas (12) and (13) can be considered equivalent to the 
interval approach ones (7) and (8) provided the appropriate value of a 
is chosen. It can be easily noticed that this value is the same for both 
cases. Denoting by the subscript I the interval and by the subscript 
p the fuzzy case the equalities of the reduction factors or the effective 
reductions 

ÓJ = óp or E eff,J = Eeff,P 

after simple manipulations provide the same condition 

(201)1+1 = 2ap 

For the adopted assumptions O :S DJ, ap :S 0.5 and 1 2:: O we have 

with strong inequa!ity for interna! points of the assumption set. Depen­
dence of O'.J on ap and, is shown in Table 3. The results show that DJ 

rises quickly with rise of „ In two cases considered in our calculations 
estimates of I close to 2 and 2.5 were obtained. Then practically it 
seems that 0.2 ~ DJ :S 0.3 should be taken even for small values of ap. 

The interpretation of these results is quite straightforward. Igno­
rance of the uncertainty distribution introduces additional uncertainty, 
which adds to the uncertainty of the inventory itself. Thus, to obtain 
the same reduction factor or the same effective reductions a bigger risk 
should be taken in the interval approach. An important practical ob­
servation is that bigger values of DJ, like 0.2 to 0.3, should be used 
to compensate for ignorance of the exact knowledge of the uncertainty 
distribution, even if a smaller noncompliance risk is actually meant. 
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11 0.1 0.5 
r 

1 I 1.5 2 2.5 

o o o o o o o 
0.05 0.06 0.11 0.16 0.20 0.23 0.26 
0.10 0.12 0.17 0.22 0.26 0.29 0.32 
0.15 0.17 0.22 0.27 0.31 0.33 0.35 
0.20 0.22 0.27 0.32 0.35 0.37 0.38 

0:F 0.25 0.27 0.32 0.35 0.38 0.40 0.41 
0.30 0.31 0.36 0.39 0.41 0.42 0.43 
0.35 0.36 0.39 0.42 0.43 0.44 0.45 
0.40 0.41 0.43 0.45 0.46 0.46 0.47 
0.45 0.45 0.47 0.47 0.48 0.48 0.49 
0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Table 3: Dependence of a.1 on Cl'.F and , . 

5 Conclusions 

The paper deals with the problem of checking compliance of pollutant 
emission in case of a given limit, when the observed emission values are 
known with high uncertainty. This is the case of national inventories of 
greenhouse gases emissions. High uncertainty must influence trading in 
emission permits in the cap-and-trade system, which is frequently used 
to minimize the emission abatement cost [8]. 

However, not only the inventory itself, but also its uncertainty is 
calculated with relatively low accuracy. This should be taken into ac­
count when deriving the compliance and emission trading rules . The 
idea proposed in this paper lies in using the fuzzy set approach. A fam­
iły of fuzzy numbers depending on a free parameter is introduced. This 
parameter can be chosen to appropriately shape the distribution of un­
certainty. The approach provides the linear formulas, which can be used 
for designing a market for the efficient emission permits. 

The results obtained are generalizations of the results derived for 
the interval type of uncertainty. It was showu that the rules for the 
interval case can be stili used instead of the generalized ones, provided 
the appropriately higher value of the risk of noncompliance is used . 
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