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Abstract The paper deals with the problem of compliance when the invento­
ries are uncertain. This problem is treated here from the view of comparison of 
uncertain alternatives. We emphasize inadequacy of using reported emission 
estimates, as those obtained from emission inventories, when they are subject 
to high uncertainty. Meanwhile, there exists a number of techniques to rank 
such uncertain estimates. Severa! of them are presented in the paper. Prob­
abilistic and fuzzy approaches are considered and compared. Many of them 
can be adapted to check fulfillment of obligations on the basis of knowledge of 
uncertain emission estimates. 

Keywords: greenhouse gases inventories, compliance, uncertain alternatives, 
ranking 

1 Introduction 

A handful of solutions have been proposed to cope with the problem of commit­
ment verification for emission obligations in case of uncertain inventories, see 
[16) . Many of them pointed to methodological incompetence in using reported 
( crisp j values in clearing poliu tant emission targets. For most environmental 
problems, only highly inexact knowledge on emission values is available, as is 
the case of greenhouse gases, see e.g. [15 , 17, 20) . 

To give an example of a paradox arising from dealing with uncertain in­
veutories, !et us cousider verificatiou of a single emission inventory x against a 
given limit K, i.e. x :S: K. A distribution of an inventory uncertainty µ(x) may 
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be asymmetric. See an example in Figure 1 depicting a histogram of emission 
inventory uncertainty for Austria, obtained by the Monte Carlo method, [29]. 
Let us suppose that an emission target for Austria is like that marked in Fig­
ure 1. The question of interest is whether this party fulfills its commitment, or 
not. Ignoring uncertainty, the answer is yes, as the reported value of inventory 
lies below the target. However, although the reported value is just below the 
target, it is more likely that the actual emission is above the target, because 
most of the possible emissions (probability mass) is placed to the right of the 
target value. Can we then responsibly accept the answer yes? 

Jt(x) target 

X 

nominał 1nventory 

Fig. 1 An example of an a.symmetric uncertainty distribution of a national inventory: com­
pliant or noncompliant? 

Another example with simplified uncertainty distributions is depicted in 
Figure 2, with the x axis placed ad hoc. Let us consider two parties with 
known triangular distributions of emission uncertainties. The reported inven­
tories (the dominant values of the distributions densities) of both parties are 
very close to each other. Ignoring uncertainty, the party A will be considered 
compliant (fulfilling the commitment), while the party B will be considered 
noncompliant. However, confidence in the inventory value of the party B is 
high, while the confidence in the inventory value of the party A is much !ower. 
Therefore, which party is more credible? Should the party A be considered 
cornpliant, while the party B should not? 

According to IPCC Good Practice Guidelines [12], the reports should be 
"consistent, com para ble and transparent" . It is, thus, reasonable to require 
that decision on fulfillment of obligations should be fair among parties, in the 
way, that ordering of inventories should make it possible to decide which in­
ventory outperforms others. From the above examples we can see that , when 
dealing with uncertain values of possibly asymmetric distributions, taking de­
cisions on fulfillment of obligations or comparison of inventories only on the 
basis of reported inventories may contradict simple conclusions inferred from 
the uncertainty distributions interpreted as a probabilty distribution. 

For the greenhouse gases, reduction of inventory is often defined in percents, 
i.e. Xe :-::; pxb, where Xe is an emission inventory in the compliance period, Xb 
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Fig. 2 Which inventory is smaller, A or B? 
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is an emission inventory in the basie year (at the beginning of the reduction 
period), and pis a required fraction of emission reduction. Here, again, the task 
is to compare uncertain inventories in the compliance year, Xe, with inventories 
reduced from the basie year, pxb, and to decide whether the former is !ower 
than the latter. Thus, the method presented here an be also useful for making 
decisions in his case. 

In the paper it is assumed that the distribution of uncertainty of an in­
ventory is given. This not always can be true. Some countries undergo an 
effort of carrying out Monte Carlo calculations from which one can get quite 
a good insight of how the country's uncertainty distribution looks like. Some 
other countries report only either uncertainty interval or even standard devi­
ation. Many of the methods presented in the paper will work even with the 
interval information. It can be there interpreted as a uniform distribution of 
uncertainty. 

In Section 2 we present different probabilistic, and in Section 3 fuzzy-rooted 
tecłmiques, which can deal with the uncertain inventories. Section 4 concludes. 

2 Probabilistic approaches 

2.1 Introductory remarks 

Treating an inventory as a random value with probabilistic distribution seems 
to be self-imposing, although it perhaps does not completely comply with the 
randomness asumptions. 

Comparison of uncertain random values has been already considered in 
v,irious fields. The problem of selection from risky projects has a long history 
in such areas as finauce, R&D projects, IT projects, [9]. Severa! methods have 
been proposed there to compare such projects. The methods can be divided 
into groups. All the methods presented below are adopted to the considered 
problem of emission inventories. 

In the sequel two uncertain inventories, A and B of Figure 2, will help us to 
illustrate the described techniques. The question to be answered is as follows: 



inventory of which party can be considered '"smaller'" . The answer can be 
either used for ordering inventories of two parties, or checking if Xe is smaller 
than pxb, i.e. verifying fulfillment of reduction expressed in percents. 

2.2 Statistical moments 

Mean value and variance. The most elementary technique is based on 
the mean value and the variance (MV). The smaller is the mean value and 
the variance, the better the inventory is. This method is explained on the 
case presented in Figure 3. Although the reported value of the inventory A is 
smaller than that of B, the mean value of A is greater than the mean value 
of B. The same is true for the standard deviations. Even this simple criterion 
shows, that an inventory of the party B should be considered smaller than 
that of the party A. This is contrary to the result for reported values, which 
ignores uncertainty. Let us mention that in this approach fulfilling of the limit 
would be related to comparison of the mean value rather and not the reported 
value. 
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Fig. 3 Comparison of means and variances 

Semivariance. However, many inventories would be not possible to compare 
in pairs, as using two indices, mean value and standard deviations, may lead 
to contradictory results . Taking this into account, a notion of the semivariance 
can be applied (MSV), which is defined as 

s1 = (°-o (x - K) 2 µ(x )dx Jl( (1) 

where K is a chosen value and µ(x) is the distribution density function of an 
inventory. The smaller the value of s} is, the better is the inventory. In our 
case K can be conveniently chosen as a given target, and this value is used 
in the example of Figure 2, surveyed in Table 1. In the example considered 
s}A > s}8. Thus, according to this criterion, an inventory B is smaller than 
A. Using this criterion, an inventory satisfies the target, if the semivariance is 
smaller than a preselected value. 



2.3 Critical probability 

Critical probability. A large group of techniques uses the notion of critical 
prnbability (CP), the notion introduced already in 1952 [25]. Most of the meth­
ods in this group require knowledge of the related probability distributions. 
The measure used to compare inventories is the probability of surpassing the 
target I{ 

crp = ("° µ(x)dx Jl( (2) 

A smaller value of crp indicates better inventory. As seen in Figure 4, again, 
an inventory of the party B is evaluated as the smaller one. 

µ(x) 
target 

I 
I 
I 

B-< A 

1 inventory B, XcritB = 2.1 

-2 X 

Fig. 4 Calculation of critical values 

Risk. In other related methods, as the Baumol's risk measure and the value at 
risk (VaR), the probability o: of inventory x to be above a critical value Xcrit 

is fixed, and then the value Xcrit is calculated. Without going into details, 
an inventory is smaller when Xcrit is smaller. In our example, presented in 
Figure 4, fixing probability to 0.1, the inventory B is chosen as the smaller 
one. 

A technique similar in spirit has been proposed to ensure a reliable compli­
ance. It is called undershooting, [6, 7,21,22,23], and is illustrated in Figure 5. 
In this approach, it is required that only a small enough o:-th part of an in­
ventory distribution may !ie above a target. This idea, when used to order 
inventories, becomes equivalent to the CP technique. 

In all these teclmiques satisfaction of a given limit would be connected 
with specifying the critical probability, which should be not greater than a 
prescribed value, or requiring that the related value Xcrit is not greater than 
the limit. 

2.4 Stochastic dominance 

Stochastic dominance. In the stochastic dominance technique an inventory 
B is smaller than A, if their cumulative probability functions ( cpfs) satisfy 
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Fig. 5 Illustration of compliance in the undershooting approach. 

FA(x) ::; FB(x) for all x, and the condition is strict for at least one x. It is 
obvious that not all inventories can be decisively compared this way, see cpfs of 
our examplary inventories A and B depicted in Figure 6. Although cpf of the 
party B is greater for most values of x, it is !ower than cpf of the party A for a 
small range of low value arguments. This possible lack of an answer yes or not 
is not convenient for comparison of inventories. However, some modifications 
have been proposed to extend the set of inventories which can be compared. 
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Fig. 6 Stochastic dominance criterion for comparison of inventories A and B. 

Almost stochastic dominance. In the a/most stochastic dominance (ASD) 1 

the inventory Bis smaller than A, if the area between both cpfs for FB(x) < 
FA(x) is small enough (c: times smaller, usually with O< c: < 0.5) part of the 

1 This is the first order ASD. For the second order ASD see [9]. 



whole area between pdfs, J, /Fs(x) - FA(x)ldx. It can be seen by inspection 
in Figure 6 that this condition is satisfied in aur example of Figure 2. Thus, 
also this technique indicates inventory B as the smaller one in this case. 

A simplified cornparison of inventories could confine to checking the val­
ues at x = K. This would be equivalent to a variant of critical probability 
approach. But this way analysis of fulfillment of the limit in the stochastic 
dominance techniques could be reduced to checking if the value of the inven­
tory cpf at the limit is big enough. 

2.5 Examples and resume of probabilistic approaches 

The results obtained so far for the inventories from Figure 2 are summerized 
in Table 1. As can be seen there, all methods point to the inventory B as the 
smaller one that is contrary to the conclusion taken when only the reported 
values are considered. 

Table 1 Criteria values for comparison of inventories A and B for the inventories from 
Figure 2. 

Method Criterion Criterion lnventory 
value for A value for B chosen 

MV mA= 4 ffiB = 1 B 
"A= 161 UB= i 

MSV ·~, = 13.45 S~o = 0.35 B 
CP crpA = ! crpB = ii' B 
risk CcritA = 10.6 CcritB = 2.1 B 

We perform another test, using rather difficult example presented in Fig­
ure 7. The distributions are shifted to the origin, so O in the figure corresponds 
to the value i. Intuitively, B would be considered "better", as this inventory 
is mare credible. But using the reported inventories only, they are considered 
equivalent. 

Tl,e mean of both distributions is O and the variance is a2 = a2 /6, where 
[-a, a] is the interval, on which the distributions are nonzero: in the figure a 
equals 2 for the inventory A and 1 for the inventory B. Thus, the mean and 
variance method obviously prefers B. Denoting k = K/a, the semivariance is 
equal to s1 = a2(1- k) 4 /12 for k 2'. O and s1 = a2[1- k 3 (4- k)] for k < O. It 
can be simply checked that for k 2'. O it holds s1(a) > s1(b) if a> b. The same 
is true for k < O, if k is sufficiently close to zero, see an example in Figure 7. 

As to the critical probability, cpr = (1 - k) 2 /2 for k 2'. O, and cpr = 
(1 - 2k - k2 )/2 for k < O. Thus, for k > O it holds cpr(b) > cpr(a) if b > a, 
and opposite, for k < O there is cpr(b) < cpr(a) if b > a. 

Similar for risk values, we get Xcrit = a(l - v'2u) for K > O. As a < 
0.5 there, then Xcrit(b) > Xcrit(a) for b > a. For K < O there is Xcrit 
a✓2(1 - a) - 1) < O. As a > 0.5 there, then Xcrit(b) < Xcrit(a) for b > a. 
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Fig. 7 Examplary distributions of inventories A and B. 
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Fig. 8 Dependence of semivariances s1 in function of K for inventories A and B from 
Figure 7. 

Comparison of cumulative probability functions is not decisive, see Fig­
ure 11. But almost stochastic dominance can be used with c = 0.5. This 
criterion points to the inventory B as the smaller one. 

Concluding, decision about fulfillment of obligation, which is ba.sed on de­
terministic (reported value) comparison of an inventory with a target, does 
not agree with a commbn sense understanding of comparison and ordering 
of uncertain values within the probabilistic approach. The deterministic com­
parison also contradicts the already existing scientific knowledge on ordering 
projects with stochastic uncertainty. 

Alternatively, almost all of the techniques presented in this section could 
be used for comparing uncertain inventories, except those, which may fai! to 
provide an answer, like the mean value and variance or the stochastic dom-
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Fig. 9 Dependence of critical probability cpr in function of K for inventories A and B from 
Figure 7. 
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Fig. 10 Dependence of critical values Xcrit in function of a for inventories A and B from 
Figure 7. 

inance ones. The critical probability group seerns to be particularly suitable 
for this . 

But practically all the methods guarantee proper ordering of inventories 
only when the reported value is smaller or at most equal to the limit. In the 
other case the ordering may be opposite to the expected one, see the analysis 
above for two inventories with the same reported inventory values and different 
variations. These problem is irrelevant in the rnethods like undershooting, 
where only those inventories, which are srnaller enough than the limit, are 
considered to fulfill it, and the other are considered noncompliant. 

We could, however, like to consider and order all inventories. When the 
reported inventory value is greater than the limit, the proper ordering can be 
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Fig. 11 Cumulative probability functions cpf for inventories A and B from Figure 7. 

achieved using a probability (3 that the inventory is smaller than the limit, 
see Figure 12. Then we are convinced with the probability 1 - f3 that the 
inventory is noncompliant. In this case there will be an indecision interval in 
the inventory, see Figure 12. When I< E (x~rit • x~rit), then we are not convinced 
enough if the inventory fulfills the limit or not. 

indecision interval 
X 

X 

Fig. 12 Illustration of compliance, noncompliance and the indecision interval. 



The question arises what can be clone when the limit falls in the indecision 
interval of an inventory. It is actually quite fair to say that for these inventories 
no decision can be taken with high enough confidence. 

One of the answers proposed for such cases in [14, 8] was to wait until one or 
another exceedance occur in the inventories assessed in the consequent years. 
A rough method to estimate when this may take place was also designed, called 
the verification time. It is based on a linear or quadratic prognosis of future 
emission trajectory. This approach requires for compliance an additional oblig­
atory undershooting so that the countries emission reductions and limitations 
become detectable. 

Another solution for the inventories, which can not be classified as com­
pliant or noncompliant, and which has been actually already proposed to be 
used, might be to add a penalty in the next clearing time for not fulfilling the 
compliance condition in the previous period. This penalty could depend on 
risks of fulfilling (a) and/ or not fulfilling (/3) the limit. 

3 Fuzzy set approaches 

3.1 Conceptual difference 

A fuzzy set is a generalization of a common, crisp set. A crisp set can be defined 
by its characteristic function XA, taking either value O or 1, see Figure 13. A 
fuzzy set is characterized by a similar membership function µA, which takes 
values from the interval [O, l]. The fuzzy sets, whose membership functions 
have values equal to 1, are called normalized. We consider here only normalized 
fuzzy sets. This membership grade can have one of three interpretations [5]: 
veristic, possibilistic and as truthvalues. The veristic interpretation means, 
that an element fully belongs to the set, if it has a membership grade equal to 
1, it does not belong for the value equal to O, and only "partly belongs" for the 
intermediate values. In a possibilistic interpretation, the fuzzy set represents a 
number of possible elements, the membership grades of each element indicates 
how possible this event is: ranging from a value of O if it is impossible, over 
values. between O and 1 if it is somewhat possible, to a value of 1 if it is perfectly 
possible. As such, the fuzzy set describes imprecision and can be compared to 
the probability density function. However, it's normalization condition is less 
strict that in probability theory: the constraint now is that the highest value 
must be 1 (this implies that there must be at least one element that is perfectly 
possible). The difference in normalization also implies different algebra rules. 
The use of membership grades as truth·ualues is an extension of boolean logic: 
1 is considered to represent true, O represents false and intermediate values 
express a partia! truth. This can be used when evaluating statements: saying 
that 90 is a big number can be considered only partly true. 

A fuzzy number is a fuzzy set in the numerical domain IR. that satisfies a 
number of criteria (there is same discussion as to which criteria are absolutely 
necessary), for more details we refer to [19,31]. 
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Fig. 13 The characteristic function XA and a membership functions µA of a set A. 

A fuzzy set can be fully characterized by a family of so called a-cuts denoted 
by A.,, i. e. points u, for which the value µA(u) assumes at least the value 
a, see Figure 13, where an example of a a-cut for a = 0.5 is depicted and 
denoted Aa.5 . Let us notice here that now a has another meaning than in the 
probabilistic part. The problem is that both the notion of a as the probability 
of not fulfilling the target and the notion of a-cut in the fuzzy set research 
area are commonly used. To solve this overlap, in this section of the paper we 
switch to using 1) (instead of a) for the measure of that part of distribution 
where the target is not satisfied (that is the probability of not fulfilling the 
target in the probabilistic approach). 

Two additional notions connected with a fuzzy set are worth to mention. 
One is the support, called supp A, which is the set of points u, for which the 
membership function is strictly positive. The second notion is the core of the 
fuzzy set , called core A, which is the set of points, for which the membership 
function is equal to 1. 

Fuzzy set and posibilistic models of uncertainty can be considered as a com­
petitive approach to the probabilistic one, described above. A few arguments 
can be given in favour of this approach. There are a number of interpretations 
of probability theory, we will only consider the ones related to the current 
context; for an overview we refer to [1 Oj. First , the probabilistic approach is 
intrinsically related to the frequency of variable appearance (Jrequentist ap­
proach, [27]), while it is hardly possible to have frequent inventories at the 
same year. The use of the probability as degree of belief has been proposed in 
[24], but [18] showed that many people do not adhere to the probability calcu­
Ius in this interpretation. Second, in the fuzzy set approach determination of 
the distribution is much more flexible . The distributions can be freely shaped 
and do not need to follow any known probabilistic distributions to be practi­
cally useful. For example, they can be estimates given by experts. Uncertainty 
of emission inventories often have an expert-quantified character, even if the 
Monte Carlo simulation is used to estimate its distribution. Third, the algebra 
in the fuzzy set approach is simpler, in the sense that for complicated prob­
lems more often it is possible to get a finał analytic solution using the fuzzy 
approach than using the probabilistic one, see e. g. [22,21]. As in the case of 
inventories the data is often obtained through a mixture of statistical methods 



and corrections, interpretations and estimates by experts who express some 
belief and label the data accordingly, flłzzy set theory may be well suited for 
the analysis of compliance. 

The fuzzy sets have been used in the undershooting technique [21] to calcu­
late the difference Xe - pxb, But their role was only instrumental there, as the 
rest of the technique was close to the idea used in probabilistic CP technique. 

Regardless on how the data is processed, fuzzy set theory can inspire us for 
other aspects. In fuzzy set theory, the ranking of fuzzy ( or inaccurate) values is 
a common problem to which different solutions have been proposed. And just 
as there are issues with the ranking of the inventories (Fig. 2), similar issues 
occur with the ranking of fuzzy numbers as illustrated on Fig. 21. Ignoring 
conceptual differences, there are sufficient similarities to warrant investigating 
how the possibilistic ranking methods hold up against the other methods. In 
the following sections we will briefly present some of the textbook cases of 
ranking methods in possibility theory and see how different cases appear in 
the different ranking methods. 

In the following subsections, we will list four conceptually different groups 
of methods that are used to rank fuzzy numbers. Some of these methods 
resemble those from the probabilistic approaches, other use quite different 
paradigms. These methods were chosen to illustrate that various approaches 
can be used to tackle the ranking problem. 

3.2 On the underlying assumptions 

Most of the fuzzy ranking methods have been developed for fuzzy sets over the 
domain [O, l]. The main reason for this is that there are some specific advan­
tages in developing ranking methods ( e.g. integrals over the domain cannot 
yield a result greater than 1. For the application of the methods in ranking 
different inventories, the methods could be modified to suit a different do­
main. This is possible for all the methods, but may complicate the formulas 
somewhat. To keep the formulas simple and to remain true to the original 
defiuitions, it was chosen not to do this . An alternative option would be to 
rescale the domain of the inventories to the interval [O, l] to allow for a direct 
application of the methods. If the supports of the fuzzy number is finite, as we 
assume here, and in the original support x E [ł, r], the new variable is defined 
as z= (x - l)/(r - l). 

The ranking methods below are ranking methods in the sense that they put 
an ordering on at least two fuzzy numbers. Some authors have chosen to rank 
from lowest to highest, others rank from highest to lowest. The concept of this 
article is to present different methods and how difficult cases are distinguished 
diffcrently. As such, thcse are minor details that can easily be overcome and 
should not deter from the message. 

There were quite a number of different techniques proposed for ranking 
fuzzy sets. Not all are mentioned below. Some of those not mentioned can be 
found in a review paper [3]. 



3.3 An analogue to moments 

Yager FI. In [30], the author presents three different ranking methods. They 
are pure ranking methods in the sense that a number is derived for every 
element. The number is independent of the other elements in the set. A weight 
function g is introduced to add weights to the fuzzy set A. This basically allows 
us to specify which values are mare important, based on their possibility. 
Common weight functions are either g(z) = 1 (reflecting that all possible 
values are equally important) and g(z) = z (indicating that the higher the 
possibility of a value, the mare important it is and the mare it will contribute 
to determine the rank). 
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IR 

Fig. 14 Fl ranking function proposed by Yager. 

The first ranking function is defined as follows: 

(3) 

If the weight function g(z) = z is used, then F1 represents the mean value of 
the membership function, called usually the center of gravity of the fuzzy set. 
This is illustrated in Figure 14. Note that if the weight function g(z) = 1 is 
used; no ranking conc!usions could be drawn: F1 would result in 1 for every 
fuzzy set. 

When g(z) = z, this technique can be compared with the mean value tech­
nique in the probabilistic approach. The ranking function may be defined in a 
mare generał way, and one option could be to take g(z) = [z - F1 (A)[g(z)=i] 2 , 

analogous to the variance. Also an analog of semivariance could be defined 
here, which shows similarity of this fuzzy approach technique with the proba­
bilistic one. 



3.4 Analogues to critical values 

Nahorski et al. A strict analogue to a critical value technique in probabilistic 
approach has been proposed in Nahorski et al. [23,22,21]. To get an analogue 
to probability, which defines the critical value, the corresponding area is nor­
malized there by dividing it by the area under the membership function, as in 
Figure 5. This approach assumes a rather precise knowledge of the membership 
function. 

J'A(Z) 

I 
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: 11-th part 

Fig. 15 Dermination of the critical value Zcrit in the Nahorski et al. (calculation of the 
11-th part of the distribution area) and Adamo (calculation of the <>-cut) techniques. 

Adamo. On the other hand, Adamo [l] proposed to consider points satisfying 
µA(z) = o:, O:<:; o::<:; 1, and choose the highest value of z as a ranking criterion. 
In another wording, the criterion value is the most right value of the o:-cut 
of the fuzzy number A. The critical value depends now on the choice of o:, 
but in this case it has elear fuzzy set interpretation connected with the o:-cut . 
This idea may be compared with the one by Nahorski et al. [22,21]. where the 
critical area has a more probabilistic origin, while that of Adamo has a more 
fuzzy set flavour, see Figure 15. No doubt, for a give11 membership function 
both techniques can be related by mathematical expressions. 

These techniques can be simply used for derivation of criterions for checking 
fulfillmeut od the limit, aualogously to the 011es which stem from the similar 
probahilistic approaches. 

Yager F2. The second ranking function introduced by Yager [30] compares 
the given fuzzy set A to the linear fuzzy set B, defined by µs(z) =z. The 
second ranking function is then defined as follows : 

F2 (A) = maxmin(z, µA(z)) 
zES 

( 4) 

Here, S represents the support of the fuzzy set A; in our case assumed to be 
the interval [O, l] . Graphically, this yields the intersection point between the 
linear fuzzy set (µn(z) = z) and the given fuzzy set where the possibility is 
the highest. This is illustrated in Figure 16. 
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Fig. 16 F2 ranking function proposed by Yager. 

This rating function has simple interpretation. The fuzzy set with the mem­
bership function µB(z) = z may be interpreted as representing a variable 
"high". The membership function min(z,µA(z)) represents a variable, which 
is a conjunction of A and B , i.e. the points, which belong both to the variable 
"high" and A. In other wording, it represents distribution of the possibility 
that A is II high". Its maxima! point satisfies these two requirernents in the 
"best" way. 

The membership function of the variable "high" may be shaped in a differ­
ent way. Jain [13] proposed more generał set of functions µB(z) = (z / zmax)\ 
k > 02 • In this case the result of comparison of fuzzy numbers may, however , 
strongly depend on the choice of k, and no elear criteria exist , which value of 
k should be chosen. 

Apart of ranking the fuzzy numbers, the critical values could be used to 
check fulfillment of obligations, analogously to the stochastic approach. The 
simplest would be strict comparison of F2 with K. However, the construc­
tions proposed here are of a rather subjective character, difficult to interpret 
physically, and therefore their use may be limited. 

Yager F3. The third ranking function defined by Yager 130] is more cornplex 
than the Yager's first and second ranking functions to explain using formulae, 
although it is simple to interpret geometrically. It is defined as 

(5) 

with Aa the a:-cuts of A, °'max is the highest occurring possibility in the fuzzy 
set A 3 , and m is the middle point of the a-cut. The formula is relatively easy to 
grasp graphically: the index is the surface area to the left of the line that runs 
exactly along the middle of the fuzzy number. For triangular fuzzy numbers, 
this connects the top of the fuzzy number (i.e. where the possibility is one) 

2 With assumptions taken in this section Zma::i: = 1 
3 For the normalized sets, as are assumed in this paper, Ctmax = 1 



with the middle of the support. This is represented by the shaded area in 
Figure 17. 

IR 

Fig. 17 F3 ranking function proposed by Yager. 

This ranking index can be directly used to checking satisfaction of the limit. 
For this !et us notice that F3 (A) is the mean value of the function m(A"'), in 
which a is the argument. This is because O :=:; a :=:; 1, so for the triangular 
membership functions F3(A) = f0

1 m(A"')da = m(Ao.s)- Thus, in this case 
F3(A) is equal to the middle value of the 0.5-cut of the fuzzy number A. For 
other membership functions the integral will be equal to the middle value of 
the same or another a-cut. In any case, this index is closely related with an 
a-cut, where an appropriate a is determined by the shape of the membership 
function. This makes this approach a little similar to the Adamo method, with 
differently determined critical value at the middle of the a-cut instead at the 
right end. This interpretation encouraged us to classify this technique within 
the critical values group. 

3.5 Fuzzy dominance 

Dubois and Prade. In spite of a similar name, the fuzzy dominance tech­
niques proposed up to now in the literature, differ completely in spirit from 
the stochastic dominance ones, presented in subsection 2.4. It is important 
to remember here that we use the normalized fuzzy numbers on the domain 
rescaled to the interval [O, l]. The results of this subsection may be not true, 
if the normalization or rescaling is not clone beforehand. 

To compare fuzzy numbers using the fuzzy dominance approach, possibility 
and necessity measures can be used, as introduced by Dubois and Prade [4], 
see also [11]. A normalized fuzzy set with a membership function µ(z) induces 
on the interval [O, 1] a possibility distribution 7r(z) = µ(z). For simplicity, we 
refer to defined this way possibility distribution as µ(z). Given a possibility 



distribution, the possibility measure of a subset Z E U= [O, 1] is defined as 

Poss(Z) = supµ(z) 
zEZ 

It can be interpreted as a degree of possibility that an element is located 
in the set Z, see an interpretation in Figure 18. Let us notice that using 
a characteristic function xz(z) of the set Z, the possibility measure can be 
equivalently defined as 

Poss(Z) = sup min{µ(z),xz(z)} 
zE[O,l) 

Let us notice that when Z = [r, 1], then the above index can be interpreted as 
a measure that an element x is not smaller than r, i.e. r::; x. 

Comparing these notions to the probabilistic ones, the possibility distribu­
tion corresponds to the probabilistic distribution, and the possibility measure 
Poss(Z) corresponds to the probability of the subset z. 
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Fig. 18 Illustration of possibility and necessity measures for a crisp set Z. 

However, in the possibility theory an additional measure is introduced, 
called · the necessity mea.sure. It is defined as 

Nec(Z) = 1 - Poss(.Z) 

where .Z is the complementary set of Z in [O, 1], see Figure 18. It can be 
interpreted as a degree that an element is located necessarily in the set Z . 
Similarly as in the possibility case, an equivalent definition may be 

Nec(Z) = 1- sup min{µ(z),xz} = inf max{l- µ(z),xz(z)} 
zE[O, l) zE[O,l) 

A simple property, which can easily observed in the Figure 18, holds 

Nec(Z) ::; Poss(Z) 



which rnay be interpreted that the measures give !ower and upper bounds on 
uncertainty connected with localization of an element in the set Z. The !ower 
one, necessity, is the degree, in the range [O, l], of aur conviction that the point 
is in the set Z. The higher one, possibility, is the degree of aur supposition. 

Naw, taking a fuzzy sets Z instead of a crisp one, the characteristic function 
xz(z) is replaced by the rnembership function µz(z), providing the following 
definitions 

Poss(Z) = sup min{µ(z), µz(z)} 
zE[O,l] 

Nec(Z) = 1 - sup min{µ(z), µz} = inf max{l - µ(z), µz(z)} 
zE[O,l) zE[O,l] 

where the mernbership function of the complementary set of Z is given by 
µz(z) = 1 - µz(z) . 

µ(z), µz(z) 

1,(z) / 
I 

I 
I 

/\ .. 
I \ • . 

: 1,z(z) 

\ 
\ 
\ z 

o+--'----~--'---
o 

possibility measure 

µ(z),µz(z) 

I\ 
I \ 

·. nec , , 
I \ 

I \ 

µ(z)\ j 

:11z (z) 

z 
0+--'-------'~--'-

0 

necessity measure 

Fig. 19 Illustration of possibility and necessity measures for a fuzzy set Z . 

Having introduced the above notions we can pass to defining fuzzy dom­
inance indices. To calculate the possibility and necessity indices, the mem­
bership functions are analyzed on the two-dimensional plane (z, y), and mare 
specifically either on the upper right or the bottom left half of the square 
[O, l] x [O, l], compare Figure 20. This is analogous to consideration of two­
dimensional probability density function for independent variables. To corn­
pare two fuzzy numbers, one of them, say B, is taken as a reference one. Its 
rnembership function plays a role of a reference possibility distribution. The 
dorninance of a fuzzy set A over B is denoted below as A ~ B, and strict 
dorninance as A >- B. 

The possibility of dominance (PD) index of a fuzzy set A over a fuzzy set 
B is defined as 

PD= Poss (A~ B) = SUP,,y;z,".y min {µA (z), µs (y)} (6) 

The index PD is a rneasure of possibility that the fuzzy numbers A is greater 
than B, or that the set A dominates the set B. This index has been first 



proposed by Baas and Kwakernaak [2). A probabilistic analogue of this index 
would be probability that A 2'. B. This index has to be analyzed on the piane 
(z, y) in the upper right half of the square [O, 1] x [O, 1), see Figure 20, where 
the projection on the function min{µA(z),µs(z) on the square is drawn, with 
the rnernbership functions µA(z) and µs(y) drawn on the axis. The highest 
value of this function ( equal to 1) is located in the area y > z ( at the point 
rnarked with •), while the value PD < 1 is located on the boundary of the 
upper half of the square, at the point rnarked with o. It is now easy to notice 
that the value PD can be calculated as presented in Figure 21. 

y 

Fig. 20 Calculation of the PD index on the (z,y) piane. 
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Fig. 21 Calculation of the PD index on a line. 
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Analyzing the way the value PD is calculated, and using notation from 
Figure 13, it is seen that 

Poss(A ~ B) = 1 if mA 2 mB 

Poss(A ~ B) = 0 if mA + Pr A ~ mB + PIB 

Just, the possibility of dominance index PD is equal to O, if any point of the 
support of A is smaller than any point of the support of B . If the supports 
overlap, PD> O. If the core of A is greater or equal to the core of B, then 
PD= 1. 

1 ,------

o 
Fig. 22 Calculation of the PSD index. 
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The possibility of strict dominance (PSD) index for a fuzzy set A over a 
fuzzy set B is defined as 

PSD= Poss (A>- B) = supz infy,y;,:z min {µA(z), 1 - µB(Y)} (7) 

where /•A (z) and µB (y) are the membership functions of A and B, respec­
tively. Analysis of the function on the two dimensional square brings us on the 
situation depicted in Figure 22. Now we have 

Poss(A >- B) = 1 if mA 2 mB + PrB 

Poss(A >- B) = 0 if mA + PrB 2 mB 

The possibility of strict dominance index is therefore equal to O, when the 
support of A is to the left of the core of B. It is positive in the opposite 
case. It equals 1, if the support of B is to the left of the core of A. Just, the 
membership function of A has to be more shifted to the right to get the same 
value of the index require as in the possibility of dominance case. 

The necessity of dominance (ND) index of a fuzzy set A over a fuzzy set 
B is dcfined as 

ND= Nec (A~ B) = inf z SUPy,y:,z max {1- µA(z), µB(Y)} (8) 
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Fig, 23 Calculation of the ND index. 

Similarly to the previous analyses, calculation of this index reduces to analysis 
of the situation presented in Figure 23. It yields 

Nec(A?: B) = 1 if mA - PlA 2': ms 

Nec(A ?: B) = O if mA ::, ms - PlB 

Thus, the necessity of dominance index equals O when the core of A is to the 
left of the support of B. It is positive in the opposite case. It is equal to 1, if 
the support of A is situated to the right of the core of B. 

1 I - - - -,,---
\ \· / 

I ' - / / ' BI / 
I : , / ,"' 
I \ , 
I \ //A 
I \ ,,1"' 
I: \ :,, / 
I: ,,, "': / 

\.. / \ : / 
/ \ . I 

l / { z,y o-i------------~ 
o 1 

Fig. 24 Calculation of the NSD index. 

The necessity of strict dorninance (NSD) index of a fuzzy set A over a 
fuzzy set B is defined as 

NSD = Nec (A>-- B) = inf,,y;y:Sz max(l - µA(z), 1 - µs(y)) 
= 1- SUP,,y;z:Sy min {µA (z), µs (y)} = 1 - Poss (B ~ A) 

(9) 



This index is the opposite to the measure of possibility that the set B domi­
nates the set A . This index has been first proposed by Watson et al. [28]. The 
analysis of the index reduces to analysis of the situation presented in Figure 24. 
There is 

Nec(A >- B) = 1 if mA - Pu 2'. ms + PrB 

Nec(A >- B) = O if mA ::::; ms 
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Fig. 25 A test case for ordering of two difficult distributions . 

In order to further examine the method !et us now consider a difficult 
ordering of two fuzzy numbers with distributions depicted in Figure 25. Sim ple 
inspection provides the following results 

Poss(A t B) = Poss(B t A) = 1 

and therefore 
Nec(A >- B) = Nec(B >- A) = O 

Thus, both the possibility and necessity of strict dominance indices do not 
distinguish these fuzzy numbers. With the other indices, we get 

Poss(A >- B) < Poss(B >- A) 

and 
Nec(A t B) > Nec(B t A) 

Thus, the possibility of strict dominance index suggests rather B, while the 
necessity of dominance index rather A, as the "greater" number. This is con­
nected with considering in calculation the right or left slopes of the distribu­
tions, respectively. 

The Duboit and Prade approach does not prioritize the fuzzy sets itself, 
like earlier techniques. It answers the question of the degree of possibility or 
necessity of dominance of a chosen set by another one; it allows for week (soft) 



comparing of a set against one or more other sets rather than assigning a 
rank to each set. Thus, comparison of these inventories might give a rather 
indecisive answer. Similarly as in the undershooting technique, some critical 
values should be set for making decision on dominance. Moreover, it should 
be remembered that the indices will not necessary provide consistent results . 
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Fig. 26 Calculation of the indices for the crisp limits. 

An interesting question is, if these techniques can be used for assessing 
satisfaction of the limit. For this, the limit can be interpreted as a crisp value, 
that is a fuzzy variable with the membership function 

{ 1 if z= L 
µB(z)= Oifz,fL 

where L is the rescaled value of the limit L. In these cases PD = PSD and 
ND = N SD, so we can say here only on necessity N and possibility P indices. 
In Figure 26 two cases are depicted: the limit higher than mA, and the limit 
smaller than mA . In the farmer case P > O and N = O. In the latter P = 1 
and N > O. We see that using the necessity indices is equivalent to the Adamo 
method with N = 1 - a: . The possibility indices give an information on a 
degree of not achieving the limit (recall that the limit is achieved here when A 
is greater than B), which could be used in inferring noncompliant inventories. 

Actually, the situation here is fully analogous to the one presented in Fig­
ure 12. Fixing necessity N and possibility P indices we arrive again to the 
notion of indecision interval, where neither necessity nor possibility of the 
limit satisfaction is high enough. 

Application of the Duboit and Prade method gives useful information on 
fulfilliug the limit. However, aualysis of the memberships functions on the 
piane is rather cumbersome. Simple interpretations on the lines could help 
in this. Necessity indices give practically the same information as in Adamo 



and Nahorski at al. method. Possibility indices can possibly be applied in 
quantifying noncompliance. 

3.6 Other approaches 

Tran and Duckstein. The authors in [26] first defined a distance measure­
ment between fuzzy sets. From this distance measurement, a ranking method 
was derived. The concept is that for a given set of elements that need to be 
ranked, the smallest and largest possible ( crisp) values, respectively, denoted 
NI in and Max are used as predetermined targets. The distance to each of 
them (Dmin and Dmax) is calculated for each element to be ranked. Note that 
depending on the shape of the fuzzy set, a greater distance to Dmin does not 
imply a smaller distance to Dmax and vice versa. Both distances are then used 
to rank the fuzzy sets: an element is ranked higher if its distance to Dmax is 
smallest but its distance to Dmin is greatest. 

When ranking a number of fuzzy sets, the minimum reference target is 
defined to be the smallest ( crisp) value that is possible in any of the fuzzy 
sets. 

I 

Min(I) ~ inf(LJ S;) (10) 
i=l 

Here, I is the set of fuzzy sets A; that are ranked and S; is the support of the 
fuzzy set A;, i.e. the set of values where /l·A, > O. In practise, Min(I) will be 
defined by as being equal to the srnallest value of all the supports of the fuzzy 
sets considered. 

The maximum reference target is similarly defined to be the largest possible 
crisp value of all elements to be ranked: 

I 

Max(I) <:'. sup(LJ S;) 
i=l 

(11) 

The notations are similar to before. In practise, Max( I) will be defined by as 
being equal to the greatest value of all the supports of the fuzzy sets considered. 

Similar to the approaches ofYager, a weight function gis used. This method 
is maii::tly developed for triangular fuzzy numbers ( one single core point and 
a linear function to the left and to the right of it to model the decrease of 
possibility - the graph resembles a triangle) and trapezoidal fuzzy numbers 
(an interval where the core is 1 and a linear function to the left and to the 
right to model the decrease of possibility - the graph resembles a trapezoid). 
The latter are not considered here. For triangular fuzzy numbers, the ranking 
functions (squares of distances) are defined as [26] 4 : 

2( ) 2 1 D A,M,z =(a2-M) + 3(a2-M)((a3+ai)-2a2)+ 

4 The formulas here differ from the formulas in Table 2 in (26]; the author confirmed there 
was a typographic error in that particular reference and sent us corrected versions - these 
have not been published elsewhere. 



1 2 2 1 + 18 ((a3 - a2) + (a2 - a1) ) - 18 ((a2 - a1)(a3 - a2)) (12) 

for weighting function g(z) = z and 

1 2 2 1 +9((a3 - a2) + (a2 - ar) ) - 9((a2 - ai)(a3 - a2)) (13) 

for weighting function g(z) = 1. 
In these formulas, a1, a2 and a3 define the triangular fuzzy set: a1 < a2 < 

a3, µu,(a1) = µu,(a3) = O and µ,, , (a2)=l. M can either be Min or Max . 
Thus, Dmax = D(A,Max,z) or Dmax = D(A,!Vlax, 1). Similar for DMin• 

This technique has been designed directly for comparison of fuzzy numbers 
and it is rather difficult to adapt it to checking satisfaction of a limit, which 
will be typically lying within the support range. 

3.7 Examples and resume of fuzzy approaches 

In this section, the different ranking methods will be compared to verify how 
the ranking of different special cases differ. For the example, triangular fuzzy 
numbers in the domain [O, 1] will be used. 

Same support, diiferent core First, we consider two fuzzy numbers that have 
the same support, but a different core as showu in Figure 27. 

Fig. 27 Two fuzzy sets with the same support and a different core. The numerical ranking 
values are shown in Table 2. 

Table 2 Same support, different core; with Yager ranking functions. 

a, a2 a3 Fl F2 F3 
A1 0.3 0.4 0.7 0.47 0.54 0.45 
A2 0.3 0.6 0.7 0.53 0.63 0.55 



Table 3 Same support, different core; with Tran-Duckstein distance functions (Min= 0.3, 
Max=0.7) . 

0.3 0.4 0.7 
0.3 0.6 0.7 

D(A,Max,z) 
0.27 
0.14 

D(A,Min,z) 
0.14 
0.27 

D(A,Max,l) 
0.26 
0.17 

D(A,Min,l) 
0.17 
0.26 

Intuitively, people would state that A2 > A1 . This ranking is also observed 
by the Yager's ranking methods (Fl, F2 and F3) as shown on table 2. Using 
the Dmin and Dmax values as described in subsection 3.6 - highest ranked has 
smallest Dmax and largest Dmin - also yields the same conclusion as Table 3 
indicates (the reference values for Min and Max were: Min=0.3, Max=0.7). 

Same core, dijferent support When the core of the different fuzzy numbers is 
the same, but the supports are different, the numbers become quite a lot mare 
difficult to classify. The examples are illustrated in Figure 28. 
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Fig. 28 Four fuzzy sets with I.he same core but different supports. The numerical ranking 
values are shown in Table 4. 

Consider the example from Table 4. The table lists both the numeric data 
for the fuzzy sets used, as well as the rankings provided by the three Yager 
ranking methods. Intuitively, people can agree that B2 < B1 and that B3 < 

Table 4 Same core, different support; with Yager ranking functions 

a1 a2 a3 Fl F2 F3 
Bi 0.3 0.5 0.7 0.5 0.59 0.5 
B2 0.2 0.5 0.7 0.47 0.58 0.48 
Ba 0.2 0.5 0.6 0.43 0.54 0.45 
B4 0.2 0.5 0.8 0.5 0.61 0.5 

B1; we also see that B3 < B2. The problems start when comparing B1 with 
B4 . The latter has nonzero possibility distribution for smaller values than 
B1, so following the same reasoning as for B2, it should be smaller. Yet it 



Table 5 Same core, different support; Tran-Duckstein distance functions D2 (Min= 0.2, 
Ma:r:=0.8). 

0.3 0.5 0.7 
0.2 0.5 0.7 
0.2 0.5 0.6 
0.2 0.5 0.8 

D(B,Max,z) 
0.304 
0.322 
0.337 
0.308 

D(B,Min,z) 
0.304 
0.290 
0.272 
0.308 

D(B,Max,l) 
0.307 
0.336 
0.357 
0.316 

D(B,Min,l) 
0.307 
0.288 
0.260 
0.316 

also has nonzero possibility distribution for bigger values, so it should also be 
bigger. Many people would say that both are more or less equal; depending 
on the use and application, B 1 could be preferred as its shows less uncertainty 
(smaller range in which the values can occur), and thus greater credibility. 
The results for Yager's ranking functions are shown in Table 4. For B1, B2 
and B3, it clearly yields the same results as the intuitive ranking. While B1 is 
considered equal to B4 in the ranking methods Fl and F3, F2 shows a minor 
difference, indicating that B4 > B1 . This is rather counter-intuitive, as there 
is more uncertainty about B4, but it is obvious from the ranking index that 
the difference is very small. 

When using the ranking methods proposed by Tran and Duckstein (3.6), 
we see that B2 < B1, that B3 < B1 and that B3 < B2. Comparing B1 with 
B4 is a problem: B4 has larger Dmax value, but does not have smaller Dmin 

value. The authors propose to leave this issue to the decision maker, indicating 
the numeric values. A risk prone person may prefer values that can be closer 
to Dmin whereas a risk averse person may desire values closer to Dmax· While 
this method - unlike the previous one - does not yield a value that allows to 
make a decision between the two values, it allows for a decision maker to have 
additional information which might help him decide. In the situation of the 
inventories, this allows us to prefer B1 as it has less uncertainty. 

In the fuzzy approach it is possible to formulate the problem with only a 
rather vague information on the inventories uncertainty. The price payed for 
it is only a week statements on ranking, either much less precise than in the 
stochąstic approach, or indecisive, providing only some indices on possibility or 
necessity. They would require to set some critical values for making decisions. 
This is, however, rnore difficult thau iu the stochastic case, as intuition on the 
meaning of these indices is much smaller. Moreover, the indices, like in the 
fuzzy dorninauce teclmiques, may be difficult to be calculated by a computer. 
For some techniques it is not elear how to check compliance using the idea of 
ranking used in them. 

In some fuzzy sets methods positions of the reported ( core) values decide on 
the primary comparison and only additional indices can indicate, how strong is 
this conjecture. This is particularly evident in the fuzzy dominance techniques. 

Most of the fuzzy techniques require more investigations to elaborate the 
methods useful for applications. 



4 Conclusions 

This paper focuses on a presentation of the methods for ranking uncertain 
values, with application to comparison of uncertain emission inventories and 
posibility to use the techniques proposed in checking satisfaction of the given 
limit emission. The review shows a variety of approaches and techniques. Not 
all of them can be immediately used in analysis of inventories; some other 
are rather complicated or give no decisive answer. However, they clearly show 
that the comparison of the reported inventories, without taking into account 
its uncertainty distribution, leads to paradoxes and is not well grounded scien­
tifically. There are many possibilities to choose a method for deciding, which 
inventory satisfies the limit, and which not, consistent with ordering or rank­
ing of the inventories. Some of them, like e.g. the undershooting method, has 
been proposed earlier for this purpose [7, 23], see also [16], and adapted to be 
used in trading of emissions, see additionally (22, 21]. But any use of techniques 
outlined in this paper or other, which take uncertainty into account, inevitably 
necessitates changing the presently used rules of checking compliance, which 
depend only on comparison of the reported inventories. Ignoring uncertainty 
is more hazardous to the finał result for asymmetric uncertainty distribution, 
which may happen in many national inventories, as well as when inventories 
with quite different uncertainty distributions are compared, as in the case of 
emissions from different activities. 

In spite of basie conceptual differences between the probabilistic and fuzzy 
approaches, many techniques of comparison of uncertain values are qui te alike. 
Among them the risk methods in probabilistic approaches and fuzzy domi­
nance provide similar techniques of checking compliance, with actually small 
technical differences in terminology and decision parameters. Although this pa­
per has not been intended on a thorough comparison of usefulness of the tech­
niques presented in checking compliance, these techniques look to be preferable 
for closer examination. 
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