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Compliance for uncertain inventories:
Yet another look?
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Abstract The paper deals with the problem of compliance when the invento-
ries are uncertain. This problem is treated here from the view of comparison of
uncertain alternatives. We emphasize inadequacy of using reported emission
estimates, as those obtained from emission inventories, when they are subject
to high uncertainty. Meanwhile, there exists a number of techniques to rank
such uncertain estimates. Several of them are presented in the paper. Prob-
abilistic and fuzzy approaches are considered and compared. Many of them
can be adapted to check fulfillment of obligations on the basis of knowledge of
uncertain emission estimates.
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1 Introduction

A handful of solutions have been proposed to cope with the problem of commit-
ment verification for emission obligations in case of uncertain inventories, see
[16]. Many of them pointed to methodological incompetence in using reported
(crisp) values in clearing pollutant emission targets. For most environmental
problems, only highly inexact knowledge on emission values is available, as is
the case of greenhouse gases, see e.g. [15,17,20].

To give an example of a paradox arising from dealing with uncertain in-
ventories, let us consider verification of a single emission inventory z against a
given limit K, i.e. ¢ < K. A distribution of an inventory uncertainty p(z) may
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be asymmetric. See an example in Figure 1 depicting a histogram of emission
inventory uncertainty for Austria, obtained by the Monte Carlo method, [29].
Let us suppose that an emission target for Austria is like that marked in Fig-
ure 1. The question of interest is whether this party fulfills its commitment, or
not. Ignoring uncertainty, the answer is yes, as the reported value of inventory
lies below the target. However, although the reported value is just below the
target, it is more likely that the actual emission is above the target, because
most of the possible emissions (probability mass) is placed to the right of the
target value. Can we then responsibly accept the answer yes?

(z) target

nominal mventory

Fig. 1 An example of an asymmetric uncertainty distribution of a national inventory: com-
pliant or noncompliant?

Another example with simplified uncertainty distributions is depicted in
Figure 2, with the z axis placed ad hoc. Let us consider two parties with
known triangular distributions of emission uncertainties. The reported inven-
tories (the dominant values of the distributions densities) of both parties are
very close to each other. Ignoring uncertainty, the party A will be considered
compliant (fulfilling the commitment), while the party B will be considered
noncompliant. However, confidence in the inventory value of the party B is
high, while the confidence in the inventory value of the party A is much lower.
Therefore, which party is more credible? Should the party A be considered
compliant, while the party B should not?

According to IPCC Good Practice Guidelines [12], the reports should be
"consistent, comparable and transparent”. It is, thus, reasonable to require
that decision on fulfillment of obligations should be fair among parties, in the
way, that ordering of inventories should make it possible to decide which in-
ventory outperforms others. From the above examples we can see that, when
dealing with uncertain values of possibly asymmetric distributions, taking de-
cisions on fulfillment of obligations or comparison of inventories only on the
basis of reported inventories may contradict simple conclusions inferred from
the uncertainty distributions interpreted as a probabilty distribution.

For the greenhouse gases, reduction of inventory is often defined in percents,
i.e. o < pxp, where z, is an emission inventory in the compliance period, zp
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Fig. 2 Which inventory is smaller, A or B?

is an emission inventory in the basic year (at the beginning of the reduction
period), and p is a required fraction of emission reduction. Here, again, the task
is to compare uncertain inventories in the compliance year, z., with inventories
reduced from the basic year, pzy, and to decide whether the former is lower
than the latter. Thus, the method presented here an be also useful for making
decisions in his case.

In the paper it is assumed that the distribution of uncertainty of an in-
ventory is given. This not always can be true. Some countries undergo an
effort of carrying out Monte Carlo calculations from which one can get quite
a good insight of how the country’s uncertainty distribution looks like. Some
other countries report only either uncertainty interval or even standard devi-
ation. Many of the methods presented in the paper will work even with the
interval information. It can be there interpreted as a uniform distribution of
uncertainty.

In Section 2 we present different probabilistic, and in Section 3 fuzzy-rooted
techuiques, which can deal with the uncertain inventories. Section 4 concludes.

2 Probabilistic approaches
2.1 Introductory remarks

Treating an inventory as a random value with probabilistic distribution seems
to be self-imposing, although it perhaps does not completely comply with the
randomness asumptions.

Comparison of uncertain random values has been already considered in
various fields. The problem of selection from risky projects has a long history
in such arcas as finance, R&D projects, IT projects, [9]. Several methods have
been proposed there to compare such projects. The methods can be divided
into groups. All the methods presented below are adopted to the considered
problem of emission inventories.

In the sequel two uncertain inventories, A and B of Figure 2, will help us to
illustrate the described techniques. The question to be answered is as follows:




inventory of which party can be considered "‘smaller"’. The answer can be
either used for ordering inventories of two parties, or checking if z. is smaller
than pzy, i.e. verifying fulfillment of reduction expressed in percents.

2.2 Statistical moments

Mean value and variance. The most elementary technique is based on
the mean value and the variance (MV). The smaller is the mean value and
the variance, the better the inventory is. This method is explained on the
case presented in Figure 3. Although the reported value of the inventory A is
smaller than that of B, the mean value of A is greater than the mean value
of B. The same is true for the standard deviations. Even this simple criterion
shows, that an inventory of the party B should be considered smaller than
that of the party A. This is contrary to the result for reported values, which
ignores uncertainty. Let us mention that in this approach fulfilling of the limit
would be related to comparison of the mean value rather and not the reported
value.
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Fig. 3 Comparison of means and variances

Semivariance. However, many inventories would be not possible to compare
in pairs, as using two indices, mean value and standard deviations, may lead
to contradictory results. Taking this into account, a notion of the semivariance
can be applied (MSV), which is defined as
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where K is a chosen value and p(z) is the distribution density function of an
inventory. The smaller the value of s?g is, the better is the inventory. In our
case K can be conveniently chosen as a given target, and this value is used
in the example of Figure 2, surveyed in Table 1. In the example considered
5_29 4> 5_29 - Thus, according to this criterion, an inventory B is smaller than
A. Using this criterion, an inventory satisfies the target, if the semivariance is
smaller than a preselected value.



2.3 Critical probability

Critical probability. A large group of techniques uses the notion of critical
probability (CP), the notion introduced already in 1952 [25]. Most of the meth-
ods in this group require knowledge of the related probability distributions.
The measure used to compare inventories is the probability of surpassing the
target K

erp = /: W(w)dz (@)

A smaller value of crp indicates better inventory. As seen in Figure 4, again,
an inventory of the party B is evaluated as the smaller one.
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Fig. 4 Calculation of critical values

Risk. In other related methods, as the Baumol’s risk measure and the value at
risk (VaR), the probability o of inventory = to be above a critical value et
is fixed, and then the value z . is calculated. Without going into details,
an inventory is smaller when z..;; is smaller. In our example, presented in
Figure 4, fixing probability to 0.1, the inventory B is chosen as the smaller
one.

A technique similar in spirit has been proposed to ensure a reliable compli-
ance. It is called undershooting, [6,7,21,22,23], and is illustrated in Figure 5.
In this approach, it is required that only a small enough a-th part of an in-
ventory distribution may lie above a target. This idea, when used to order
inventories, becomes equivalent to the CP technique.

In all these techniques satisfaction of a given limit would be connected
with specifying the critical probability, which should be not greater than a
prescribed value, or requiring that the related value w.,i: is not greater than
the limit.

2.4 Stochastic dominance

Stochastic dominance. In the stochastic dominance technigue an inventory
B is smaller than A, if their cumulative probability functions (cpfs) satisfy
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Fig. 5 Illustration of compliance in the undershooting approach.

Fa(z) < Fp(z) for all z, and the condition is strict for at least one z. It is
obvious that not all inventories can be decisively compared this way, see ¢pfs of
our examplary inventories A and B depicted in Figure 6. Although cpf of the
party B is greater for most values of z, it is lower than cpf of the party A for a
small range of low value arguments. This possible lack of an answer yes or not
is not convenient for comparison of inventories. However, some modifications
have been proposed to extend the set of inventories which can be compared.

p(z)

cpf of inventory B

cpf of inventory A
Fa(x)

target

Fig. 6 Stochastic dominance criterion for comparison of inventories A and B.

Almost stochastic dominance. In the almost stochastic dominance (ASD)!
the inventory B is smaller than A, if the area between both cpfs for Fg(z) <
F4(z) is small enough (e times smaller, usually with 0 < £ < 0.5) part of the

1 This is the first order ASD. For the second order ASD see [9].




whole area between pdfs, [, [Fp(z) — Fa(z)|dz. It can be seen by inspection
in Figure 6 that this condition is satisfied in our example of Figure 2. Thus,
also this technique indicates inventory B as the smaller one in this case.

A simplified comparison of inventories could coufine to checking the val-
ues at z = K. This would be equivalent to a variant of critical probability
approach. But this way analysis of fulfillment of the limit in the stochastic
dominance techniques could be reduced to checking if the value of the inven-
tory cpf at the limit is big enough.

2.5 Examples and resumé of probabilistic approaches

The results obtained so far for the inventories from Figure 2 are summerized
in Table 1. As can be seen there, all methods point to the inventory B as the
smaller one that is contrary to the conclusion taken when only the reported
values are considered.

Table 1 Criteria values for comparison of inventories A and B for the inventories from
Figure 2.

Method Criterion Criterion Inventory
value for A value for B chosen
MV maq = 4 mp = B
op= 16% o = %
MSV__| s%, = 1345 | s25 =0.35 B
CP crpa = g— crpg = % B
risk CeritA = 10.6 | ceritp = 2.1 B

We perform another test, using rather difficult example presented in Fig-
ure 7. The distributions are shifted to the origin, so 0 in the figure corresponds
to the value £. Intuitively, B would be considered “better”, as this inventory
is more credible. But using the reported inventories only, they are considered
equivalent. ’

The mean of both distributions is 0 and the variance is ¢ = a?/6, where
[~a, a] is the interval, on which the distributions are nonzero: in the figure a
equals 2 for the inventory A and 1 for the inventory B. Thus, the mean and
variance method obviously prefers B. Denoting k = K/a, the semivariance is
equal to s% = a®(1 - k)*/12 for k > 0 and s = a?[1 — k3(4 — k)] for k < 0. Tt
can be simply checked that for k£ > 0 it holds s%(a) > s%(b) if a > b. The same
is true for k < 0, if k is sufficiently close to zero, see an example in Figure 7.

As to the critical probability, cor = (1 — k)2/2 for k > 0, and cpr =
(1 -2k — k?)/2 for k < 0. Thus, for k > 0 it holds cpr(b) > cpr(a) if b > a
and oppaosite, for k < 0 there is cpr(b) < cpr(a) if b > a.

Similar for risk values, we get e = a(l — \/ﬁ) for K > 0. As a <
0.5 there, then Zcrit(b) > Teri(a) for § > a. For K < 0 there is Terit
av/2(1 —a) = 1} < 0. As o > 0.5 there, then zerit(b) < zeri(a) for b > a.

1
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Fig. 8 Dependence of semivariances sg in function of X for inventories A and B from
Figure 7.

Comparison of cumulative probability functions is not decisive, see Fig-
ure 11. But almost stochastic dominance can be used with ¢ = 0.5. This
criterion points to the inventory B as the smaller one.

Concluding, decision about fulfillment of obligation, which is based on de-
terministic (reported value) comparison of an inventory with a target, does
not agree with a common sense understanding of comparison and ordering
of uncertain values within the probabilistic approach. The deterministic com-
parison also contradicts the already existing scientific knowledge on ordering
projects with stochastic uncertainty.

Alternatively, almost all of the techniques presented in this section could
be used for comparing uncertain inventories, except those, which may fail to
provide an answer, like the mean value and variance or the stochastic dom-
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Fig. 9 Dependence of critical probability cpr in function of X for inventories A and B from
Figure 7.
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Fig. 10 Dependence of critical values @i in function of a for inventories A and B from
Figure 7.

inance ones. The critical probability group seems to be particularly suitable
for this.

But practically all the methods guarantee proper ordering of inventories
only when the reported value is smaller or at most equal to the limit. In the
other case the ordering may be opposite to the expected one, see the analysis
above for two inventories with the same reported inventory values and different
variations. These problem is irrelevant in the methods like undershooting,
where only those inventories, which are smaller enough than the limit, are
considered to fulfill it, and the other are considered noncompliant.

We could, however, like to consider and order all inventories. When the
reported inventory value is greater than the limit, the proper ordering can be




Fig. 11 Cumulative probability functions cpf for inventories A and B from Figure 7.

achieved using a probability S that the inventory is smaller than the limit,
see Figure 12. Then we are convinced with the probability 1 — S that the
inventory is noncompliant. In this case there will be an indecision interval in
the inventory, see Figure 12. When K € (zfm»t, z¥ ), then we are not convinced
enough if the inventory fulfills the limit or not.
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Fig. 12 Illustration of compliance, noncompliance and the indecision interval.




The question arises what can be done when the limit falls in the indecision
interval of an inventory. It is actually quite fair to say that for these inventories
no decision can be taken with high enough confidence.

One of the answers proposed for such cases in [14,8] was to wait until one or
another exceedance occur in the inventories assessed in the consequent years.
A rough method to estimate when this may take place was also designed, called
the verification time. It is based on a linear or quadratic prognosis of future
emission trajectory. This approach requires for compliance an additional oblig-
atory undershooting so that the countries emission reductions and limitations
become detectable.

Another solution for the inventories, which can not be classified as com-
pliant or noncompliant, and which has been actually already proposed to be
used, might be to add a penalty in the next clearing time for not fulfilling the
compliance condition in the previous period. This penalty could depend on
risks of fulfilling (o) and/or not fulfilling () the limit.

3 Fuzzy set approaches

3.1 Conceptual difference

A fuzzy set is a generalization of a common, crisp set. A crisp set can be defined
by its characteristic function x 4, taking either value 0 or 1, see Figure 13. A
fuzzy set is characterized by a similar membership function pa, which takes
values from the interval [0,1]. The fuzzy sets, whose membership functions
liave values equal to 1, are called normalized. We consider here only normalized
fuzzy sets. This membership grade can have one of three interpretations [5]:
veristic, possibilistic and as truthvalues. The wveristic interpretation means,
that an element fully belongs to the set, if it has a membership grade equal to
1, it does not belong for the value equal to 0, and only "partly belongs" for the
intermediate values. In a possibilistic interpretation, the fuzzy set represents a
number of possible elements, the membership grades of each element indicates
how possible this event is: ranging from a value of 0 if it is impossible, over
values between 0 and 1 if it is somewhat possible, to a value of 1 if it is perfectly
possible, As such, the fuzzy set describes imprecision and can be compared to
the probability density function. However, it’s normalization condition is less
strict that in probability theory: the constraint now is that the highest value
must be 1 (this implies that there must be at least one element that is perfectly
possible). The difference in normalization also implies different algebra rules.
The use of membership grades as truthuvalues is an extension of boolean logic:
1 is considered to represent true, O represents false and intermediate values
express a partial truth. This can be used when evaluating statements: saying
that 90 is a big nuinber can be considered only partly true.

A fuzzy numnber is a fuzzy set in the numerical domain R that satisfies a
number of criteria (there is some discussion as to which criteria are absolutely
necessary ), for more details we refer to [19,31).
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Fig. 13 The characteristic function x4 and a membership functions p4 of a set A.

A fuzzy set can be fully characterized by a family of so called a-cuts denoted
by Ag, i. e. points u, for which the value p4{u) assumes at least the value
o, see Figure 13, where an example of a a-cut for o = 0.5 is depicted and
denoted Ag 5. Let us notice here that now « has another meaning than in the
probabilistic part. The problem is that both the notion of o as the probability
of not fulfilling the target and the notion of a-cut in the fuzzy set research
area are commonly used. To solve this overlap, in this section of the paper we
switch to using 7 (instead of &) for the measure of that part of distribution
where the target is not satisfied (that is the probability of not fulfilling the
target in the probabilistic approach).

Two additional notions connected with a fuzzy set are worth to mention.
One is the support, called supp A, which is the set of points u, for which the
membership function is strictly positive. The second notion is the core of the
fuzzy set, called core A, which is the set of points, for which the membership
function is equal to 1.

Fuzzy set and posibilistic models of uncertainty can be considered as a com-
petitive approach to the probabilistic one, described above. A few arguments
can be given in favour of this approach. There are a number of interpretations
of probability theory, we will only consider the ones related to the current
context; for an overview we refer to [10]. First, the probabilistic approach is
intrinsically related to the frequency of variable appearance (frequentist ap-
proach, [27]), while it is hardly possible to have frequent inventories at the
same year. The use of the probability as degree of belief has been proposed in
[24], but [18] showed that many people do not adhere to the probability calcu-
lus in this interpretation. Second, in the fuzzy set approach determination of
the distribution is much more flexible. The distributions can be freely shaped
and do not need to follow any known probabilistic distributions to be practi-
cally useful. For example, they can be estimates given by experts. Uncertainty
of emission inventories often have an expert-quantified character, even if the
Monte Carlo simulation is used to estimate its distribution. Third, the algebra
in the fuzzy set approach is simpler, in the sense that for complicated prob-
letns more often it is possible to get a final analytic solution using the fuzzy
approach than using the probabilistic one, see e. g. [22,21]. As in the case of
inventories the data is often obtained through a mixture of statistical methods




and corrections, interpretations and estimates by experts who express some
belief and label the data accordingly, fuzzy set theory may be well suited for
the analysis of compliance.

The fuzzy sets have been used in the undershooting technique [21] to calcu-
late the difference z. — pzp. But their role was only instrumental there, as the
rest of the technique was close to the idea used in probabilistic CP technique.

Regardless on how the data is processed, fuzzy set theory can inspire us for
other aspects. In fuzzy set theory, the ranking of fuzzy (or inaccurate) values is
a common problem to which different solutions have been proposed. And just
as there are issues with the ranking of the inventories (Fig. 2), similar issues
occur with the ranking of fuzzy numbers as illustrated on Fig. 21. Ignoring
conceptual differences, there are sufficient similarities to warrant investigating
how the possibilistic ranking methods hold up against the other methods. In
the following sections we will briefly present some of the textbook cases of
ranking methods in possibility theory and see how different cases appear in
the different ranking methods.

In the following subsections, we will list four conceptually different groups
of methods that are used to rank fuzzy numbers. Some of these methods
resemble those from the probabilistic approaches, other use quite different
paradigms. These methods were chosen to illustrate that various approaches
can be used to tackle the ranking problem.

3.2 On the underlying assumptions

Most of the fuzzy ranking methods have been developed for fuzzy sets over the
domain [0,1]. The main reason for this is that there are some specific advan-
tages in developing ranking methods (e.g. integrals over the domain cannot
yield a result greater than 1. For the application of the methods in ranking
different inventories, the methods could be modified to suit a different do-
main. This is possible for all the methods, but may complicate the formulas
somewhat. To keep the formulas simple and to remain true to the original
definitions, it was chosen not to do this. An alternative option would be to
rescale the domain of the inventories to the interval [0, 1] to allow for a direct
application of the methods. If the supports of the fuzzy number is finite, as we
assume here, and in the original support z € [I, 7], the new variable is defined
asz=(z—1)/(r=1).

The ranking methods below are ranking methods in the sense that they put
an ordering on at least two fuzzy numbers. Some authors have chosen to rank
from lowest to highest, others rank from highest to lowest. The concept of this
article is to present different methods and how difficult cases are distinguished
differently. As such, these are minor details that can easily be overcome and
should not deter from the message.

There were quite a number of different techniques proposed for ranking
fuzzy sets. Not all are mentioned below. Some of those not mentioned can be
found in a review paper [3].



3.3 An analogue to moments

Yager F1. In [30], the author presents three different ranking methods. They
are pure ranking methods in the sense that a number is derived for every
element. The number is independent of the other elements in the set. A weight
function g is introduced to add weights to the fuzzy set A. This basically allows
us to specify which values are more important, based on their possibility.
Common weight functions are either g(z) = 1 (reflecting that all possible
values are equally important) and g(z) = z (indicating that the higher the
possibility of a value, the more important it is and the more it will contribute
to determine the rank).

AM
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Fig. 14 F1 ranking function proposed by Yager.
The first ranking function is defined as follows:

Jo 9(z)pa(z)dz )

F(A) =
14) [T ua(z)dz

If the weight function ¢g(z) = z is used, then F} represents the mean value of
the membership function, called usually the center of gravity of the fuzzy set.
This is illustrated in Figure 14. Note that if the weight function g(z) =1 is
used; no ranking conclusions could be drawn: F} would result in 1 for every
fuzzy set.

When g(z) = z, this technique can be compared with the mean value tech-
nique in the probabilistic approach. The ranking function may be defined in a
more general way, and one option could be to take g{z) = [z - (A)|g(,)=1]2,
analogous to the variance. Also an analog of semivariance could be defined
here, which shows similarity of this fuzzy approach technique with the proba-
bilistic one.




3.4 Analogues to critical values

Nahorski et al. A strict analogue to a critical value technique in probabilistic
approach has been proposed in Nahorski et al. [23,22,21]. To get an analogue
to probability, which defines the critical value, the corresponding area is nor-
malized there by dividing it by the area under the membership function, as in
Figure 5. This approach assumes a rather precise knowledge of the membership

function.
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Fig. 15 Dermination of the critical value 2;ri¢ in the Nahorski et al. (calculation of the
n-th part of the distribution area) and Adamo (calculation of the a-cut) techniques.

Adamo. On the other hand, Adamo {1] proposed to consider points satisfying
pa(z) = a, 0 < a <1, and choose the highest value of z as a ranking criterion.
In another wording, the criterion value is the most right value of the a-cut
of the fuzzy number 4. The critical value depends now on the choice of a,
but in this case it has clear fuzzy set interpretation connected with the a-cut.
This idea may be compared with the one by Nahorski et al. [22,21], where the
critical area has a more probabilistic origin, while that of Adamo has a more
fuzzy set flavour, see Figure 15. No doubt, for a given membership function
both techniques can be related by mathematical expressions.

These techniques can be simply used for derivation of criterions for checking
fulfillment od the limit, analogously to the ones which stem from the similar
probabilistic approaches.

Yager F2. The second ranking function introduced by Yager [30] compares
the given fuzzy set A to the linear fuzzy set B, defined by pg(z) = z. The
second ranking function is then defined as follows:

Fy(4) = maxmin(z, pa(2)) @

Here, S represents the support of the fuzzy set A; in our case assumed to be
the interval [0,1]. Graphically, this yields the intersection point between the
linear fuzzy set (up(z) = z) and the given fuzzy set where the possibility is
the highest. This is illustrated in Figure 16.




Fig. 16 F2 ranking function proposed by Yager.

This rating function has simple interpretation. The fuzzy set with the mem-
bership function up(z) = z may be interpreted as representing a variable
"high". The membership function min(z, p4(z)) represents a variable, which
is a conjunction of A and B, i.e. the points, which belong both to the variable
"high" and A. In other wording, it represents distribution of the possibility
that A is "high". Its maximal point satisfies these two requirements in the
“best” way.

The membership function of the variable "high" may be shaped in a differ-
ent way. Jain [13] proposed more general set of functions xp(z) = (2/2mez)¥,
k > 02. In this case the result of comparison of fuzzy numbers may, however,
strongly depend on the choice of k, and no clear criteria exist, which value of
k should be chosen.

Apart of ranking the fuzzy numbers, the critical values could be used to
check fulfillment of obligations, analogously to the stochastic approach. The
simplest would be strict comparison of Fp with K. However, the construc-
tions proposed here are of a rather subjective character, difficult to interpret
physically, and therefore their use may be limited.

Yager F3. The third ranking function defined by Yager |30] is more complex
than the Yager’s first and second ranking functions to explain using formulae,
although it is simple to interpret geometrically. It is defined as

Fy(A) = /0 T (Ag)de (5)

with A, the a-cuts of A, @, is the highest occurring possibility in the fuzzy
set A%, and m is the middle point of the a-cut. The formula is relatively easy to
grasp graphically: the index is the surface area to the left of the line that runs
exactly along the middle of the fuzzy number. For triangular fuzzy numbers,
this connects the top of the fuzzy number (i.e. where the possibility is one)

2 With assumptions taken in this section zmaz = 1
3 For the normalized sets, as are assumed in this paper, &maz =1



with the middle of the support. This is represented by the shaded area in
Figure 17.

Fig. 17 F3 ranking function proposed by Yager.

This ranking index can be directly used to checking satisfaction of the limit.
For this let us notice that F3(A) is the mean value of the function m(A;), in
which « is the argument. This is because 0 < « < 1, so for the triangular
membership functions F3(A) = fol m(Ag)da = m(Ags). Thus, in this case
F3(A) is equal to the middle value of the 0.5-cut of the fuzzy number A. For
other membership functions the integral will be equal to the middle value of
the same or another a-cut. In any case, this index is closely related with an
a-cut, where an appropriate « is determined by the shape of the membership
function. This makes this approach a little similar to the Adamo method, with
differently determined critical value at the middle of the a-cut instead at the
right end. This interpretation encouraged us to classify this technique within
the critical values group.

3.5 Fuzzy dominance

Dubois and Prade. In spite of a similar name, the fuzzy dominance tech-
niques proposed up to now in the literature, differ completely in spirit from
the stochastic dominance ones, presented in subsection 2.4. It is important
to remember here that we use the normalized fuzzy numbers on the domain
rescaled to the interval [0, 1]. The results of this subsection may be not true,
if the normalization or rescaling is not done beforehand.

To compare fuzzy numbers using the fuzzy dominance approach, possibility
and necessity measures can be used, as introduced by Dubois and Prade [4],
see also [11]. A normalized fuzzy set with a membership function p(2) induces
on the interval [0,1] a possibility distribution 7(z) = p(z). For simplicity, we
refer to defined this way possibility distribution as p(z). Given a possibility




distribution, the possibility measure of a subset Z € U = [0, 1] is defined as

Poss(Z) = sup u(z)
z€Z
It can be interpreted as a degree of possibility that an element is located
in the set Z, see an interpretation in Figure 18. Let us notice that using
a characteristic function xz(z) of the set Z, the possibility measure can be
equivalently defined as

Poss(Z) = sup min{u(z), xz(z)}
2€[0,1)

Let us notice that when Z = [r, 1], then the above index can be interpreted as
a measure that an element z is not smaller than r, ie. r < z.

Comparing these notions to the probabilistic ones, the possibility distribu-
tion corresponds to the probabilistic distribution, and the possibility measure
Poss(Z) corresponds to the probability of the subset Z.
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Fig. 18 Illustration of possibility and necessity measures for a crisp set Z.

However, in the possibility theory an additional measure is introduced,
called the necessity measure. It is defined as

Nec(Z) = 1 — Poss(Z)

where Z is the complementary set of Z in [0,1], see Figure 18. It can be
interpreted as a degree that an element is located necessarily in the set Z.
Similarly as in the possibility case, an equivalent definition may be

Nec(Z) =1~ sup min{u(e),xz} = inf max{l - u(z),xz(2)}
2€[0,1) z€[0,1]

A simple property, which can easily observed in the Figure 18, holds

Nec(Z) < Poss(Z)




which may be interpreted that the measures give lower and upper bounds on
uncertainty connected with localization of an element in the set Z. The lower
one, necessity, is the degree, in the range [0, 1], of our conviction that the point
is in the set Z. The higher one, possibility, is the degree of our supposition.

Now, taking a fuzzy sets Z instead of a crisp one, the characteristic function
xz(z) is replaced by the membership function uz(z), providing the following
definitions

Poss(Z) = sup min{u(z), nz(2)}
z€(0,1]

Neo(Z) = 1- sup min{u(z),uz} = inf max{l - u(z), uz(2)}

2€[0,1] z€[0,1]
where the membership function of the complementary set of Z is given by
pz(z) =1—pz(z).
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Fig. 19 Illustration of possibility and necessity measures for a fuzzy set Z.

Having introduced the above notions we can pass to defining fuzzy dom-
inance indices. To calculate the possibility and necessity indices, the mem-
bership functions are analyzed on the two-dimensional plane (z,y), and more
specifically either on the upper right or the bottom left half of the square
[0,1] % [0,1}, compare Figure 20. This is analogous to consideration of two-
dimensional probability density function for independent variables. To com-
pare two fuzzy numbers, one of them, say B, is taken as a reference one. Its
membership function plays a role of a reference possibility distribution. The
dominance of a fuzzy set A over B is denoted below as A > B, and strict
dominance as A > B.

The possibility of dominance (PD) index of a fuzzy set A over a fuzzy set
B is defined as

PD = Poss (A = B) = SUP, yiz>y min {#A (Z) YHUB (y)} (6)

The index PD is a measure of possibility that the fuzzy numbers A is greater
than B, or that the set A dominates the set B. This index has been first




proposed by Baas and Kwakernaak {2]. A probabilistic analogue of this index
would be probability that A > B. This index has to be analyzed on the plane
(2,y) in the upper right half of the square [0, 1] x [0, 1], see Figure 20, where
the projection on the function min{t4(z), ug(z) on the square is drawn, with
the membership functions pa(z) and pg(y) drawn on the axis. The highest
value of this function (equal to 1) is located in the area y > z (at the point
marked with e), while the value PD < 1 is located on the boundary of the
upper half of the square, at the point marked with o. It is now easy to notice
that the value PD can be calculated as presented in Figure 21.
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Fig. 21 Calculation of the PD index on a line.




Analyzing the way the value PD is calculated, and using notation from
Figure 13, it is seen that

Poss(A> B)=1ifmy >mp
Poss(A > B) =0if ma +pra <mp +pi8

Just, the possibility of dominance index PD is equal to 0, if any point of the
support of A is smaller than any point of the support of B. If the supports
overlap, PD > 0. If the core of A is greater or equal to the core of B, then

PD=1.

0 mMA mpg 1

Fig. 22 Calculation of the PSD index.

The possibility of strict dominance {(PSD) index for a fuzzy set A over a
fuzzy set B is defined as

PSD = Poss (A > B) = sup, infy y», min {z4(2),1 — pa(y)} (7)

where p4 (2) and pp (y) are the membership functions of A and B, respec-
tively. Analysis of the function on the two dimensional square brings us on the
situation depicted in Figure 22. Now we have

Poss(4 > B)=1ifma > mp +prp

Poss(A > B)=0ifma +prp > mp

The possibility of strict dominance index is therefore equal to 0, when the
support of A is to the left of the core of B. It is positive in the opposite
case. It equals 1, if the support of B is to the left of the core of A. Just, the
membership function of A has to be more shifted to the right to get the same
value of the index require as in the possibility of dominance case.

The necessity of dominance (ND) index of a fuzzy set A over a fuzzy set
B is defined as

ND = Nec (A = B) = inf, sup, , ., max {1 — pa(2), up(y)} (8)
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Fig. 23 Calculation of the ND index.

Similarly to the previous analyses, calculation of this index reduces to analysis
of the situation presented in Figure 23. It yields

Nec(Az B)=1ifma—pia 2mp
Nec(A > B)=0if myg < mp —~ pi5
Thus, the necessity of dominance index equals 0 when the core of A is to the

left of the support of B. It is positive in the opposite case. It is equal to 1, if
the support of A is situated to the right of the core of B.
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Fig. 24 Calculation of the NSD index.

The necessity of strict dominance (NSD) index of a fuzzy set A over a
fuzzy set B is defined as

NSD = Nec(4 > B) = inf; y;y<. max(l — p4(2),1 — pa(y))
=1=5up, <, min{ua (2), 08 (y)} =1 — Poss(B = A)

(9)




This index is the opposite to the measure of possibility that the set B domi-
nates the set A. This index has been first proposed by Watson et al. [28]. The
analysis of the index reduces to analysis of the situation presented in Figure 24.
There is

Nec(A = B) =1if mg —pia > mp +prp

Nec(A» B)=0ifmy <mp

pa(2), pa(2)

Fig. 25 A test case for ordering of two difficult distributions.

In order to further examine the method let us now consider a difficult
ordering of two fuzzy numbers with distributions depicted in Figure 25. Simple
inspection provides the following results

Poss(A = By =Poss(B = Ay =1

and therefore

Nec(A > B) =Nec(B > A) =0

Thus, both the possibility and necessity of strict dominance indices do not
distinguish these fuzzy numbers. With the other indices, we get

Poss(A » B) < Poss(B » A)

and
Nec(A = B) > Nec(B = A)

Thus, the possibility of strict dominance index suggests rather B, while the
necessity of dominance index rather A, as the "greater" number. This is con-
nected with considering in calculation the right or left slopes of the distribu-
tions, respectively.

The Duboit and Prade approach does not prioritize the fuzzy sets itself,
like earlier techniques. It answers the question of the degree of possibility or
necessity of dominance of a chosen set by another one; it allows for week (soft)



comparing of a set against one or more other sets rather than assigning a
rank to each set. Thus, comparison of these inventories might give a rather
indecisive answer. Similarly as in the undershooting technique, some critical
values should be set for making decision on dominance. Moreover, it should
be remembered that the indices will not necessary provide consistent results.
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Fig. 26 Galculation of the indices for the crisp limits.

An interesting question is, if these techniques can be used for assessing
satisfaction of the limit. For this, the limit can be interpreted as a crisp value,
that is a fuzzy variable with the membership function

_flifz=1L
“”““{ouz¢i

where L is the rescaled value of the limit L. In these cases PD = PSD and
ND = NSD, so we can say here only on necessity N and possibility P indices.
In Figure 26 two cases are depicted: the limit higher than m,, and the limit
smaller than m4. In the former case P > 0 and V = 0. In the latter P =1
and N > 0. We see that using the necessity indices is equivalent to the Adamo
method with N = 1 — a. The possibility indices give an information on a
degree of not achieving the limit (recall that the limit is achieved here when A
is greater than B), which could be used in inferring noncompliant inventories.

Actually, the situation here is fully analogous to the one presented in Fig-
ure 12. Fixing necessity N and possibility P indices we arrive again to the
notion of indecision interval, where neither necessity nor possibility of the
limit satisfaction is high enough.

Application of the Duboit and Prade method gives useful information on
fulfilling the limit. However, analysis of the memberships functions on the
plane is rather cumbersome. Simple interpretations on the lines could help
in this. Necessity indices give practically the same information as in Adamo




and Nahorski at al. method. Possibility indices can possibly be applied in
quantifying noncompliance.

3.6 Other approaches

Tran and Duckstein. The authors in [26] first defined a distance measure-
ment between fuzzy sets. From this distance measurement, a ranking method
was derived. The concept is that for a given set of elements that need to be
ranked, the smallest and largest possible (crisp) values, respectively, denoted
Min and Maz are used as predetermined targets. The distance to each of
them (Dmin and Dmay) is calculated for each element to be ranked. Note that
depending on the shape of the fuzzy set, a greater distance to Dpi, does not
imply a smaller distance to Dpyax and vice versa. Both distances are then used
to rank the fuzzy sets: an element is ranked higher if its distance to Dpax is
smallest but its distance to D, is greatest.

When ranking a number of fuzzy sets, the minimum reference target is
defined to be the smallest (crisp) value that is possible in any of the fuzzy
sets.

I
Min(I) < inf((_J Si) (10)
i=1
Here, I is the set of fuzzy sets A; that are ranked and S; is the support of the
fuzzy set A;, i.e. the set of values where 114, > 0. In practise, Min(l) will be
defined by as being equal to the smallest value of all the supports of the fuzzy
sets considered.
The maximum reference target is similarly defined to be the largest possible
crisp value of all elements to be ranked:
I
Maz(l) > sup(U Si) (11)

i=1

The notations are similar to before. In practise, Maz(I) will be defined by as
being equal to the greatest value of all the supports of the fuzzy sets considered.

Similar to the approaches of Yager, a weight function g is used. This method
is mainly developed for triangular fuzzy numbers (one single core point and
a linear function to the left and to the right of it to model the decrease of
possibility - the graph resembles a triangle) and trapezoidal fuzzy numbers
(an interval where the core is 1 and a linear function to the left and to the
right to model the decrease of possibility - the graph resembles a trapezoid).
The latter are not considered here. For triangular fuzzy numbers, the ranking
functions (squares of distances) are defined as [26]%:

D2(A, M, 2) = (a3 — M)? + %(a2 — M)((ag + a1) — 2a3)+

4 The formulas here differ from the formulas in Table 2 in [26]; the author confirmed there
was a typographic error in that particular reference and sent us corrected versions - these
have not been published elsewhere.




gl — 0l + (@ - a)) - @ - a)e—a)) (1)

for weighting function g(z) = z and

DA, M,1) = (az — M) + %(a2 - M)((as + a1) — 2a2)+

5@ - @+ @ -a)) - S(@-a)e—a) 1)

for weighting function g(z) = 1.

In these formulas, a;, ez and az define the triangular fuzzy set: a; < az <
a3, pu;(@1) = by, {az) = 0 and py, (a2)=1. M can either be Min or Maxz.
Thus, Dmes = D{(A, Maz, z) of Dmaz = D(A, Mag,1). Similar for Dpgin.

This technique has been designed directly for comparison of fuzzy numbers
and it is rather difficult to adapt it to checking satisfaction of a limit, which
will be typically lying within the support range.

3.7 Examples and resumé of fuzzy approaches

In this section, the different ranking methods will be compared to verify how
the ranking of different special cases differ. For the example, triangular fuzzy
numbers in the domain [0, 1] will be used.

Same support, different core First, we consider two fuzzy numbers that have
the same support, but a different core as shown in Figure 27.

Fig. 27 Two fuzzy sets with the same support and a different core. The numerical ranking
values are shown in Table 2.

Table 2 Same support, different core; with Yager ranking functions.

ay a2 a3 F1 F2 F3
A; 03 04 07047 054 045
A 03 06 07 ]053 063 055




Table 3 Same support, different core; with Tran-Duckstein distance functions (Min = 0.3,
Maz = 0.7).

a1  ax a3 | D(A,Maz,z) D(A,Min,z) D(A,Maz,1) D(A,Min,1)
Ay 03 04 07 0.27 0.14 0.26 0.17
A, 03 06 0.7 0.14 0.27 0.17 0.26

Intuitively, people would state that Az > A;. This ranking is also observed
by the Yager’s ranking methods (F1, F2 and F3) as shown on table 2. Using
the Dy and Dpax values as described in subsection 3.6 — highest ranked has
smallest Doy and largest Dy, — also yields the same conclusion as Table 3
indicates (the reference values for Min and Max were: Min=0.3, Max=0.7).

Same core, different support When the core of the different fuzzy numbers is
the same, but the supports are different, the numbers become quite a lot more
difficult to classify. The examples are illustrated in Figure 28.

Fig. 28 Four fuzzy sets with the same core but different supports. The numerical ranking
values are shown in Table 4.

Consider the example from Table 4. The table lists both the numeric data
for the fuzzy sets used, as well as the rankings provided by the three Yager
ranking methods. Intuitively, people can agree that By < B) and that B <

Table 4 Same core, different support; with Yager ranking functions

ay az as F1 F2 F3
By 03 05 0.7 0.5 0.59 0.5
By 02 05 0.7 |047 058 048
B; 02 05 06043 054 045
By 02 05 08 0.5 0.61 0.5

Bj; we also see that B3 < Bz. The problems start when comparing B; with
By. The latter has nonzero possibility distribution for smaller values than
Bi, so following the same reasoning as for Bg, it should be smaller. Yet it




Table 5 Same core, different support; Tran-Duckstein distance functions D? (Min = 0.2,

Maz = 0.8).
a1 ey a3 | D(B,Maz,z) D(B,Min,z) D(B,Maz,1) D(B,Min,1)
B, 03 05 07 0.304 0.304 0.307 0.307
B; 02 05 0.7 0.322 0.290 0.336 0.288
Bz 02 05 06 0.337 0.272 0.357 0.260
By 02 05 0.8 0.308 0.308 0.316 0.316

also has nonzero possibility distribution for bigger values, so it should also be
bigger. Many people would say that both are more or less equal; depending
on the use and application, B; could be preferred as its shows less uncertainty
(smaller range in which the values can occur), and thus greater credibility.
The results for Yager’s ranking functions are shown in Table 4. For By, By
and Bj, it clearly yields the same results as the intuitive ranking. While B, is
considered equal to By in the ranking methods F1 and F3, F2 shows a minor
difference, indicating that By > B,. This is rather counter-intuitive, as there
is more uncertainty about By, but it is obvious from the ranking index that
the difference is very small.

When using the ranking methods proposed by Tran and Duckstein (3.6),
we see that By < Bj, that By < B) and that B3 < B;. Comparing B, with
By is a problem: By has larger Dpnax value, but does not have smaller Dy,
value. The authors propose to leave this issue to the decision maker, indicating
the numeric values. A risk prone person may prefer values that can be closer
to Dpnin Whereas a risk averse person may desire values closer to Dpax. While
this method — unlike the previous one —~ does not yield a value that allows to
make a decision between the two values, it allows for a decision maker to have
additional information which might help him decide. In the situation of the
inventories, this allows us to prefer B; as it has less uncertainty.

In the fuzzy approach it is possible to formulate the problem with only a
rather vague information on the inventories uncertainty. The price payed for
it is only a week statements on ranking, either much less precise than in the
stochastic approach, or indecisive, providing only some indices on possibility or
necessity. They would require to set some critical values for making decisions.
This is, however, more difficult than in the stoclastic case, as intuition on the
meaning of these indices is much smaller. Moreover, the indices, like in the
fuzzy dominance techniques, may be difficult to be calculated by a computer.
For some techniques it is not clear how to check compliance using the idea of
ranking used in them.

In some fuzzy sets methods positions of the reported (core) values decide on
the primary comparison and only additional indices can indicate, how strong is
this conjecture. This is particularly evident in the fuzzy dominance techniques.

Most of the fuzzy techniques require more investigations to elaborate the
methods useful for applications.




4 Conclusions

This paper focuses on a presentation of the methods for ranking uncertain
values, with application to comparison of uncertain emission inventories and
posibility to use the techniques proposed in checking satisfaction of the given
limit emission. The review shows a variety of approaches and techniques. Not
all of them can be immediately used in analysis of inventories; some other
are rather complicated or give no decisive answer. However, they clearly show
that the comparison of the reported inventories, without taking into account
its uncertainty distribution, leads to paradoxes and is not well grounded scien-
tifically. There are many possibilities to choose a method for deciding, which
inventory satisfies the limit, and which not, consistent with ordering or rank-
ing of the inventories. Some of them, like e.g. the undershooting method, has
been proposed earlier for this purpose [7,23], see also [16], and adapted to be
used in trading of emissions, see additionally [22,21]. But any use of techniques
outlined in this paper or other, which take uncertainty into account, inevitably
necessitates changing the presently used rules of checking compliance, which
depend only on comparison of the reported inventories. Ignoring uncertainty
is more hazardous to the final result for asymmetric uncertainty distribution,
which may happen in many national inventories, as well as when inventories
with quite different uncertainty distributions are compared, as in the case of
emissions from different activities.

In spite of basic conceptual differences between the probabilistic and fuzzy
approaches, many techniques of comparison of uncertain values are quite alike.
Among them the risk methods in probabilistic approaches and fuzzy domi-
nance provide similar techniques of checking compliance, with actually small
technical differences in terminology and decision parameters. Although this pa-
per has not been intended on a thorough comparison of usefulness of the tech-
niques presented in checking compliance, these techniques look to be preferable
for closer examination.
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