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Abstract 

This paper aims to contribute to comparing gridded inventories of at­
mospheric emissions with different resolution. We propose a hierarchi­
cal Bayesian model with high resolution emission assessments treated 
as dependent variable, and spatially explicit activity data treated as 
covariates. The results of our example suggest excluding from further 
analysis two initially considered covariates, and indicate existence of 
another spatially correlated factor. The point of the contribution is 
that including spacial scale helps to improve emission inventories. 

Keywords: conditionally autoregressive model; emission data; hier­
archical Bayes; spatial emissions 

1 lntroduction 

The contribution is focused on a spatial aspect of inventories for atmospheric 
pollutants. This perspective is motivated with situations when two kinds of 
inventories for the same area and for the same pollutant are available: based 
on a bottom-up and top-down procedures. Although all inventories can have 
features of both bottom-up, and of top-down type; the main difference is the 
following. The bottom-up procedure of inventory provides detailed (high 
resolution) information on source types, locations and ernissions. On the 
other hand, a top-down inventory procedure generally provides low spatial 
resolution. When activity data (e.g. land use , vehicle or other) are avail­
able, a top-down inventory is spatially distributed, using these statistics and 
appropriate ernission factors. The idea is then to compare this map with a 
reference inventory based on a bottom-up procedure, and try to conclude 
on the relevance of activity data used for disaggregation. 

This kind of analysis has been already performed in some studies. Specif­
ically, we were motivated with the paper of Winiwarter et al., 2003. In this 



paper two sets of data on NOx (Nitrogen oxides) emissions over the same 
spatial grid for the Greater Athens, Greece were compared. While the au­
thors formulate their conclusions mainly based on a visual comparison of 
maps, we would like to provide a quantitative approach. 

When performing statistical inference of spatial inventory data we ac­
count for the fact that values at proximate locations tend to be more alike, 
which motivate use of spatial statistics. Secondly, since for each grid cell we 
have information on aggregated emission values, these are areał data. A pop­
ular tool for incorporating this kind of spatial information is conditionally 
autoregressive (CAR) model developed by Besag, 1974. 

The aim of the present paper is to explore the usefulness of CAR model 
to analyse data from spatially explicit emission inventory. The outline of the 
study is the following. Section 2 presents our illustrative data set. Bayesian 
model for emission data is described in Section 3. Results of the analysis 
are contained in Section 4, and Section 5 concludes. 

2 Initial exploration of the data 

Our illustration is provided by data on CO2 emissions (in tones) reported 
in municipalities of southern Norway (see Figure 1). The data come from 
StatBank in Statistics Norway (available at http:/ /1,1w. ssb. no). The map 
comprises 259 municipalities. We use a log transformation on the emission 
data to ensure a constant variance. For each municipality three kinds of 
covariate information are available (Figure 2). Covariates are also log trans­
formed for further analysis. Let us then denote: Yi - (log) CO2 emissions 
(in tones), Xi,! - (log) total area (in km2), Xi, 2 - (log) population, xi,3 - (log) 
area covered by roads (in km2), i = 1, ... , 259 are numbered spatial cells. 
An initial linear regression model 

Yi = /3o + .B1xi,I + J32xi,2 + /33xi,3 + Ei i= 1, ... , 259 

was considered. It showed that each covariate is significant (for each param­
eter coefficient p-value was !ower than 2E(-10)), and coefficient of determi­
nation was R2 = 0.87. 

Resid uals of the linear regression were checked for spatial correlation 
using Moran's I statistic: 

I= n Li Lj Wij(Ei - ,)(,j - i') 

Li Lj Wij L,(,i - ,) 2 

where Ei - a residual of linear regression in a.rea i 1 € - mea.n of residua.Is, Wij 

- adjacency weights (Wij = 1 if j is a neighbour of i, and O otherwise, also 
Wii = O). Under a null hypothesis where ,, are independent and identically 
distributed, I is asymptotically normally distributed, with the mean and 
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variance defined, see e.g. Banerjee et.al. 2004, Kopczewska, 2006. In our 
case the test statistic (standardized Moran's I) is equal z = 4.65 (zer = 2.33 
at the significance level a = O.Ol), which suggests evidence against a null 
hypothesis of no spatial correlation of errors. Moran's I is, however, rec­
ommended just as an exploratory information on spatial association, rather 
than a measure of spatial significance. 

3 Modelling spatial correlation 

In this section, we develop a Bayesian model to characterize the spatial 
distribution of CO2 emissions in municipalities. We first model the data. 
Let Y; denote stochastic variable associated with the response of interest 
(inventory data) defined with high resolution at each spatial location i for 
i = 1, ... , n and Y = (Y1, ... , Yn)'. It is assumed that the random variables 
Y; follow norma! distribution with mean µ, and common variance cr2. Let 
the mean µ = (µ1, ... , µn)' be such that µ = X/3 + 0. Then 

Y~N(X/3+0,E) (1) 

where Eis a diagonal n x n matrix with elements cr2. X is the n x (k + 
1) matrix containing explanatory covariates and a vector of ls in the first 
column for the intercept . f3 is a (k + 1) x 1 vector of coefficients. 0 is a 
vector of correlated random variables. Thus, conditionally on the parameters 
{3, 0, cr2, stochastic variables Y; are independent. 

Next we describe the random component 0 = (01 , ... , 0n)- Correlation of 
variables 0, allows us to model spatial dependence between the variables Y;. 
Since the data from inventories are aggregated for each grid cell and available 
on a discrete space, we make use of a conditionally autoregressive (CAR) 
model, which is based on a (space) Markov property. The CAR model is 
given through specification of full conditional distribution functions: 

(2) 

with N, being a set of neighbours of area i, wi+ being a number of neighbours 
of area i and r 2 is a variance parameter. Conditional expected value of 0, 
is the average with fixed values of those variables 01 which are neighbours 
of site i. Conditional variance is inversely proportional to the number of 
neighbours wi+. 

Given (2), the joint probability distribution of 0 is the following (Baner­
jee et al., 2004; Cressie, 1993) 

(3) 
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where D is n x n diagonal matrix with W;+ elements on the diagonal and 
W is n x n matrix with adjacency weights Wij· Equivalently, (3) may be 
rewritten as 

p(0) ex exp [- 2~2 ł;; Wij(0i - 0j) 2] (4) 

Estimation of unknown parameters (3, 0, a 2 , r 2 is clone with the Bayesian 
approach. The joint posterior distribution of these parameters is propor­
tional to the product of the likelihood function associated with Equation 
(1); the distribution for spatial random component 0 in Equation (3); and 
specified prior distributions for the remaining parameters. Improper uni­
form distributions are employed for each of the f3 parameters. The inverse 
variance parameters 1/a2 and 1/r2 are assumed Gamma(0.01, O.Ol) distri­
bution, where Gamma(a, b) distribution is parametrized with mean equal to 
a/b. 

Combination of all model assumptions allows to derive full conditionals 
for all of the pru·ameters in a closed-form. The full conditional distribu­
tions for our model can be found in the Appendix. Gibbs sampling is used 
to update all parameters. Calculations were accomplished both using the 
WinBUGS package (Lunn et al., 2000) and writing our own function in R 

(ww .r-project. org). 

4 Results 

Spatial CAR models have been applied to the Norway emission data. Using 
DIC statistics (Spiegelhalter et al., 2002) we compare various combinations 
of covariate data between the spatial and linear regression models (see Table 
1). Fit measures D and effective number of parameters PD (a measure of 
complexity) are also displayed in Table l. 

[Table 1) 
We note that the best result (DIC=108) is obtained for two spatial mod­

els: the one with two covru-iate information CAR(x1, x3); and the one only 
with information on the area covered by roads CAR(x3). This means that 
covariate data on area x 1 does not acid any meaningful information, and 
so CAR"', x3) model should be chosen for further analysis. This model 
outperforms among others the CAR model with all the covariates. In case 
of a simple linear regression the situation was the opposite - we got better 
results including all the three covariates. We conclude that there exists a 
missing, spatially correlated variable contributing to overall emissions much 
better than the initial variables x 1, x2. Table 1 shows also results for other 
combinations of covariate data. For instance for CAR (x 1 , x2) model, we 
have less parameters compared with the case of three covariates and thus 
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!ower complexity (PD= 65), on the other hand the model fit is much worse 
(D = 782). 

Parameter estimates for three chosen mod eis are show n in Table 2. Com­
paring results for model CAR (x1, x2, x3) with results for linear regression, 
we see that although the 95% confidence (bayesian) intervals for (31 and (32 

does not include zero, their values moved towards zero considerably. On the 
other hand, estimate of /33 remained almost the same. It generally confirms 
our previous conclusion. 

[Table 2] 
Maps of posterior mean for two CAR models are shown on Figure 3. 

It can be noticed that model CAR (x3) maps the original data (Figure 1) 
slightly better than the model CAR (x 1,x2,x3). 

[Figure 3] 

5 Concluding remarks 

We have showu the application of spatial conditionally autoregressive model 
to examine influence of activity data towards independent, bottom-up in­
ventory. Our results suggest excluding from further analysis two initially 
considered covariates, and indicate existence of another, spatially correlated 
factor. Generally, such situation - that we get better results just for a subset 
of covariates plus a spatial component - is not unusual. The point of this 
contribution was to make use of this approach for comparison of inventory 
data. 

It should be noted that our exercise is to some extend illustrative and 
in a more realistic application more informative results could be obtained. 
For example, a potentially problematic part of inventory are emission point 
sources (plants), which are correctly reported in a bottom-up approach but 
are missing in datasets with activity information (Winiwarter, 2007). The 
proposed method seems to be capable to identify such cases. 

Trying to extend this model little further, one may think of the case 
where CAR prior is used for parameter coefficients fJ. This approach might 
be useful when considering space-varying emission factors. These models are 
mentioned for instance in Gamerman and Lopes, 2006, while Gamerman et 
al., 2003 provide computational details for sampling schemes in a relevant 
MCMC algorithm. 

Appendix: MCMC Algorithm 

Below we present full conditional distributions for the model. The con­
ditional distribution for some parameter vector Z given all other random 
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quantities is denoted [Zł,]. 

[/31·) ~ N ((X'X)-1 X~~y - 0), (X';;,iIX)- 1) 

[BI·)~ N ( (1 + ~K) (Y-X/3), (;;,il+ ,\K)-1) 

where K = D -W 
[a2 1-) ~ IG (a+ ~,'Y + ½ (Y - X/3-0)' (Y - X/3- 0)) 

[r2 1·) ~ IG ( °' + ~,'Y + ½ -Z-,1_,., w,1(01 - 0,)2 ) 
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Table l · Model comparison using DIC statistics 
Model D PD DIC 
CAR (x1, xz, x3) 224 106 330 
CAR (x1,x2) 782 65 847 
CAR (x1,x3) -177 285 108 
CAR (x2 , x3) -147 276 129 
CAR (x3) -173 281 108 
linear regression (x1, x2 , x3) 415 5 420 
linem· regression ( x 1, x2) 898 4 902 
linear regression ( x 1, x3) 560 4 564 
linear regression ( xz, x3) 554 4 558 
linear regression (x3) 588 3 591 
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Table 2: Parameter estimates (95% credible intervals are given in brackets) 

Param. Linear regression model CAR (x1,x2,x3) model CAR (x3) 
f3o 4.027 4.169 (3.91, 4.46) 4. 794 ( 4. 72, 4.87) 

/31 -0.308 -0.198 (-0.26, -0.13) 
/32 0.266 0.182 (0.13, 0.23) -

/33 1.497 1.462 (138, 1.53) 1.322 (1.27, 1.38) 
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Figure 1: CO2 emission data in ton es 
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Figure 2: Area covered by roads in km2 
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a) b) 
posterior mean ol eml11lon - mod•I CAA (111, x2, ll) po• terlor mean of emJe,lon - modeł CAR (xl) 

Figure 3: Posterior mean of emission in tones for model CAR (x1,x2,x3) 
(a) and model CAR (x3) (b) 
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