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a Systems Research Institute, Polish Academy of Sciences, 
Newelska 6, 01-447 Warsaw, Poland 

A decision support in air quality management connects severa! categories of the 

input data with an analytical model of air pollution. The model provides a quantitative 

assessment of environmental impact of emission sources in a form of pollutants' 

concentration/deposition maps, which in tum are used in supporting the planning actions. 

Due to the complexity of the forecasting system and the required input data, such an 

environmental prognosis and related decisions usually contain a substantial share of 

imprecision and uncertainty, especially in urban areas. The uncertainty in the model 

outcomes limits their credibility and usefulness in decision-making process. Therefore, the 

knowledge of the magnitude of model uncertainties is essential for decisions on emission 

abatement strategies. The main sources of uncertainty are commonly due to admitted 

meteorological and emission input data. This paper addresses the problem of urban-scale 

emission uncertainty, and related impact of this uncertainty on the forecasted model 

outputs. The computations are provided for the Warsaw Metropolitan Area, Poland, and 

encompass one-year forecast for the 2005 meteorological dataset. Detailed analysis of key 

uncertainty factors is based on the Monte Carlo technique where the regional scale 

CALPUFF model is the main forecasting tool for air pollution predictions. 

Kewords: air quality, emission data, forecasting model, uncertainty analysis 

1. Introduction: Modeling of air pollution transport 

Air quality forecasting models and the more complex integrated assessment systems are 

recently developed for supporting decisions concerning air quality management and emission 

control policy, especially in an urban scale (Lim et al., 2005; Calori et al., 2006; Mediavilla

Sahagón & ApSimon, 2006; Oxley et al., 2009). The integrated systems aim to combine a 

classical pollution transport model with some economic, ecological, technological and other 

constraints and standards. Such a system, apart from the natura! scenario analysis, gives also a 
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possibility to formulate and solve optimization problems, which take into consideration 

environmental standards. This is a tool for a complex analysis of environment-oriented 

development strategies and their optimization (ApSimon et al., 2002; Rolnicki, 2011 ; 

Camevale et al., 2012). Irrespective of how complex sucha system is, its main component is 

usually an air pollution dispersion model, which forecasts concentrations of polluting species 

in the atrnosphere, while other modules are responsible for required constraints and limits. 

Uncertainty of the forecast is an important component to be considered when analysing 

decisions and their impacts. 

In most deterministic models of air quality, the process of pollution transport is 

represented by a distributed parameter model, which is mathematically described by the set of 

advection-diffusion equations 

ac; + V•Uc; =VpDV(c;lp) + R;(ci,c2 , ... ,cn,t) + S;(i,t), 
ar 

for i=l , 2, ... ,n, 

(1) 

in the time interval (O, n, subject to appropriate boundary and initial conditions. Each 

equation in (1) corresponds to the i-th polluting compound, where c; denotes its 

concentration; u - the wind field vector; D - the turbulent diffusion coefficient; R; - the 

chemical transformation rates ofpollutants; S;(x,t) - the emission/reduction rate of a specific 

pollutant ·at a given spatial and tempora! location; p - the air density. Most of parameters 

depend on the actual meteorological conditions. 

The exact form and structure of the model usually depends on its practical application, 

type of the polluting compounds which are considered, and the scale of modeling. A model 

usually takes into account the input data ( emission field and meteorologi cal data) as well as 

the main physical and chemical processes, which influence the transport in the atrnosphere, 

and transformations of air pollution components models. However, various types of air quality 

-2. 



models may differ significantly in an approach to solving equations (1), and also to the scale 

of modeling. Spatial and tempora! scales of the environmental impact of air pollution are 

correlated with and, moreover, they directly depend on the lifetime of pollutant (Jacobson, 

2005; Rolnicki, 2011), which can differ significantly between compounds. Depending on the 

adopted scale, there are corresponding categories of models: !ocal, regional and global. 

Estimation of the urban-scale pollution is a computationally sophisticated modeling 

problem due to complexity of emission field, and also due to complicated building orography 

and wind-field effects. Emission inventory of urban areas usually encompasses different 

categories of emission sources, characterized by specific emission parameters. Varieties of 

primary pollutants generale secondary compounds by means of chemical transformation 

processes. Due to high population density, urban air pollution exposure is a crucial factor 

associated with ad verse health effects (Rolnicki et al., 201 O). In particular, many research 

indicate that a considerable harm in public health is caused by fine particulate matter, 

especially PM2.5 (Tainio 2009; Tainio et al., 2010). 

To quantify possible ecological, economic or health benefits of emission abatement, 

estimates of incrementa! contributions of the respective group of emission sources to ambient 

concentrations is needed, with a reasonable accuracy. Rowever, due to a very complex and 

multidisciplinary structure of such systems, there exist many sources of imprecision and 

uncertainty - both in modeling environmental effects of atrnospheric pollution and also in the 

resulting regulatory decisions - such as: (a) input data (mainly emissions, boundary 

conditions, meteorological data), (b) structure of the mathematical model (simplifications and 

parameterizations of physical and chemical processes ), ( c) numerical scheme implementation. 

Most of uncertainty studies focus on uncertainties arising from the input data and the model 

parameterizations (Colvile et al., 2002; Warmink et al., 2010; Malherbe et al., 2011). Maxim 

and van der Sluijs (2011) address uncertainties introduced in all stages of modeling process as 
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well as in interactions with policy-makers. Implementations of operational models of air 

pollution (used as decision support tools) usually involve some specific simplifications or 

parameterizations and cannot completely characterize complex physical processes. For 

example, the height of the mixing Iayer and atmospheric stability are usually evaluated in 

course of an imprecise heuristic procedure. This is the source of conceptual uncertainty which 

is also reflected in the finał results (Maxim & van der Sluij s, 2011 ). In particular, it relates to 

uncertainty in deriving trajectories in Lagrangian approach or sub-grid effects in Eulerian 

models (Sportisse, 2007). The problem of numerical scheme accuracy cannot be easily 

addressed, since the models are usually hard-coded and it is difficult to directly modify their 

parameters. 

It is a common view in the literature, e.g. Russel & Denis (2000) or Sax & Isakov (2003) 

that emission field inventory is one of the main sources of uncertainty in modeling of air 

pollution dispersion. It is also known that officia! emission data are not accurate, due to 

inventory uncertainties of some categories of urban emissions. Emissions of major power 

plants of energy sec tor can be treated as relati vely accurate because of well specified 

parameters of combustion process as well as those of the fuel used. On the other hand, 

emission data characterizing residential area or transportation system are usually based on 

aggregated and averaged information on fuel consumption and its parameters. These 

categories of data reflect neither the real tempora! variability nor chemical constitution of 

polluting compounds and are remarkably uncertain. In complex uncertainty analysis, 

correlation between pollutants emitted by the same source (Page et al., 2003) have also to be 

taken into account. 

There are severa! methods to assess uncertainties. The sensitivity of the mathematical 

model output to given model parameters can be derived using adjoint model equations and 

differentia! tools (compare Sportisse, 2007; Yang, 2011). On the other hand, the Monte-Carlo 
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methods are based on the analysis of the model outputs obtained from randomly generated sets 

of the input data (emissions, meteorological conditions, model parameters). This technique is 

relatively easy to implement and it is free from the limiting assumptions (see, for example 

ApSimon et al., 2002; Sax & Isakov, 2002; Malherbe et al., 2011, Yang, 2011). This approach 

is used in the analysis presented in this study. 

2. Air pollution forecasts for Warsaw Metropolitan Area 

The computations performed are related to forecasts and analyses of air pollution 

dispersion in the Warsaw Agglomeration. Their main aim was to evaluate the environmental 

impact of the dominant categories of emission sources and to estimate uncertainty of this 

forecast that is related to the uncertainty of emission field inventory. The regional scale, 

Gaussian puff dispersion model CALPUFF (Scire et. al., 2000) was utilized to simulate the air 

pollution transport and transformations within the domain. 

The uncertainty analysis of emission data is particularly challenging in the case of urban 

or industrial areas (Colvile et al., 2002; Mediavilla-Sahagun & ApSimon, 2006; Oxley et al., 

2009, Buchholz et al., 2013). The problem fellows from a high spatial concentration of a large 

number of emission sources with different technological parameters (spatial characteristics, 

stack height, temperature and velocity of the outlet gasses), various fuel type used with diverse 

parameters, com position of polluting compounds, emission intensities, and as a consequence -

different ranges of emission uncertainty. 

These uncertainties should be taken into account in complex analysis, when the results 

are to be utilized in supporting regulatory decisions. 

In the case of the presented Warsaw study the total emission fie ld was decomposed into 

four basie categories, mainly according to emission parameters and intrinsic uncertainty. The 

assumed emission categories are the following: 
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• High point sources (mainly the energy sector) - uncertainty is relatively low, since 

both the combustion process and fuel parameters are well defined and stable. On the other 

hand, due to the high stacks, the modeling procedure should include the initial plume 

development near the source. 

• Low point sources (other industrial sources) - higher uncertainty due to less precise 

technological characteristics as well as fuel parameters. 

• Area sources (residential sector and distributed industrial sources) - high uncertainty; 

emission data are mainly estimated basing on fuel type used and fuel consumption. 

• Linear sources (transportation system) - high uncertainty; emission data are estimated 

based on severa! traffic parameters (traffic modes and intensity, fuel used, its quality and 

consumption, age and technological parameters of cars). 

The analysis covers a rectangle domain, approximately 30 km x 40 km of Warsaw 

Metropolitan Area (about 520 km2 inside administrative borders) shown in Fig. 1. For 

computational purposes, the domain was discretized with a homogeneous grid with the step 

size h = I km. According to previous remarks, the emission field was categorized into the 

following four classes: 

• 16 high point sources (power/heating plants), 

• I 002 low point sources (industry), 

• 872 area sources (residential sector), 

• 1157 linear sources (transportation). 

The location of the point sources is defined by their geographical coordinates, while the 

area and linear sources are characterized by the respective, spatial mesh elements I km x I km 

that coincide with the domain discretization grid. Computations take into account tempora! 

variability of the meteorologi cal and emission input data, where the assumed step-size of time 

resolution is , = lh. 
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The list of the main primary and secondary pollutants considered in the study is 

presented below as Table 1. The composition of emitted species depends on the source 

category. In particular, the point sources emit mainly sulfur oxides, nitrogen oxides, 

particulate matter, PPM10 and PPM2s and, for certain particular sources, also BaP and some 

heavy metals. Area and linem· sources may emit most of the listed compounds, but only linear 

sources are responsible for secondary emission ofparticulate matter, PPM10_R and PPM2.5_R 

(total amount of dust particulates re-suspended due to the road traffic ). 

Concentrations of particulate matter (PM1o or PM2s) are calculated as a sum of the 

primary pollutions emitted by all categories of sources (PPM10 or PPM2.s), the pollutions 

coming from the secondary, re-suspended emissions of the linear sources (PPM10_R or 

PPM2.s_R) and the concentrations of the secondary pollutants, like the sulfate and nitrate 

aerosols, which are also components ofparticulate matter (see Table 1). 

E 
..s:: 
o 
'<:I' 

30 km 

Model: CALPUFF 

Emission sources: 
high point sources 
other point sources 
area sources 
linear sources 

16 
- 1002 

872 
- 1157 

Emission & meteo data: 
year 2005, (lh time step) 

Spatial discretization: 
lkmxlkm 

Receptors: 
563 (grid 1 km x 1 km) 

Fig. 1. The computational domain, the main parameters, the receptors' location. 
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Table 1. Polluting species considered (primary and secondary). 

Emission / primary pollution Secondary pollution 

SO2 (sulfur dioxide)) SO 4 (sulfate aerosol) 

NOx (nitrogen oxides) NO 3 (nitrate aerosol) 

HNO3 (nitric acid) 

PPM10 (primary PM, diameter :S 1 O µm) 

PPM1o_R (PPM10 re-suspended by road PM10 = PPM10+PPM10_R+ SO 4 + NO 3 
traffic - secondary emission) 

PPM2 5 (primary PM, diameter :S 2.5 µm) 

PPM2,_R (PPM,., re-suspended by road PM25 = PPM2 ,+PPM25 _R+ SO 4+ NO3 
traffic - secondary emission) 

BaP (Benso [a] Pyren) 

Ni (nickel) 

Cd (cadmium) 

Pb (lead) 

PAH (Polycyclic Aromatic Hydrocarbons) 

The emission field encompasses sources located inside administrative borders and also 

some main sources outside Warsaw, but located in the computational domain, as shown in Fig. 

1. The trans-boundary inflow forms the background for the pollutants originated from the !ocal 

sources. The inflowing pollutions are taken into account as the boundary conditions for 

CALPUFF simulations and are based on the European scale EMEP model predictions (spatial 

resolution 50 km x 50 km). Results discussed in the following sections concern some accuracy 

and uncertainty estimates. 

3. Simulation 

Figure 2 contains two exemplary presentations of the modeling results (ArcMap/Arcinfo 

instrumentation is used). This figure consists of two maps presenting the annual mean 

concentrations of S02 and PM10 at the receptor points ( only influence of the !ocal Warsaw 
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sources is shown), including the relative share of emission categories in the total 

concentration. As shown in the next section, it is an important factor in quantitative 

uncertainty assessment. Each map is composed of five sectors: the central district of the city 

and four peripheral (border) districts . 

Sulfur dioxide in Warsaw mainly comes from fuel combustion in point and area 

sources, while PM10 is strongly related to linear sources of transportation system. Annual 

mean concentrations of SO2 are definitely below the admissible level, and the spatial changes 

of concentration are minor within the domain ( compare Fig. 2a). All four early mentioned 

emission categories contribute to the finał SO2 pollution with the dominating share of the point 

sources. More significant contribution of the high point sources can be noticed in Northern 

districts (N-W and N-E), situated near the administrative city borders. It fellows, first of all, 

from the stack height of the main Warsaw power/heating plants (100 - 300 m), so that their 

influence close to the ground can be observed only in some distance from the source. 

Moreover, high stacks of the heating plants which are all equipped with the effective filtering 

installations. Another reason are the dominating S and S-W wind directions in the analyzed 

2005 period, as shown in Fig. 3. 

In the case of the particulate matter (both PM10 and PM2.5) contribution of linear 

sources dominates, and the pollution spatial variability within the domain is very significant 

( compare Fig. 2b ). In paiiicular, the PM10 concentrations in the city center are severa! times 

higher than those in peripheral districts; high concentrations are also observed along the 

arteria! streets. At the same time, the share of emission categories varies spatially, and the 

contribution of area sources as well as !ocal point sources considerably increases in the 

peripheral districts. This is rather a !ocal effect and is recorded mainly in the neighborhood of 

S-W city borders of Warsaw, where a small (severa! per cent) contribution of the low point 

sources can be noticed. On the other hand, the contribution of the high point sources is 
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practically negligible within the whole domain, as mentioned above. The dominating 

contribution to particulate matter comes from the car traffic, including heavy truck traffic, 

also in central districts of the city. 

A similar characteristics of the dominating impact of linear sources (mainly car traffic) 

and practically negligible contribution of high point sources, is also observed for NOx 

pollution (presented in more details in Section 5). For this pollutant there are also very 

significant differences in concentration between central (very high values) and peripheral 

districts (relatively low values). 

Vicinities of arteria! streets are also the regions of high nitrogen oxides concentrations, 

in spite ofrelatively coarse space discretization used for simulation. 

In order to assess accuracy of model forecasts in this study, the calculated annual 

average concentrations of the main polluting compounds were compared (including the inflow 

from the surrounding areas) with measurements (locations of the main measurement stations 

are shown inFig. !). For the year considered, air quality measurements were performed by 

severa! monitoring stations (automatic or manuał) . The number of observed pollutants differs 

in the stations, being quite limited in some cases. Table 2a shows comparison of the measured 

and computed average concentrations for the main gaseous pollutants: NOx, PM10, S02 and 

heavy metals (Table 2b): Pb, Cd, Ni, depending on the observation point and the polluting 

compound. 
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a) 

Legend 

8 ---~ -~. 
c=J ...... 

b) 

Legend 

8 -------.... = -· 
Fig. 2. The share ofemission categories (annual mean concentrations): a) S02 and b) PM10. 
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2005 

Fig. 3. Annual wind rose for Warsaw. 

Moreover, a graphical presentation of calculated concentrations versus measurements is 

shown for those pollutants, for which a sufficient number of observations is available (9-13 for 

PM10, NOx, S02). Figure 4 presents comparison of the predicted, year average concentrations 

with the measurement values registered at the monitoring stations for the particulate matter 

(PM10), nitrogen oxides (NOx) and sulfur dioxide (S02). The dashed lines determine the 

domain where the ratio of computed and measured values do not exceed the factor of 2 

(usually applied in comparison of modeling and observed atmospheric pollution data) . The 

predicted PM10 and S02 concentrations follow the measured values sufficiently well. 

However, many of NOx predictions are underestimated. This follows from the fact that 

nitrogen oxide pollution is mainly produced by car traffic and the values are shown as 

averaged on the grid element (I km x 1 km), while measurements of monitoring stations often 

represent point-wise values near the roads axis. 
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Table 2a. Comparison of the modeled and measured air pollution concentrations. 

PM10 [µglm3] NOx [µglm3] SO2 [µglm3] 

No. Monitoring station Error Error Error 
Modeled Measured 

[%] 
Modeled Measured 

[%] 
Modeled Measured 

[%] 

1 Białobrzeska 33 29,5 11,9 - - - - - -
2 Bednarska 42 34,1 23,2 46,7 56,8 -17,8 - - -
3 Komunikacyjna 40 51,7 -22,6 51,2 76,2 -32,8 13,9 9,8 41,8 

4 Żelazna 34 32,9 3,3 45,6 36,3 25,6 15,6 9 73,3 

5 Krucza 43,2 41,7 3,6 31,3 35,7 -12,3 9,8 9,3 5,4 

6 Ursynów 32 32,8 -2,4 27,5 19,2 43,2 9,3 8,8 5,7 

7 Nowoursynowska 33,5 42,2 -20,6 23,1 25,6 -9,8 9,5 10,5 -9,5 

8 Tołstoja 22 37,2 -40,9 35,2 43,1 -18,3 12,1 11,8 2,5 

9 Targówek 31,6 31,9 -0,9 - - - - - -
10 Anieli Krzywoń 24 31,3 -23,3 - - - - - -
11 Bernardyńska 33 21,2 55,7 - - - 10,4 8,7 19,5 

12 Bora-Komorowskiego 40,5 34,9 16,0 - - - - - -

13 Żegańska 27 39,2 -31,l - - - - - -
14 Puszczy Solskiej - - - 26,4 34,1 -22,6 10,6 12,9 -17,8 

15 Porajów - - - 19,6 24,1 -18,7 - - -
16 Lazurowa - - - - - - 10,1 11,2 -9,8 
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Table 2b. Comparison of the modeled and measured air pollution concentrations. 

Pb [ng/m3] Ni [ng/m3] Cd [ng/m3] 

No. Monitoring station Error Error Error 
Modeled Measured 

[%] 
Modeled Measured 

[%] 
Modeled Measured 

[%] 

1 Bernardyńska 22,7 12 89,2 2,3 6,1 -62,3 0,73 0,45 62,2 

2 Żelazna 24,5 34 -27,9 1,8 1,5 20,0 0,65 0,7 -7,1 

3 Żegańska 20,2 41 -50,7 3,2 2,8 14,3 1,10 0,9 22,2 

4 Anieli Krzywoń 18,3 47 -61, 1 - - - - - -
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4. Uncertainty analysis 

In order to assess uncertainty of the concentration forecasts related to emission 

uncertainty, Monte Carlo algorithrn was applied (Sax & Isakov, 2003; Holnicki et al., 2010; 

Yang, 2011). For each emission source 2000 randomly generated sets of emission volumes 

were prepared, according to the assumed uncertainty range. To avoid unrealistic emissions, a 

correlation was established between the emission intensity of the individual compounds 

within a source (see Page et al., 2003; Rolnicki et al., 2010). 

Table 3 presents generał uncertainty ranges which were accepted for 4 categories of 

emission sources (based on expert opinions). Norma! distributions of the input emission data 

were assumed. 

Table 3. Assumed uncertainty range depending on the emission category (95% confidence 
interval). 

Emission sources 
Pollutant 

High point Other point Area Linear 

so, ± 15% ±20% ±30% ±30% 

NOx ±20% ±30% ± 40% ±40% 

PPM10 ±25% ±40% ±40% ±40% 

PPM,_, ±25% ±40% ±40% ±40% 

PPM10_R - - - ±40% 

PPM,., R - - - ±40% 

BaP ±30% ±40% ±50% ±50% 

Ni ±30% ±40% ±50% ±50% 

Cd ±30% ±40% ±50% ±50% 

Pb ±30% ±40% ±50% ± 50% 

PAH - - ±50% ± 50% 

Some selected results of uncertainty analysis are presented for 5 main pollutants which 

characterize urban air quality, namely NOx, PM1o, PM2 _5, Pb, SO,. They directly originate 

from the urban transportation system as well the !ocal point and area sources. Figure 5, 

prepared by using ArcMap, shows distribution of annual mean concentrations of S02 and 

PM10 in the central district of the city. The bars refer to the annual concentration of the 
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selected pollutant at a given receptor. The colored sections in the top part of the bar represent 

the percentiles of emission uncertainty, with the colors coded according to the legend. This 

type of graphical presentation of uncertainty has a qualitative and approximate character. 

A more precise characteristic of uncertainty for any selected receptor is illustrated in 

Figure 5 for receptor 273 (S02 concentration) and receptor 275 (PM10 concentration), see 

Figure I for identification of the receptor num bers. In this case one can obtain graphs of the 

empirical cumulative distribution curve, the empirical density function and the standard "box 

plot" for uncertainty distribution. The mean concentrations of PM10 at the same receptors are 

about 4-5 times higher than the respective values for S02 (in µg/m 3), compare graphs in 

Figures 5a and 5b. Moreover, for receptors presented in this figure, the resulting uncertainty 

range of PM10 is also much wider than the corresponding value for S02, The factor which 

determines uncertainty range is the Jocation of the receptor, which is connected with relative 

contributions of individual emission sources of different categories in the measurements. 

Figure 6 compares distribution of the standard deviation (left) and the relative 

uncertainty range (right) versus the annual mean concentrations calculated at 563 receptor 

points (as shown in Figure I) for NOx, PM10, S02 and Pb, respectively. The relative 

uncertainty range at a receptor point is calculated as a ratio (c97.5 - c2_5)/cM, where c2.s is the 

2.5 percentile concentration value, c97.5 is the 97.5 percentile value, and cM is the mean value. 

In all cases the values of standard deviation increase faster than linearly as a function of the 

mean concentration. A mare cluster-shaped distribution of S02 standard deviation is a result 

of a relatively homogeneous spread of S02 concentration over the Warsaw domain, with the 

mean values much below the admissible Jevels. This follows from the dominating share of 

point sources in the heating system; very high stacks of plants in the district central heating 

system mainly affect very distant receptors ( often outside the domain), while small point 

sources of individual heating are mainly active in peripheral districts. Moreover, the outside 

inflow of sulfur dioxide is a substantial part of the tata! S02 pollution. 
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Other details related to uncertainty problem are explained in Figure 7, which comprises 

the pairs of maps, presenting spatial distribution of the mean concentration (left) and relative 

uncertainty level (right), for NOx, PM10, PM2.s, S02, Pb, respectively. It can be seen that 

typical traffic related species, like NOx, PM and Pb, show high uncertainty in vicinity of the 

main roads, with loca! maxima in surroundings of crossroads, which are determined by the 

share of emission sources affecting the receptor. 

General similarity of both types of maps is caused mainly by the transportation induced 

pollution, such as particular matter, nitrogen oxides or lead. In Figure 7 (left) their high spatial 

diversification can be noticed, with the maximum values in the city center and near the 

arteria! streets. This spatial diversity is much more apparent in uncertainty maps, where high 

values reflect quite well the traffic network's structure and the main crossroads. This effect is 

seen mainly for NOx, PM10, and Pb. In these cases, high uncertainties are correlated with 

concentration values, but actually depend on the receptor's location, which decides on the 

relative share of contributing emission categories and the number of individual emission 

sources affecting this receptor point. A specific coincidence of these factors leads to extreme 

values of the overall uncertainties in some receptors. 

On the other hand, pollutants which are not dominated by the transportation sources (for 

example S02) are more uniformly distributed over the domain and the corresponding 

uncertainties are rather low. In this case high uncertainty levels reported at some receptor 

points do not coincide with high concentrations, and are caused by other factors. 

To analyze the problem in more details, the concentrations and the corresponding 

uncertainty levels are considered for two selected receptors, 136 and 156 (compare Figure 1). 

The first one characterizes a typ i cal transportation affected spot (intersection of main roads ), 

the other one is mainly affected by loca! area sources. It can be seen, referring again to Figure 

7 (right), that uncertainties of the typical traffic related species, like NOx, PM10, PM2.s, and 

Pb, are high in a vicinity of this crossroad (receptor 136). It is seen from Figure 8 (left) that 

linear sources have a dominating contribution in this case. But apart the emission category, a 
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number of individual sources which substantially contribute to the point, is another important 

factor influencing uncertainty. Generally, due to the averaging process, increasing number of 

emission sources thai substantially contribute to the receptor, cause decrease of the lota! 

relative uncertainty (the standard deviation for n equally contributing sources is proportional 

to 1/,/n. ). So, the less sources contribute to the pollution level, the higher relative uncertainty 

may be expected. Simultaneously, an unbalanced contribution of individual sources (for 

example, strong domination of one uncertain emission source) generally increases total 

uncertainty. 

A generał quantification of the last property is also possible, but below it is assessed 

qualitatively basing on Figure 8, which indicates the dominating individual sources 

responsible for about 60% of the overall pollution ( concentration) assigned to receptor 136. It 

can be seen that for the highly uncertain NOx (~35%), Pb (~40%) and PM2.s (~30%) there are 

only four contributing sources of approximately equal uncertainty, with dominant 

contribution of one of them. Their uncertainties are on the level of uncertainties of pollutant 

emissions. On the other hand, in the case of SO2 (Figure 8, bortom) a more balanced 

contribution of four emission categories is observed, with about 15 individual emission 

sources in total, most of them influencing considerably the finał pollution. The total relative 

uncertainty level for SO2 forecast is considerably !ower for the receptor considered (~12%). 

Characteristic of receptor 156 (compare its location in Figure 1) is completely 

different. As can be seen from Figure 7 (right), uncertainties of typical traffic-related 

pollutants (NOx, PM10, Pb) are there relatively low, but the maxima! ( over the entire domain) 

values are obtained for SO2 and PM2.5. This again can be explained by looking at Figure 9, 

which presents the relative share of emission categories as well as the number of individual 

sources mainly contributing to the total concentration measured at this receptor. The influence 

of the area sources is dominating in this case, since this district comprises residential area 

with a number of small dwelling-houses with loca! coal-based heating/cooking installations. 

On the other hand, a substantial share of linear emission sources can be noticed for all NOx, 
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PM1o, Pb with exception of sulfur dioxide and medium contribution in case of PM2_5. It can be 

seen in Figure 9 (right) that only 5 individual sources contribute to S02 and PM2 s pollution, 

and in these two cases the highest values of relative uncertainties are reported. Uncertainty for 

Pb is also substantial due to relatively small number of contributing sources. On the other 

hand, concentrations of NOx and PM10 in receptor 156 result from superposition of a large 

number of contributing sources (mostly areał but also neighboring linear sources) which 

imp!ies relatively low uncertainties for both pollutants. 

(% ] 

i" ) 

Fig. 7. Concentration (left) and relative uncertainty (right) for NOx (top), PM10 (bottom), 

and PM2.s (bottom). 
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Fig. 7 ( cont.) Concentration (left) and relative uncertainty (right) for PM2.s (top), S02 
(middle) and Pb (bottom). 
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5. Conclusions 

This study presents selected results of computations related to modeling and uncertainty 

analysis of air pollution dispersion in the Warsaw Metropolitan Area. The analysis, dealing 

with the main urban-type polluting species, is based on the real meteorological data and 

emission field inventory for the year 2005. For the purpose of detailed, numerical procedure, 

the emission field was split down into four categories: (a) high point sources (power plants), 

(b) other point sources (industry), ( c) area sources (residential sector), ( d) linear sources 

(transportation). The main forecasting tool used in simulation of air po li uti on dispersion is the 

regional scale transport model CALPUFF (Scire et al., 2000). Linear structure of the model is 

utilized to calculate a polluting contribution of individual emission sources and to implement 

parał lei computation for the purpose of Monte-Carlo algorithm and uncertainty analysis. The 

obtained results comprise the annual average concentrations of severa! polluting compounds, 

primary and secondary, which are characteristic for urban atmospheric environments. Results 

presented in the paper encompass mainly the sulfur and nitrogen oxide pollutants, lead, and 

particulate matter, PM10 and PM2.s-

Secondary pollutants of SO 4 and NO 3 have been taken into account in formation of the 

sulfate and nitrate aerosols, which are next included as components of particulate matter. 

Moreover, annual concentrations of Ni, Cd and BaP were computed, including their 

uncertainty assessments, but the analysis is omitted here due to the lack of representative set of 

the reference observation data. 

The annual mean concentrations of sulfur dioxide in the urban domain are relatively low, 

and do not exceed air quality limits (critical level: 20 µg/m 3). The main sources, responsible 

for this type of pollution are power/heating plants, which are equipped with very high stacks 

(pollutants are mainly exported outside the urban area) and desulfurization installations. On 

the other hand, concentrations of particulate matter and nitrogen oxides are substantial and 

have a remarkable and negative impact on urban environment. Concentrations of NOx and 

PM10 are spatially strongly diversified, and reach very high values ( especially in central 
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districts), which often exceed the critical values (critical levels: 30 µg/m 3 and 40 µg/m 3 for 

NOx and PM10, respectively). The main source of this adverse environmental impact is the 

transportation system (including the transit traffic ). New ring roads, which are now under 

construction, and displacement of the transit and heavy truck transport outside the central 

districts of the city, should improve the situation. 

The main goal of the paper is analysis of spatial distribution of uncertainty of air quality 

forecast, induced by uncertainty of the emission dataset. It is shown that accuracy and 

uncertainty of air pollution forecast measured at any receptor point is directly related to the 

following three factors: (a) the kind of polluting compound considered, (b) the emission 

source category of the dominating contributor, and (c) the number of individual emission 

sources having a substantial share in the total pollution. The resulting uncertainty assigned to a 

receptor point decreases for growing number of contributing emission sources (the averaging 

effect). This fact is illustrated on two selected receptor points in the computational domain of 

the Warsaw Metropolitan Area. 

For the air pollutants considered in this paper, relatively homogeneous distribution and 

low uncertainty applies to the concentrations of SO2, which mainly depend on relatively 

precise input emission of point sources. On the other hand, very substantial uncertainties relate 

to NOx, PMro, PM2.s and Pb forecasts, which strongly depend on the structure of contributing 

sources, with dominating impact of the urban transport. Moreover, very high spatial variability 

ofuncertainty distribution, which is related to traffic-dependent pollutants was shown. Besides 

of the practicability of the above findings, generał objectives of the presented uncertainty 

results are, as stated by Maxim & van der Sluij s (2011) to bring scientific predictions cios er to 

reality, increase decision maker 's confidence of scientific results, improve stakeholder 's and 

public 's confidence in science, improve the quality of decisions. 
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