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Abstract 

Greenhouse gas (GHG) inventories at national or provincial levels include the total emissions as well 
as the emissions for many categories of human activity. The aim of this research was to produce a high 
resolution spatially explicit emission inventory for these activities for Poland. GHG emission sources are 
classified into point-, line- and area-types,. and then combined to calculate the total emissions. We created 
vector maps of all sources for all categories of economic activity covered by the IPCC Guidelines, using 
official information about companies, the administrative maps, Corine Land Cover and other available 
data. We created the algorithms for disaggregation of these data to the level of elementary objects like the 
emission sources. We analysed emissions of CO,, CH,, N,O, SO2, NMVOC, and other greenhouse gases, 
and we calculated the total emissions in CO,-equivalent. Gridded data were formulated only at the final 
stage to present the summarized emissions. of very diverse sources from all categories. We considered the 
grid also as vector map, and what is more the grid cells were split by administrative boundaries into 
separate objects of vector map. In our approach, the info1mation on administrative assignment of 
c01Tesponding emission sources is retained, and this makes it possible to aggregate the final results even 
to the level of municipalities taking into account administrative boundaries unlike traditional gridded 
emission. In unce1tainty analysis we considered uncertainties of the statistical data, of the calorific values, 
and of the emission factors, with symrnet!'ic and asymmetric (lognormal) distributions. On this basis and 
using Monte-Carlo method, uncertainties expressed as the 95% confidence intervals were estimated for 
high point-type emission sources, the provinces, and the subsectors. 
Keywords: GHG emissions, high resolution spatial inventory, unce1tainty, Monte Carlo method 

1. Introduction 

To counter the impacts of climate change, ·greenhouse gas (GHG) emissions must be reduced. 
Reductions can be monitored throughi1jventorie.s o(~niissions and absorptions of these gases, 
where national inventory reports are useful. .for ,verif;ying agreed commitments to reduce or 
stabilize emissions, to estimate the global carbon budget (Le Quere et al., 2015), to predict the 
emissions under different scenarios, and to develop and implement new agreements, see e.g. 
Spencer et al.(2016). GHG inventories at national or provincial levels include data on emissions 
for many categories of human activity, and the total emissions are calculated using the global 
warming potential factors of each GHG. The United Nations Framework Convention on 
Climate Change (UNFCCC), the International Energy Agency (IEA), and the Carbon Dioxide 
Information Analysis Center (CDIAC) are examples of bodies that collect national inventory 
submissions and data on emissions broken down by fossil fuel type and by GHG. However, for 
a more in-depth study of emission processes as well as their structure, it is more appropriate to 
use spatially explicit data on GHG emissions. Such data link the emissions to the territory in 
which they appear (Oda and Maksyutov, 2011; Olivier et al., 2005). Thus, they have been used 
in the past as input data for the simulation of atmospheric CO2 fluxes in global circulation and 
transport models (Deque et al., 2012; Neale et al., 20 I 3; Lamarque et al., 2013). Spatially 
explicit data are also useful for scientists and policy makers at provincial and local levels to 
identify the main sources of emissions and their structure. Compilation of spatial data is a hot 



subject of many recent studies (Andres et al., 2009; Gosh et al., 201 0; Gurney et al., 2009; Oda 
& Maksyutov, 2011; Olivier et al. , 2005; Petron et al. , 2008; Puliafito et al. , 2015; Raupach et 
al., 2010; Rayner et al., 2010). 

Spatial data on GHQ emissions are usually presented in the form of a spatial grid, also 
referred to as gridded emissions. Emission data at the national or provincial level are 
disaggregated in order to estimate emissions in each grid cell. These disaggregation algorithms 
need additional proxy data, e.g. population density. Data from remote sensing can also be used 
as proxy data, e.g. night-time light intensity, land use data, etc. The disaggregation accuracy 
can be improved when the emission is significantly correlated in space; see e.g. Horabik & 
Nahorski (2014). But the final resolution of the gridded emissions is generally determined by 
the resolution of the proxy data used. Advantages of using remote sensing are the possibility to 
estimate GHQ emissions spatially for large territori.e_s (ideally for the whole globe), and the ease 
of updating emission data over time. These approaches are mainly used for gridded emissions 
of carbon dioxide (CO2) as a major GI-fG prciducc;d by i1uinans, which are mainly a result of 
fossil fuel combustion processes (including emissions by large point sources), land use change 
and forestry. But there are many categories of anthropogenic activity where emissions cannot 
be estimated remotely, e.g. emissions of non-methane volatile organic compounds (NMVOCs) 
or emissions of sulfur hexafluoride (SF6), which is an extremely potent greenhouse gas, among 
many others. 

Efforts have been made to increase the spatial resolution of the GHQ estimates since a higher 
resolution better reflects the specifics of territorial emission processes (Andres et al. , 1996; Oda 
and Maksyutov, 2011; Olivier et al. , 2005; Rayner et al., 2010). Grid cell sizes have decreased 
from I O latitude and longitude for global fossil-fuel CO2 emissions (Andres et al., 2009) to 0.25° 
(Rayner et al., 2010) and to I km for a global fossil fuel CO2 emission inventory derived using 
a point source database and satellite observations of night-time lights as proxy data (Oda and 
Maksyutov, 2011). Spatially explicit GHG emission inventories have also been developed at 
the regional level, e.g. fossil-fuel CO2 emissions (Maksyutov et al., 2013; Raupach et al. , 2010), 
fossil fuel combustion CO2 emission fluxes for the United States (Gurney et al., 2009), as well 
as data of emission sector or category such as power generation (Petron et al. , 2008), North 
American meiliane emissions (Turner et al., 201°5), or the road transport sector in Argentina 
(Puliafito et al., 2015). 

There are a number of problems in the practical implementation of GHQ gridded emission 
estimates due to the use of diverse grids for the ' input . proxy data with different spatial 
resolutions. These may also differ from the desired target resolution of the gridded emissions. 
When combined, the task is to determine which portion of the grid cell in one grid relates to the 
partly overlapping cell of the target grid (Verstraete, 2014). These grids can differ in cell size, 
they can be displaced in any latitude and longitude direction, and they can be even rotated by a 
certain angle. To address this overlay problem, approaches based on fuzzy control and artificial 
intelligence techniques can be used (Verstraete 2017). Anotl1er problem is that most GHQ 
gridded emission calculations do not fully take into account the state and provincial 
administrative boundaries, and usually a cell is assigned to an administrative unit based on 
where the majority of the area falls. 

In this paper we propose a completely different approach for estimating a spatially resolved 
GHQ inventory, which is not initially based on a regular grid. Instead we consider emission 
processes at the level of emission sources, classified into point-, line- and area-type sources. 
Using data for sources, we created a geospatial database with input parameters and calculated 
the emissions for each category of human activity using activity data and emission coefficients. 
The activity data at the level of separate emission sources are calculated using some proxy data 
and algorithms for disaggregation of the data to the source level, which differs depending on 
the category of human activity. The digital maps of these emission sources retain information 
about their administrative assignment; therefore, we can analyze emissions spatially at any 
administrative level up to municipalities, taking int_o account administrative boundaries, which 



eliminates the problems associated with traditional gridded emission approaches. In the final 
stage, the emissions from very diverse point-, line-, and area-type somces can be combined to 
calculate the total emissions in each grid cell, where the target spatial resolution can be very 
high, e.g. 1 00m. In this study we analyzed all categories of human activity covered by the IPCC 
Guidelines (IPCC, 2006) using Poland as a case study. The results include the spatial 
distribution of not only CO2, but also cit11er GHGs, as well as the spatial · distribution of 
emissions from different types of fossil fuels. The approach used is very flexible in providing 
results of many different structural types. The implementation of this approach for the 
development of a OHO spatial inventory for other sectors, in particular for the electricity 
generation and foss il fuel processing (Topylko et al., 2017), the residential sector (Danylo et 
al. , 2017), and agriculture (Charkovska et al., 2017) are presented in other papers in this special 
issue. 

2. Methodology and input data 

2.1 The spatial GHG inventory approach 

The main stages of the proposed approach for creating a OHO spatial inventory are presented 
in Fig. 1. For all sectors and categories of anthropogenic activity covered by the IPCC 
Guidelines (IPCC, 2006), the sources of emissions or sinks are analyzed according to their 
specific features and spatial representation. OHO emission sources are classified into point-, 
line-, and area-types depending on their emiss.ion intensity and physical size as compared to the 
territory under investigation. These point-, , line-, _and· area-type sources are called 'elementary 
objects ' in our OHO spatial inventory. , , 

Digital maps of emission sources / sinks.Care bui lt for each category of human activity. For 
some categories they are digital maps of point objects while for other categories they are digital 
maps of linear objects or area-type objects. • If needed, the line- and area-type (diffused) 
elementary objects are split by administrative boundaries. This allows us to allocate each 
elementary object to the corresponding provinces (voivodeships in Poland), districts (powiats) 
or municipalities (gminas). 
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Figure I. Steps in the development of a GHG spatial inventory 



The next step is to calculate GHG emissions from the elementary objects. It reflects the main 
principles of the IPCC Guidelines (IPCC, 2006), i.e. the emission is a product of the activity 
data and the corresponding emission factors. However, a common problem is to obtain data 
about the activities at the level of the elementary objects. For this purpose we have developed 
algorithms for disaggregation of the available statistical data for provinces (or even for 
municipalities in some categories) to the level of elementary objects. These algorithms are 
different for each category of human activity. They take into account the available statistics at 
the corresponding administrative level, and use other parameters that can be considered as 
indicators or proxy data for disaggregation of the statistical activity data. We always use the 
activity/ proxy data from the lowest administrative level as a rule. 

The unique aspect of this approach to developing· a GHG spatial inventory is the ability to 
use different emission factors for separate elementary objects (or even for parts of objects), if 
such data are available, as opposed to using averaged or default values employed in more 
traditional techniques. This approach is extremely relevant for large emission sources such as 
electricity and heat production plants, iron and steel production, cement production etc. since 
we can take specific features of technological processes into account such as the applied filters 
and other equipment as well as the parameters of the fuel used. 

In the final stage, the uncertainties of the assessed emissions are estimated using a Monte­
Carlo approach with symmetric or asymmetric (lognormal) distributions of the investigated 
parameters to compute the 95% confidence intervals. This estimation can be applied to the 
separate emission sources as well as to t\1e aggregated results for the administrative units. 

The emissions in each category of the anthropogenic activity for the elementary objects can 
be visualized in the form of digital maps using different approaches, depending on the source 
type. The results of the spatial inventory can also be presented separately for each category of 
emissions, as well as separately for different fossil fuel types or for different GHG. 

Since information about the administrative assignment of each elementary object (emission 
source) is saved in the database, it is possible to aggregate the emissions to administrative units 
(even for small units like municipalities) v.:ithout any loss in accuracy as with traditional 
techniques of gridded emission, when cells. of reg~lar , grids are used for the estimation of 
emissions for small territory without ta1<tr1g_ into ac;cou~tadministrative boundaries. 

2.2 Input data 

2.2.1 High resolution maps of emission sources 

As mentioned above, to use the proposed technique for the practical implementation of a 
GHG spatial inventory, we need high resolution digital maps of very diverse emission sources, 
which are treated separately as points, lines and areas. Examples of point-type emission sources 
are electricity or combined electricity and heat production plants, cement plants, production of 
glass, ammonia, iron and steel, alumim1-m, pulp and paper, petroleum refining, underground 
mining etc. (Fig. 2a). Using official information on the addresses of companies in this sector, it 
is possible to determine the location of their production facilities (i.e. the latitude and longitude) 
using Google Earth (TM). As the spatial resolution of Google Earth (TM) imagery can be 
several meters to centimeters, the point-type emission sources are very accurate for the purpose 
of building the spatial inventory of GHG emissions. Exceptions are when power plants consist 
of multiple stacks. For example, in the Burshtynska power plant (Ukraine), there are 3 stacks 
(heights of 250, 250 and 180 meters) with distances of around I 00 meters between them. 
Although we can accurately locate each stack, it .is not possible to split the activity data for 
these stacks so an average location is chos1,ni to repres.en:t point sources of this type. 

Road and railway transport systems represent examples of line-type emission sources 
(Fig. 2b). To construct maps of these sources, we used OpenStreetMap (Jokar Arsanjani et al. , 



2015), which is a community-based map built through a combination of digitizing very high 
resolution imagery and paper-based field surveys or with OPS-enabled devices. The spatial 
resolution of this source of data is also very high. To retain administrative information, roads 
and railways are additionally split by administrative boundaries into segments, which we 
consider as separate elementary objects in the inventory. The number ofline objects is equal to 
the number of roads segments. Information on road category is used as one of the indicators for 
disaggregation of the data on fossil fuel combustion by various categories of vehicle in the 
transport sector. 

Area-type (or diffused) GHG emission sources,or sinks are croplands, settlements, industrial 
areas and forests , among others (Fig. 2c). They consist of a large number of small GHG 
emission sources / sinks which cannot be regarded separately, but as a whole they can be 
considered as one emission source / sink;,-within scitne boundaries. Such area-type objects can 
be small or large and can be of complicated ctmfiguration. In the digital maps, such sources I 
sinks are represented as polygons for all categories under investigation. The number of such 
objects is equal to the number of polygons. The objects that correspond to croplands and forests 
are additionally split by administrative boundaries to retain information on the administrative 
assignment of the elementary objects. To build these maps, we used Corine Land Cover vector 
maps (Corine, 2006), which were created from raster maps· with a resolution of I 00 m. This 
resolution was used for the digital maps of all area-type sources as well as the final spatial 
resolution of the GHG spatial inventory. 

Note that all point-, line-, and area-type sources are treated as vector digital maps, not raster, 
in order to retain fully the administrative assignment of each object (even at municipality level), 
and we use this information for the aggregation of emissions to the corresponding 
administrative units. 
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Figure 2. Examples of emission sources for the GHG spatial inventory: (a) electricity 
generation plants as point-type sources, (b) roads as line-type sources, and 
( c) settlements as area-type sources. 

2.2.2 Statistical data for Poland and other proxy data 

The GHG spatial inventory for Poland covers an area of 3 I 2,679 km 2, 16 
voivodeships/provinces, 379 powiats/districts and · 2,478 gminas/municipalities. We 
downloaded activity data for different emission categories by province, district and 
municipality (where available) from the Central Statistical Office of Poland (GUS, 2016) and 
the Local Data Bank (BDL, 2016). Examples include the amount of fossil fuels used, data about 
production, number of animals in agriculture, all of which are listed in Table 1. Average 
national emission factors and the activity data at the national scale were obtained from Poland's 
National Inventory Report (NIR, 2012). 

We also used proxy data for disaggregation of the activity data to the level of elementary 
objects. Examples of such proxy data are the power of the electricity generation plants (Topylko 
et al., 2017), population density, data on access to energy sources and the heating degree-days 
in the residential sector (Danylo et al., 2017), the gross value production in the industry sector 



(Charkovska et al., 2017), car numbers and road categories in the road transport sector. The full 
list is provided in Table 2. 

In those cases where it was possible, the emission coefficients and parameters that reflect 
the territorial specificity of the emission and absorption processes were applied in the emissions 
calculation. For example, when calculating the accumulated carbon in forests, we used 
the information from the Local Data Bank (BDL, 2016) on the species composition, the age 
structure, etc. at the level of districts/po.y,'iats and municipalities/gminas. 

3. Results 

3.1 The spatially explicit GHG inventory for Poland 

Using the digital maps of the GHG emission sources I sinks in Poland and the algorithms for 
activity data disaggregation, a geospatial database was created. The GHG emissions / 
absorptions were then estimated using appropriate mathematical models. We used 
disaggregation algorithms and mathematical .models of.emission processes from the literature 
to create the GHG spatial inventory as follows: 

• for fossil fuel usage (Boychuk et al., 2014 ), for electricity and heat production (Topylko 
et al., 2017), for the transport categories (Boychuk et al., 2012; Valakh et al., 2015), for 
the residential sector (Danylo et al., 201-7), and for industry (Halushchak et al., 2016); 

• for emissions from fossil fuel extraction and processing (Halushchak et al., 2015); 
• for the industrial, agricultural and waste sectors (Charkovska et al., 2017); 
• for forestry and land use change (Striamets et al., 2014). 
The total emissions in CO2-equivalents were then calculated for each elementary object 

using the global warming coefficients, to aggregate the separate emissions. These results were 
obtained at the level of elementary objec;;ts, i.e. point-, line- and area-type sources of emissions. 
As an example, the total GHG emissions in the transport sector by road type for one Polish 
province are presented in Fig. 3. 
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Figure 3. Total GHG emissions in the transport sector by road type (Subcarpathian province, t/km2, 
CO2-equivalent, 2010). (1) national, (2) province/voivodeship, (etc.) district or 
community roads; and the following road types: highway, express route, dual 
carriageway, express carriageway, dual carriageway for heavy traffic up to 11.5 t per 
axle, single carriageway for heavy traffic up to 11.5 t per axle, dual carriageway for 
heavy traffic up to 10 t per axle, single carriageway for heavy traffic up to I 0 t per 



axle, dual carriageway up to 8 t per axle, single carriageway up to 8 t per axle, dual 
carriageway, single carriageway, other with paved surface, dirt road and city road 

To calculate these emissions, we took into accounithe road categories, as specified in Fig. 3. 
We analyzed the following types of vehicles: scooteis, motorcycles , cars, buses and priority 
vehicles, and used the traffic intensity fact'ors estab)ished by experts for these vehicles (Valakh 
et al. , 2015). On this basis, we calculated ihe amount of gasoline, diesel and liquefied petroleum 
gas (LPG) used by different types of vehicles on each segment of the road. Then we calculated 
the emissions of the carbon dioxide CO2, methane CH4, and nitrous oxide N2O from burning 
gasoline, diesel and LPG, separately, for all types of vehicles and for each road segment. Using 
the global warming potentials of each GHG, we calculated the total emissions from each road 
segment. 

Similar calculations of GHG emissions were done for all categories of anthropogenic 
emissions considered here. In the result, the spatial distributions of the GHG emissions 
(separately for the different gases as well as the total) at the level of the point-, line-, and area­
type emission sources were obtained. These data for each category of emissions can be 
downloaded from www.wwwwww {this link will be specified} . 

In the final stage, the point-, line-, and area-types emission sources for each emission 
category summed to calculate the total emissions. In order to do this, we overlaid a grid on top 
of the vector layers where each grid cell is represented .as a polygon feature. The grid cells were 
then split by administrative boundaries into separate elementary objects as shown in Figure 4 
so that each grid cell retains information about the corresponding administrative units. For 
example, in the central cell in the lowest level the road 'crosses the administrative boundary. 
Hence, it is assigned in this cell partly to the admjnistrative unit in the left side of the cell 
(area 17), and partly to the unit in the rigll.t side .(area 18/In this way, the total emissions from 
all categories can be calculated. Any grid size _can be chosen as long as it is larger than 100 m 
due to the limit of the data used to derive the · area-type emission sources. However, for 
visualization purposes, we used a 2 km grid size for calculating the emissions. 

objects 

Figure 4. Combining diverse GHG emission sources into a grid where the cells are 
split by administrative boundaries into separate elementary objects of the 
vector map. 



Figure 5 provides a map of the total GHG emissions for all categories of the energy, industry, 
agriculture and waste sectors for Poland and for the Silesian voivodeship, which is the most 
industrialized Polish province. An alternative representation is provided in Figure 6 for the 
Silesian province in Poland using a prism map arid the square root of the emissions for better 
visualization of the results. For the purpose of visualization, the results have been aggregated 
to a regular 2 km grid although the data are available at a spatial resolution of 100 m. 

As mentioned previously, the total emissions can be calculated for any administrative unit 
at the level of gmina/municipality, powiat/district or voivodeship/province without any loss of 
accuracy. Figure 7 shows the total GHG emissions by sector in Poland at a provincial level 
while Figure 8 focuses on emissions in the energy sector, which has the largest influence on 
total emissions. 

Figure 5. Total GHG emissions in Poland and for the Silesian province (all 
categories without LULU CF, 20 I 0, Gg/cell area, CO2-equivalent, 
2 km grid size) 
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Figure 6. Prism-map of specific GHG emissions from all sectors/categories of human 
activity without LULUCF in Silesia province at the level of elementary objects 
(CO2-equivalent, Gg/km2, square roo~\scale, 2 x 2 km, 2010) 
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Figure 7. Total GHG emissions by,wrovince ·arid sector (Poland, 
CO2-equivalent, 2010) ' '.• · 
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Figure 8. Total GHG emissions in the energy sector by province and 
sub-sector (Poland, Gg, CO2-equivalent, 20 I 0) 



3.2 Uncertainty analysis 

The variables and parameters used in the GHG inventory are often highly uncertain (IPCC, 
2001 ). These unce1iainties are associated with a lack of knowledge about emission processes, 
inaccurate measuring instruments, etc. (Ometto, 2015; White, 201 !). There are a number of 
potential uncertainties in the GHG spatial inventory produced here, which can arise from the 
following factors: 

a) uncertainty in the geolocation of emission sources and sinks; 
b) unce1iainty in the aggregated activity/ statistical data; 
c) uncertainty in the proxy data representation (uncertainty in the spatial 

disaggregation of the activity data to the level of the elementary objects using 
disaggregation algorithms and disaggregation coefficients on the basis of some 
indicators or proxy data); ·· 

d) uncertainty in the proxy data values; 
e) uncertainty in the proxy data geolocation; 
f) uncertainty in the emission factors. 

When preparing gridded emissions 'in a bigger regions, the accuracy of the geolocation of 
sources plays a key role in the uncertainty of the results (Oda et al., 2017). However, this factor is 
not considered in this study because the uncertainty in locating the point- and line-type 
elementary objects is small, especially for big emission sources since we used Google Earth 
(TM) and visual inspection of the sources. We created vector maps of emission sources and 
determined their geographical coordinates very precisely instead of using a raster grid employed 
in other approaches. Only power plants with multiple stacks make some problems, as we model 
such group of stacks as one stack with average parameters. This introduces an uncertainty in 
the geolocation but is neglected in this study. The uncertainty in the location of the area-type 
(diffused) emission sources/ sinks is a function of the minimum mapping unit of the Corine 
Land Cover maps (Corine, 2006), which is 100 m, and the accuracy of this product which is 
x¾. 

Regarding the uncertainty of the input statisticai.data such as the uncertainty of the calorific 
values or emission factors, data from v,arioi.1s: soui-ces (IPCC, 2001; NIR, 2012; GUS, 2016) and 
other studies (e.g. Hamal 2009) have ~.(len' used. For these variables, we used symmetric and 
asymmetric (lognormal) distributions, and. 95% confidence intervals. 

As described above, the algorithms for disaggregation of the activity data are based on 
certain proxies, the values of which were mostly fixed using statistical data. Therefore, it was 
assumed that the uncertainties in the proxy data values are the same as for the statistical data 
used. For some categories of human activities, such as in the residential sector, the uncertainties 
of disaggregated data were evaluated by comparison with similar data from other known 
sources (GUS, 2016; BDL, 2016). These results are presented in a number of different studies 
(Topylko et al., 2017; Danylo et al., 2017; Halushchak et al., 2016; Halushchak et al., 2015; 
Charkovska et al., 2017). 

Based on these input uncertainties, w~ estimated the distributions of the emissions using the 
Monte-Carlo method as the mean value and the lower and upper limits of the 95% confidence 
intervals. For point-type sources, we estimated the uncertainty of the results separately for each 
source. We also analyzed the sensitivity of the total uncertainty to changes in the separate 
component uncertainties such as the statistical data, the calorific values and the emission 
factors. These results are presented in a number of papers (Topylko et al., 2017; Danylo et al., 
2017; Halushchak et al., 2016; Halushchak et al., 2015; Charkovska et al., 2017). 

As the number of elementary objects for line- and area-type sources are large (typically tens 
of thousands, as in the residential or agrjcu\t~re,sectors), we also evaluated the uncertainties of 
the results and their sensitivity to charigesV(\he uncertainties of the separate components using 
the Monte-Carlo method, but at the provirice)evel. 

The influence of the above mentioned factors were analyzed separately. For the combined 
investigation of the factors, the approach presented in Hogue et al. (2017) can be applied. The 



learning process outlined in Jonas et al. (2017) can be used for the continual improvement of 
GHG emission inventories and uncertainties. · 

4. Discussion and Conclusions 

The approach presented in this paper results in a high resolution GHG spatial inventory 
composed of point-, line-, and area-type emiss'ion soui'ces I sinks. The spatial analysis is carried 
out directly at the level of these sources as vector features in contrast to more traditional grid­
based emission approaches. Consequently, infoimation on the administrative assignment of 
corresponding emission sources (plants, settlements, ,:oacl segments, crop lands, etc.) is retained, 
and this, in turn, makes it possible to aggregate the' fi(la]· results to different sub-national levels, 
even down to sub-municipalities without' L1ec;reasingthe accuracy of results . The approach also 
enables the display and analysis of contiib'tliiorts t1'orii' all territories, even very small ones, to 
the overall emission process. This approach 'a!so -all6ws for the production of a GHG spatial 
inventory for all categories of human activities, for all GHGs and for all fossil fuel types 
separately, which is important for the analysis of emissions by sector and the subsequent 
effectiveness of local decision making on emission reductions. Moreover, each value from 
traditional national inventory reports can be represented spatially. Such an inventory provides 
a considerable amount of new knowledge about emission processes, which may be very useful 
for decision makers and scientists. 

In principle, according to this approach, the spatial inventory of the GHG emissions is 
carried out by the 'bottom-up' method, but there exist in it also elements of the 'top-down' 
assessment, since we disaggregate the available statistical or proxy data to the level of 
elementary objects, that is the point-, line-, or area-type sources of the GHG emissions I sinks. 
Therefore, this technique can be classified as a hybrid approach to forming the GHG spatial 
inventory. However, the approach makes it possible to fully use the available, even partial 
information about the territorial specificity of the emission or absorption processes, especially 
the specific features of the fossil fuels used, and the -local technological parameters. 

The results of the spatial inventory of the GI;IG. emissions I absorption for Poland 
demonstrate an unevenness of these processes, like very high emissions in the industrial 
Silesian region and low emissions in th·e strongly ,forested Masuria Lakes district. Such an 
unevenness is typical for many categoriei;'bf a.11ihr61\ogenic activity. A positive aspect of this 
is, that the spatial inventory enables displayiiig a re~! contribution of each territory to the overall 
emission processes. The results presented in this form show the emission values and their 
structural features , which are of interest to authorities to support well-grounded decision 
making. 

Since the spatial analysis takes into account the territorial specificity of many parameters 
that affect emissions or removals of the greenhouse gases ( e.g. the differentiated characteristics 
of the fossil fuel used in the energy sector, the climatic conditions and the energy sources 
availability in the residential sector, the species and age composition of forests, and many 
others), the total inventory for the province/country as a whole becomes more precise than the 
traditional inventory at the national level, which do not take into account any spatial 
components and province specificity. Moreover, traditional inventories at the country level are 
useless for any local analysis. To give an example, high spatial resolutions is needed in 
modelling local dispersion of emitted gases . that enables comparison of their atmospheric 
concentration with measurements., that can be used for analysis of reliability of the inventory 
data. 

Estimation of uncertainties of the GHG spatial' inventories is a complicated task, because it 
requires examination of influences of many factors, like uncertainty of the emission sources 
geolocation, uncertainty of the aggregated activity / statistical data, uncertainty of the proxy 
data representation, uncertainty of both these,data val11es and their geolocation, and uncertainty 
of the emission factors. Due to well inspected data,,:\n the proposed approach some of these 



uncertainties are kept smaller in comparison of other studies, particularly the uncertainties 
connected with location of big point-type emission sources. 
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