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Abstract 

(Corresponding author - Zbigniew Nahorski, 
email: Zbigniew. Nahorski@ibspan. waw. pl) 

Agricultural activity plays a significant role in the atmospheric carbon balance as a source 
and sink of greenhouse gases (GHGs) and has high mitigation potential. The agricultural emissions 
display evident geographical differences in the regional , national , and even local levels, not only 
due to spatially differentiated activity, but also due to very geographically different emission 
coefficients. Thus, spatially resolved inventories are important for obtaining better estimates of 
emission content and design of GHG mitigation processes to adapt to global carbon rise in the 
atmosphere. This study develops a geoinformation approach to a high resolution spatial inventory 
of GHG emissions from the agricultural sector, following the categories of the IPCC guidelines. 
Using the Corine Land Cover data, a digital map of emission so urces is built, with elementary areal 
objects that are split up by administrative boundaries. Various procedures are developed for 
disaggregation of available emission activity data down to a level of elementary emission objects, 
conditional on covariate information, such as land use, observable in the elementary object scale. 
Among them, a statistical scaling method suitable for spatially correlated areal emission sources is 
applied. As an example of implementation of this approach, the spatial distribution of CH. and N2O 
emissions was obtained for areal emission sources in the agriculture sector in Poland with a spatial 
resolution of 100 m. We calculated the specific total emissions for different types of animal and 
manure systems as well as the total emissions in CO, -equivalent. We demonstrated that the emission 
sources are located highly non-uniformly and the emissions from them vary substantially, so that 
average data may provide insufficient approximation. In our case, over 11 % smaller emission was 
estimated using spatial approach as compared with the National Inventory Report where average 
data were used. In addition, we quantified uncertainties associated with the developed spatial 
inventory and analysed the dominant components in total emission uncertainties in the agriculture 
sector. We used the activity data from the lowest possible (municipal) level. The depth of 
disaggregation of these data to the level of arable lands is minimal, and hence the relative uncertainty 
of spatial inventory is smaller when comparing with traditional gridded emissions. The proposed 
technique allows us to discuss factors driving the geographical distribution of G HG emissions for 
different categories of the agricultural sector. This may be particularly useful in high resolution 
modelling ofGHGs dispersion in the atmosphere. 

Keywords: GHG emissions, spatial inventory, agriculture sector, uncertainty, geo-information 
system, high resolution (big) data. 

1. Jntroduction 

During the last century, the environment has experienced significant global 
climate change (IPCC 2014). By now, research has affirmed that to a large extent, 
climate change is the result of anthropogenic activities (Cook et al. 2016). 
According to the latest assessment report of the Intergovernmental Panel on Climate 
Change (IPCC), human activities have to be attributed to be the main reason of this 
change, with above 95% degree of confidence (IPCC 20 I 3). Global climate change 



has seriously impacted the economy of a number of countries and, consequently, 
humanity as such. For example, higher frequencies of droughts and floods have 
been observed universally, causing significant reductions in agricultural production 
(Lesk et al. 2016). In turn, agricultural production causes considerable amounts of 
greenhouse gases (GHG) and mainly carbon dioxide (CO2), methane (CH4) and 
nitrous oxide (N2O) (IPCC 2006). Therefore, achieving the 2°C limit target will not 
be possible without a significant reduction of GHG emissions from the agriculture 
sector (Wollenburg et al. 2016). 

The share of the agricultural sector in global total GHG emissions is about 
13% (in 2012). Agriculture is responsible for 53% of global non-CO2 emissions, 
and therefore it has essential mitigation potential and costs of reducing GHG 
emissions (Beach et al. 2016; Gerber et al. 2016; Johnson et al. 2007; Smith et al. 
2008). Due to meteorological conditions, development level and many other 
factors , the share of agricultural emissions is not the same around the World. This 
can be illustrated by the example of the European Union (EU) member states where 
Ireland has the largest share of the agricultural sector in its total GHG emissions 
(30.77%), while the smallest is in Malta (3.23%), with the average share for EU 
equal 10.35% (in 2012) (AGHGS 2017). At the same time, in the absolute tenns 
the largest emissions in the agriculture sector are in France (89.3 million tonnes of 
CO2-equivalent), Germany (69.5), United Kingdom (51.8), and Spain (37.7). 
Poland, with 36.7 million tonnes of CO2-equivalent is in the fifth place. 

If we consider non fossil fuel GHG emissions, the main categories of GHG 
emissions in the agriculture are enteric fermentation, manure management and 
agricultural soil (IPCC 2006). The livestock farming plays an important ecological, 
economic and social role in various parts of the world (Havlik et al. 2015). 
According to IPCC (2006) the emissions ofGHG from the animal sector are mainly 
a result of enteric fermentation ( dairy and non-dairy cattle, sheep, goats, horses and 
pigs) where methane emissions are produced in large quantities during the digestive 
process of ruminants, and decomposition, collection, storage and use of animal 
manure in various storage systems (manure reservoir in solid and liquid forms, 
separately). So far, science has not evaluated the long-term trend ofGHG emissions 
from the animal sector separately for developed and developing countries (Caro et 
al. 2014). Apart from livestock, cultivated lands (arable lands) manured by various 
kinds offertilisers can be regarded as areal sources of emissions, with leaching and 
runoff ofnitrous oxide and other nitrogen compounds (Butterbach-Bahl et al. 2013). 

Emissions from agricultural activities have been a subject of many studies, 
see e.g. a review by Snyder et al. (2009). Some types of emissions have attracted 
higher attention from the scientific community due to their more complex nature 
(Ogle et al. 2013). For example, Herrero et al. (2015) published a review of the 
problems resulting from the livestock production. The publications emphasise the 
large spatial variations of emissions, due to e.g. different soil types, different 
climatic parameters and water conditions or different fertilisation strategies and 
manure management practices. Some publications are devoted to regional or 
national studies. For example, methane emissions from agricultural activities in 
China have been analysed by Fu & Gu (20 IO); measurements of N2O emissions in 
Europe from several grassland sites have been reported by Soussana et al. (2007); 
N2O emissions from arable land, calculated by simulations using the DNDC-Europe 
model, have been evaluated by Leip et al. (2011); emissions from the livestock 
sector in the EU have been calculated using the CAPRI model by Weiss & Leip 
(2012). As far as gridded emissions are concerned, Yao et al. (2006) estimated 
methane emissions from rice paddies in China, with a spatial resolution of 10 km 
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x 10 km; EDGAR (2017) published gridded emissions from enteric fermentation, 
manure management, and agricultural soil with a spatial resolution of 0.1 °x0. I 0 

latitude and longitude (about 11 x 11 km for the equator). 
In order to plan the strategic development of individual regions and evaluate 

their mitigation potential, it is more adequate to build spatial emission inventories 
on small areas of the territory, see e.g. Trombetti et al. (2017). This is one of main 
reasons why estimation of emissions with high spatial resolution is a subject of 
many studies, but a vast majority of them dealt with emissions from fossil fuels 
consumption, see the list of references in Bun et al. (2018). At the same time, well­
focussed and more intensive emission mitigations, when applied widespread, will 
have in effect a positive impact on achieving the global target limit of GHG 
concentration in the atmosphere. 

Although all of the above mentioned studies related to agriculture have 
adopted a spatial or spatiotemporal approach, this is usually confined to larger 
territories. Therefore a special interest exists for mapping GHG emissions in the 
main categories of the agriculture sector with resolution that matches spatial 
differentiability of agricultural activity. 

The IPCC has developed a universal methodology of GHG inventory in 
different categories of anthropogenic activity, including agriculture (IPCC, 2006), 
that standardises procedures of preparing national inventory reports of GHG 
emissions at the country level. However, these methods are ineffective in the 
evaluation of emissions at the local level, because they do not take into account the 
specificity of emission processes and irregularity of territorial distribution of the 
emission sources. 

Relevant information about high resolution activity data needs to be acquired 
from national/regional totals. A common approach of the spatial allocation of data 
into smaller spatial units (such as districts, municipalities and finally grid cells) is 
their disaggregation in proportion to some related indicators (proxies) that are 
available in a finer scale. Kim & Dall'erba (2014) found a high spatial correlation 
of fossil fuel CO2 emissions from crop production in the US; this might also apply 
to other GHG emissions in the agricultural sector. So, in advanced analysis, it is 
worth considering the correlation between some proxy data, for example using tools 
of geostatistical modelling such as universal kriging (Young et al. 2016) or 
autoregressive methods, and among them conditional (Horabik & Nahorski, 2010) 
or spatial (Kim & Dall'erba, 2014) autoregression models. 

The IPCC (2001) recommends the uncertainty analysis of any GHG inventory 
due to its possible high values. This analysis can be mostly used also for GHG 
spatial inventory (Bun et al. 2007). Following the IPCC (2001) recommendations, 
uncertainties of the compiled emissions have been assessed in some papers. For 
example, Zhang et al. (2014) and Zhu et al. (2016) performed uncertainty 
calculations for rice paddies and livestock, respectively, applying the Monte Carlo 
method. Berdanier & Conant (2012) used data from 32 national emission 
inventories and a model for emission ofN2O from soils to estimate regional model 
parameter distributions using the Bayesian Markov Chain Monte Carlo method to 
compute emission distributions. 

The main objective of this study is to develop an approach for high resolution 
spatial inventory of GHG emissions in the agriculture sector using statistical data 
and land cover map. This approach is implemented in the agricultural sector of 
Poland, to manifest its ability of achieving the goal. Using the created digital maps 
of emission sources and mathematical models, we carried out an inventory of 
emissions and obtained sets of geospatial GHG emission data for each elementary 
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areal object due to enteric fermentation, manure management, agricultural soils, 
etc. , according to the agricultural sector structure in the IPCC guidelines. The 
maximum resolution of this spatial inventory is determined by the resolution of the 
used digital maps of land use and, in our case, does not exceed 100 m. Uncertainty 
of calculated emissions is estimated and their mitigation potential is evaluated. 

For disaggregation of activity data published for higher level administrative 
units (districts) to the municipalities level, we applied an original conditional 
autocorrelation (CAR) method that is based on Horabik & Nahorski (2015) 
approach, and takes into account spatial correlation of the data, thereby enabling us 
to obtain more accurate disaggregation. 

The approach to spatial inventory presented in this study can be used for many 
other countries. It particularly fits to countries with nonhomogeneous agricultural 
structure, which is the case of Poland. 

2. Input data 

2.1. Study area description 

Poland, one of EU countries, covers an area of 312 km2 with a population of 
over 38 million people. It is divided administratively to 16 provinces 
(voivodeships), 380 districts (powiats), and 2478 municipalities (gminas), the latter 
include urban (302), urban-rural (62 l), and rural (1555) municipalities (PBI 2017). 
Two latter types are considered in the study. 

Poland plays a significant role in the European agriculture, as it has a high 
potential for intensification and technological advancement as compared to western 
EU countries. At the same time, it is much more similar to many developing 
countries within and out of EU. That is why it is an interesting case for 
investigations. 

Polish agrotechnical practices diverse a lot spatially due to different traditions 
in territories annexed to three neighboring countries during partition of the Polish­
Lithuanian Commonwealth at the end of the 18th century that lasted for 123 years. 
This diverse still exists despite a century from restoration of Polish independence 
after the 1st World War. 

Big recent changes in the Polish agriculture have occurred since start of the 
economic transformation to the market economy in 1989 and later when Poland 
became a member state of the European Union in 2004. The main restructuring was 
connected with privatization of the arable land (95,6% according to the 2010 
census), its concentration in larger farms and commercialization (CSOP 2010). On 
the other hand, quick urbanization caused partitions of many arable land and their 
use for housing and recreation. Nevertheless, traditional small fanns still prevail. In 
20 JO the average farm acreage was 6.85 ha (CSOP 2010). 

Despite recent development there is sti II big potential for further 
intensification of the Polish agriculture. For this, however, strategic decisions are 
needed. Territory of Poland is located in the temperate climatic zone with strong 
influence of polar and tropical air masses from the north-south direction, and 
maritime and continental from the west-east one. Polish agriculture is partly 
temperature- and partly water-restricted. Climate change models predict increase of 
vegetation period length but at the same time drier condition in most of the Polish 
territory and in a consequence decrease of crop yields (Szwed et al. 2010). So, 
thorough changes in agrotechnical practices will be needed. Emissions ofGHG can 
be used in them as one of the considered criteria. 
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2.2. Input datasets 

In the spatial analysis of emission processes in the animal subsector in Poland 
we took into account the IPCC (2006) categories 4.A 'Enteric Fermentation' and 
4.B 'Decomposition, Collection, Storage and Use of Animal Manure ' ). In the plant 
growing subsector we considered the categories 4.D ' Agricultural Soils ' and 4.F 
'Field Burning of Agricultural Residues'. According to the basic IPCC (2006) 
approach, the GHG emissions depend on activity data and emission factors , which 
were provided for the study area. We also used high resolution maps of analyzed 
territory, and implemented procedures for disaggregation of the data to smaller 
plots with a homogeneous agricultural activity. 

Statistical data on animal stocks were taken from Local Data Bank (BDL 
20 I 7), which contains data on number of heads for dairy cattle, non-dairy cattle, 
sheep, goats, horses, swines, and poultry, acquired from Agricultural Census 2010 
(CSOP 2010). These data are given separately for farms and households. The data 
were gathered for the lowest administrative level of municipalities. The data which 
were available only for the districts, like horses and goats, were disaggregated to 
the municipality level using our own developed method described in the next 
section. 

The following input data were used for the considered GHG categories: 
- category 'Enteric Fermentation ' : the map of rural settlements; number of 

dairy cattle, non-dairy cattle, sheep, swine, poultry, goat, and horse heads 
at municipal level (BDL 2017); emission coefficients (NIR 2012; IPCC 
2006), and areas of rural settlements as proxy data; 

- category 'Manure Management': the maps of rural settlements and arable 
lands (EEA 2006); number of animals at municipal level (BDL 2016); data 
on nitrogen excretion per animal waste management system and emission 
coefficients (NIR 2012; IPCC 2006), and areas of rural settlements and 
arable lands as proxy data; 

- category 'Agricultural Soils ' : the map of arable lands (EEA 2006); data 
on nitrogen input from agricultural processes, area of cultivated organic 
soil at national and provincial levels (CSOP 2010; NIR 2012); emission 
coefficients (JPCC 2006), and areas of arable lands as proxy data; 

- category 'Field Burning of Agricultural Residues ': the map of arable lands 
(EEA 2006); activity data according to IPCC (2006) at national and 
provincial levels (CSOP 2010; NIR 2012); emission coefficients (IPCC 
2006). 

From Corine Land Cover 2006 map (EEA 2006) we used the classes 2. I 
'Arable Land' , 2.3 'Pastures' , and 2.4 'Heterogeneous Agricultural Areas ' . This 
raster map with a resolution of I 00 m was converted to a vector one. The accuracy 
of this product is 87.82% (Buttner et al. 20 I 2). 

3. Research methods 

The main idea of our approach consists in developing a methodology to 
compile the spatial inventory of GHG emissions directly on the level of emission 
sources. The gridded emissions (Fig. I) are calculated only at the final stage, for 
presentation. Therefore our main attempt was in proper definitions of possibly 
homogenous emission sources. Agricultural fields/pastures are examples of such 
area emission sources. In the animal subsector (in the IPCC categories ' Enteric 
Fermentation' and 'Decomposition, Collection, Storage and Use of Animal 
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Manure'), there is no practical possibility to monitor emissions from individual 
animals, so the total emissions from all animals of one species within each rural 
locality in general were treated as one emission source. In the proposed 
mathematical models, it was also taken into account that statistical data on livestock 
and poultry are published separately for the agricultural enterprises and the 
households in municipalities. 

I 
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Figure 1. Flow chart of geoinformation approach to high resolution spatial inventory of G HG 
in the agriculture sector 

We analyze the sources of spatial emissions for all categories of the 
agriculture sector covered by the IPCC (2006) guidelines, treating emission sources 
as areal (diffused) objects. The digital maps of these sources are built using Corine 
Land Cover vector map (EEA, 2006) as polygons, without using any regular grid, 
contrary to usual practice. Such elementary areal objects (polygons) are split up by 
administrative boundaries of regions (voivodeships in Poland), districts (powiats) 
and municipalities (gminas). Subsequently, we create algorithms for calculating 
GHG emissions from these objects using the activity data and the emission 
coefficients. 

Pre-processing input data includes: 
- converting land cover map to a vector format, in order to have a possibility 

to keep information on administrative assignment of each settlement, agricultural 
land etc. without loss of accuracy; 

- disaggregation of the statistical/activity data on livestock and poultry to 
the municipalities level (only for species given in (BDL 2017) solely on the district 
level, e.g. horses and goats); 
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- disaggregation of statistical data from municipalities to emission sources 
level ( arable lands, pastures, and rural settlements). 

a) 

- <27 

- 27-50 

- 50 - 81 

- 81 - 130 

. , 130 

b) 

Figure 2. Original data on number of horses in municipalities ofKuyavian-Pomeranian province (a) 
as well as predicted values for the model CAR (b) 

For the activity data assessment, we developed algorithms for disaggregation 
of available statistical data to the lowest possible level of elementary areas. In 
particular, for spatial allocation of livestock census data from district to 
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municipality level, we present a novel approach based on the conditional 
autoregressive (CAR) structure, following the basic model proposed by Horabik & 
Nahorski (2014). Regarding an assumption on residual covariance, it allows for 
allocating GHG activity data to finer spatial scales, conditional on covariate 
information, such as land use, observable in a coarse grid (see Appendix). We 
demonstrate the usefulness of the proposed technique for GHG spatial inventory in 
the agricultural sector, using as an example an allocation of livestock data (cattle, 
pigs, horses, poultry, etc.) from the district to the municipality level in Poland, based 
on the agricultural census 2010 (BDL 2017). In particular, for horses, the data were 
available also in municipalities, and this fact enabled us to validate the proposed 
disaggregation model. Only rural and urban-rural municipalities (according to 
official administrative classification) were considered here. 

As explanatory (proxy) variables, we used the average population density 
within municipalities and land use information. For the latter, the Corine Land 
Cover map (EEA 2006) was employed. For each municipality, we calculated the 
area of the agricultural classes, which may be related to livestock farming. Three 
Corine classes were considered (the class numbers are given in brackets) : arable 
land (2.1), pastures (2.3), and heterogeneous agricultural areas (2.4). These proxy 
variables were statistically tested in the model for their significance and 
insignificant ones were dropped. The estimation results (parameters with their 
standard errors) are presented in the Appendix (Table 3). The models with and 
without a spatial component, denoted CAR and LM (linear model), are compared. 
We also added the results obtained for allocation proportional to population in 
municipalities, called there nai"ve (NV) which is a straightforward and commonly 
used approach. 

Taking into account the residuals, the mean squared error, and the sample 
correlation coefficient between the predicted and observed values, we demonstrated 
that the spatial CAR structure considerably improves the results obtained by using 
the LM model , see Table 4 in the Appendix. The NV approach provides reasonable 
results, but the CAR model outperforms it in terms of all the reported criteria. The 
decrease of the mean squared error ranged from 3,374.4 for NV to 3,069.4 for CAR, 
with an improvement of9%. Fig. 2 presents the maps with data on number of horses 
in municipalities (a) as well as the values predicted with the model CAR (b). For 
better visibility, Fig. 2 shows the maps for a single province (Kuyavian-Pomeranian), 
although the disaggregation was made for the whole territory of Poland. It should 
be noted that the obtained improvement depends on the spatial correlation strength 
of the activity data. In particular, with weak correlations, application of the CAR 
technique may not improve disaggregation. 

For final disaggregation of activity data from municipality level to the level 
of emission sources, it was assumed that the animals in the households in 
municipality settlements are distributed proportionally to the rural population (the 
rural population map was created using corresponding polygons of Corine land 
cover vector map (EEA, 2006) after the removal of polygons of cities; accordingly, 
the rural population of the municipalities was disaggregated between rural 
settlements in proportion to their area). The ratio of the population in each analysed 
areal emission source (settlement in this case) and the population in municipality 
was used as a proxy for disaggregation of the number of animal livestock in the 
households within the municipality to the level of emission sources. 

The statistical data on livestock and poultry within agricultural enterprises 
were therefore disaggregated to the level of emission sources (arable land, 
grassland, etc. in this case) in proportion to the area of these lands belonging to the 
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farm. The ratio of the area of each agricultural land and the sum of such areas of 
the lands in the municipality was used as a proxy for disaggregation of the number 
of animal livestock in the farms within the municipality to the level of emission 
sources. 

The total annual emission of methane from enteric fermentation of animals in 

the households and agricultural enterprises within elementary area oil were 
calculated using the model: 

E~~tFernf 8n}= ~k•d(R111 )x i-';(8n)+ Atgr(R111 )x S1(8n)]xK1CH4 (811 ), n = 1,N, 
t=I 

where Aj"d(R3,n,) and A? r(R3,nJ are the statistical data on the number of the t-th 

animal species (dairy cattle, non-dairy cattle, sheep, goats, horses, pigs, poultry) in 
individual rural households, denoted by ind in the superscript, and agricultural 
enterprises (agr in the superscript) for the chosen year in municipality Rm , which 

contains the elementary area 0n ; v; (o,,) and S1 (o,,) are the mentioned above ratios 

for the population and agricultural land in an analysed elementary area 0n, used for 
disaggregation of the municipality level livestock data on the t-th animal species in 
the households and agricultural farms from municipality R111 to the level of the 

elementary area; K 1CH' (oil) is the coefficient of methane emission from enteric 

fermentation for the t-th animal species in then-th elementary area (depending on 
the climate zone in which this area is located) ; EntFerm represents the emissions 
from enteric fermentation . 

To calculate emissions from agricultural soils we considered the arable lands 
treated as areal emission sources. In particular, nitrous oxide emissions from 
agricultural soils occur when the microbial processes of nitrification and 
denitrification in the soils take place. They include direct soil emissions, indirect 
soil emissions and emissions induced by grazing animals. When modelling the 
emission processes in the soil subsector (in the category 'Direct soil emissions'), 
we computed the total nitrogen inputs for (I) synthetic fertiliser applied, converted 
to the amount of nitrogen used per-hectare of the planted crop; (2) animal waste 
applied to soils as fertiliser (using as statistical data the number of each animal type 
and the annual per-head amount of nitrogen produced by an animal type), (3) 
nitrogen fixation by N-fixing crops (using statistical data on sown areas of different 
N-fixing crops, mainly pulses) and (4) nitrogen content of crop residues. The total 
amount of nitrogen input was corrected to account for the fraction of nitrogen that 
volatilises as NOx and NHJ. Emission estimates were obtained by multiplying the 
corrected nitrogen input with the emission factor. 

We treated grid cells as polygons in the vector map to combine the calculated 
methane and nitrous oxide emissions from diverse sources in animal and soil 
subsectors to estimate the total emissions in the agriculture sector. Because vector 
maps were used, it was possible to divide the grid cells into smaller areas when they 
belonged to more than one municipality. The grid size may be arbitrary. It depends 
on the task solved and it is of no importance at this stage, as our spatial inventory 
has been done at the level of emission sources. However, the final grid size cannot 
be smaller than 100 m, because applied land cover map was of this resolution. 
Nevetherless, the emission results that are coded in vector maps, can be easily 
aggregated to the levels of municipalities, districts and provinces without loss of 
accuracy. 
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4. Results 

4.1. The spatially explicit GHG inventories for Poland 

Implementing the above mathematical models and disaggregation algorithms, 
we obtained spatial estimates ofGHG emissions for each IPCC source category in 
the agricultural sector in Poland, i.e. '4A. Enteric Fermentation', '4B. Manure 
Management' , '4D. Agricultural Soils' and '4F. Burning of Agricultural Residues '. 
The inventory was calculated at the level of polygons as areal emission sources 
(rural settlements, arable lands and pastures). Full geospatial data for all emission 
categories at the level of the areal emission sources as well as at that of the grid 
(2 x 2 km) are available in Supplementary Materials. 

0 - 0. 1 
0.1- 1 

• I - 3 
• 3 - 6 • 6 -13 
• 13 - 30 
• 30 -70 
• > 70 

Figure 3. Spatial distribution of annual emissions of methane from enteric fermentation of 
agricultural animals in Poland (Mg/km2, 20 I 0) 

Livestock. The largest emissions in the agricultural sector are from enteric 
fermentation by farm and household animals, such as dairy and non-dairy cattle 
(see Fig. 3 and Fig. 4). The total emissions of CH4 from enteric fermentation of all 
species in 2010 amount to 434.7 Gg, representing 75% of the total emissions in the 
animal sector. The remaining 25% (145.0 Gg) are caused by decomposition of 
animal manure. The highest methane emissions from enteric fermentation are found 
in the Masovian, Greater Poland and Podlaskie provinces, while the lowest are 
observed in the Lubusz province (Table 1). The highest CH4 emissions from 
decomposing manure (IPCC categories 4B 1-4B9) are in Greater Poland, Masovian, 
and Kuyavian-Pomeranian provinces. 

The total national emissions of nitrous oxide from the storage and use of 
animal waste (4B11-4B12 categories) amount to 12.3 Gg (21.2% of total N20 
emission in the agricultural sector): 0.1 Gg for the liquid waste and 12.2 Gg for the 
solid waste, respectively (Table I). 
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Table I. Annual GHG emissions in the agriculture sector in Poland at the level of 
. (2010) provinces 

Enteric Manure management Agricultural Burning of 
Total 

Province 
fermentation soils agricultural residues 

CH,(Gg) CH,(Gg) N2O(Gg) N,O (Gg) CH, (Mg) N,O(Mg) CO,-eq,Gg 

Lower Silesian 8.27 3. 13 0.23 4.37 45.20 0.0521 1,656.46 

Kuyavian-Pomeranian 33.88 14.36 1.10 5.03 54.34 0.0686 3,035.13 

Lublin 30.11 9.83 0.84 3.85 64.15 0.112 2,396.62 

Lubusz 5.19 2.11 0.15 1.68 13.03 0.Dll2 728.29 

Lodz 34.92 12.55 1.03 3.85 48.49 0.0785 2,641.86 

Lesser Poland 16.28 4.43 0.41 1.40 13.66 0.0253 1,058.58 

Masovian 80.71 19.22 1.98 6.40 95.07 0.161 4,999.51 

Opole 9.09 4.67 0.32 1.03 30.53 0.0314 749.05 

Subcarpathian IO.IO 3.50 0.28 1.02 12.34 0.0205 729.21 

Podlaskie 66.27 I 1.15 1.48 2.51 22.23 0.0206 3,126.70 

Pomeranian 14.53 6.35 0.46 3.82 26.14 0.0297 1,795.85 

Silesian 9.51 3.62 0.27 1.20 11.44 0.0125 763.65 

Swit;tokrzyskie 13.61 4.13 0.36 0.84 23.35 0.0446 802.19 

Warmian-Masurian 32.98 7.97 0.82 2.12 26.12 0.0226 1,902.07 

Greater Pol and 60.96 30.62 2.14 5.09 79.60 0.0969 4,444.49 

West Pomeranian 8.40 7.35 0.42 2.32 37.45 0.0356 1,211.97 

Poland 434.81 145.01 12.29 46.53 603.14 0.823 32,141.63 

Total specific GHG CO2-equivalent emissions from the animal sector (4A 
and 4B subsectors) are illustrated in Fig. 5. Our results show that the distribution of 
GHG emissions is highly uneven. The greatest emissions are in the rural 
municipality Wierzchowo (id 3203052) in West Pomeranian province. In this 
municipality, livestock numbers in 2010 are as follows: pigs 829,597, total cattle 
595, dairy cattle (cows) 229, goats 14, sheep 22, horses 23, poultry 5,369. The 
municipality of Wierzchowo covers an area of 230.2 km2; total annual emissions in 
the municipality in 2010 amount to 183,408.6 Mgco2-eq- Therefore, the average 
annual emission per unit of area is 796.7 Mgco2-eq/km2/yr. The municipality 
Wierzchowo consists of 79 grid cells of the area 2 km x2 km. In 27 of them, see 
Fig. 5, the highest specific emissions are between 700 and 2,756 Mgco2-eq/km2/yr. 
This exemplifies a significant local variety of emission magnitude. In the remaining 
52 cells, there are mainly forests and no agricultural activity. The total 183,408.6 
Mgco2-eq emission consists of: 
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1) CH4 emission from enteric fermentation of all species owned by the rural 
population, which is 41.92 MgcH4 (1,048.0 Mgco2-eq); 

2) CH4 emission from enteric fermentation of all species owned by 
agricultural households, which is 1,000.3 MgcH4 (25,008.4 Mgco2-eq); 

3) CH4 emission from decomposition of manure of all species, which is 
3,995.3 MgcH4 (99,882.1 Mgco2-eq); 

4) N2O emission from collection, storage and use of liquid waste, which is 
3.29 MgN20 (980.1 Mgco2-eq); 

5) N2O emissions from collection, storage and use of solid waste, which is 
189.56 MgN20 (56,490.0 Mgco2-eq). 

Figure 4. Annual emissions of methane from enteric fermentation of agricultural animals in 
the provinces in Poland (Mg, 2010). The size of the circles is proportional to 
emissions, see the scale in the legend. The colours show the share of emissions of the 
marked species. 

Cropland. The shares of N2O emissions in the agricultural soils categories 
are 73%, 25%, and 2% for direct emissions (4Dl category), indirect emissions 
(4D2) and grazing livestock (4D3), respectively. Direct soil emissions are due to 
synthetic fertiliser usage (54% of total N2O emission in 4Dl category), animal 
wastes application (34%), cultivation ofN-fixing crops (pulses) (1%), cultivation 
ofother crops (10%), and application of sewage sludge (1%). As an example of the 
most important category, the N2O emissions from category "4DI. Direct Soil 
Emissions" at the level of arable lands are presented in Fig. 6. Geospatial results for 
emissions in other categories are available in Supplementary Materials. 

The share ofN2O emissions from the IPCC category '4F. Burning Residues 
of Crops in the Fields ' in the total emissions from the agricultural sector is relatively 
small, 0.00 l %, that is 0.6 Ggco2-eq, It completes the structure of the emission in this 
sector (Table I) . 
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Figure 5. Specific total GHG emissions in the livestock sector in Poland and the rural 
municipality Wierzchowo, with the highest emissions (grid 2 x 2 km; 
Mg/cell/yr, CO2-equivalent, 20 I 0) 

Figure 6. Specific N,O emissions from IPCC "4D1.Direct Soil Emission" category in 
Poland (at the level of arable lands as areal emission sources, kg/km 2/yr, 2010) 
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Figure 7. Specific total N20 emissions in the agricultural sector in Poland (grid 2 x 2 km, 
kg N,O/km2/yr, 20 I 0) 
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Figure 8. Specific total GHG emissions in the agricultural sector in Poland (at the level of 
emission sources: arable lands, settlements , Mg CO2-equivalent/ha/yr, 20 I 0) 

Total emissions. To calculate specific total CH4 and N20 emissions in 
categories, for different types of animal and manure systems, as well as to easily 
calculate total emissions in CO2-equivalent for different territories, the results are 
aggregated in a regular grid of 2 km x2 km, as described in detail in Bun et al. 
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(2018). Subsequently, the results were aggregated to the larger areas, for example 
the provinces, when needed. 

The specific total N2O emissions in the agricultural sector in Poland are 
presented in Fig. 7 in the regular grid of 2 km x2 km. Total emissions of nitrous 
oxide in this sector amount to 57.84 Gg. The agricultural soils are the main sources 
ofN2O emissions, with a share of 78.76% or 45.56 GgN20. The highest emissions 
of N2O from agricultural soils are found in the Masovian, Greater Poland and 
Kuyavian-Pomeranian provinces, and the lowest emissions in the Swi<,tokrzyskie 
province. 

Total GHG emissions in the Polish agricultural sector in the 2 km x2 km grid 
are presented in Fig. 8. In 2010, the major emissions from agricultural activities 
occur in the Masovian province, representing approximately 15.6% of total 
emissions in Poland; the lowest emissions occur in the Lubuskie province. 

Table 2. Comparison of partial inventories of this study with NIR data 

This study, Gg NIR, Gg Relative difference, % 

Enteric fermentation, CH4 434.81 439.16 0.99 

Manure management, CH4 145.01 143.91 0.76 

Manure management, N2O 12.28 16.81 26.9 

Agricultural soils, N2O 46.55 55.30 15.8 

Comparison with NIR data. The calculated emissions were then aggregated 
to the whole territory of Poland and compared with the Polish annual national 
inventory report on GHG emissions for 2010 (NIR2012). Table 2 contains 
comparison of the inventories compiled in this study with those published by NIR. 
The inventories for CH4 are quite close each other. Those for N2O, known for high 
uncertainty, differ more. But all of them are well within the uncertainty range 
calculated in the next section. In the spatial inventory, we used activity data and 
emission paran1eters at the level of municipalities, which provides more accurate 
data than those obtained in the national inventory, where average values are used. 
In general, our inventories provide lower values than those compiled by NIR, 
particularly for the N2O emissions. When converted to CO2-eq emissions using 
global warming potentials (IPCC 2007), the total for all emissions in our 
calculations is 32,026.8 Gg CO2-eq versus 36,065.5 Gg CO2-eq given by NIR, so 
the relative difference equals 11.2 %. This is in surprisingly good agreement with 
12% reduction of CO2 emission estimate obtained by revision of local activity data 
and emission coefficients, although in a different category of fossil fuel combustion 
and cement production, and distant country of China (Liu et al. 2015). 

4.2. Uncertainty analysis 

Uncertainty of GHG emissions represents a lack of knowledge about the 
actual value of emissions, for a certain area. The total uncertainty of the inventory 
is calculated using uncertainties of all input parameters using the statistical tools 
specified in the IPCC (2006) methodology. For this, uncertainty ranges for emission 
coefficients, statistical data and other paran1eters of the inventory process are 
needed (IPCC 2001). 
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Uncertainty estimates of total emissions at the country level are important in 
analysis of the reduction ofGHG emissions. The uncertainties are not constant and 
depend on the two main factors 'knowledge increase' about GHG 
emission/absorption processes and 'structural changes ' in GHG emissions (Jonas et 
al. 2018). Therefore, increasing knowledge on uncertainty and on reasons for its 
change is important for the reduction of uncertainties in national GHG inventories 
(Boychuk & Bun 2014; Jarnicka & Nahorski 2018). 

Input data for spatial inventory are not exactly known but can be simulated as 
random variables with known (estimated or assumed) distributions. For example, 
the livestock population (activity data) and the specific animal species' GHG 
emission factors can be modelled as random variables. This allows for modelling 
GHG emission uncertainty using the Monte Carlo method. 

We analysed emission uncertainties in the agricultural sector at the level of 
provinces, focussing on enteric fermentation of farm animals (cows, non-dairy 
cattle, sheep, goats, horses and pigs). The uncertainty of statistical data on the 
animal livestock depends mainly on the completeness and reliability of the national 
census methods including different accounting rules for agricultural animals that 
live shorter than one year, such as pigs. Another source of uncertainty are uncertain 
data in the formulas for calculating the methane emission factor. 

·--.. __ 
..... ·­·­·-

Figure 9. Absolute uncertainties of methane emission from enteric fermentation oflivestock in 
provinces of Poland (calculated as 1/2 of95% confidential interval , Mg CO2-

equivalent, square root scale, 20 I 0) 

In the implemented mathematical models of GHG emission evaluation, the 
uncertainty range of the statistical data used for animal calculation are of ±5% 
(normal distribution, 95% confidence interval). For modelling GHG emissions in 
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the category 'Enteric Fermentation' by the Monte-Carlo method, the methane 
emission factor for agricultural animals (IPCC 2001) and appropriate uncertainty 
ranges (±50%, normal distribution, 95% confidence interval) were used. With this 
data, the absolute uncertainties, i.e. half of 95% confidential interval, were 
calculated for Polish provinces using the Monte Carlo method for the statistical data 
from 20 IO (Fig. 9). The highest absolute uncertainties were found for the Mazowian 
province followed by the Podlaskie province and by the Greater Poland province. 
The smallest absolute uncertainties are in the Lubusz province. However, the 
relative uncertainties were similar across provinces and close to 50%. 

5. Discussion 

In this study spatial analysis of the main GHG emission processes in the 
agricultural sector in Poland is performed, in particular from animal enteric 
fermentation, manure management, agricultural soils, and burning of agricultural 
residues. For this, we consider rural settlements, arable lands and pastures as 
emission sources. For each emission category we build mathematical models that 
take into consideration activity data and emission factors as the input data. These 
data were basically acquired from the lowest possible level of municipalities. Some 
statistical data on livestock numbers were, however, available only at the district 
level. To disaggregate them to the municipality level we used a novel conditional 
autoregressive method, following the basic model presented by Horabik & 
Nahorski (2014). The municipality level activity data were further disaggregated to 
the elementary areal emission sources using as proxy the land cover and population 
density data, that allowed us to build a georeferenced database of activity data and 
emission factors and compile high resolution spatial inventory of GHG in the 
agriculture sector. 

The results of this study indicate that the highest specific total GHG emissions 
in the animal sector in Poland, calculated from the 2 km x2 km cell level, occurred 
in the central and northeastern parts of the country. The highest specific emission, 
reaching 700 Mg km-2 yr- 1 of CO2-equivalent in 20 I 0, occurred in the municipality 
of Wierzchowo in the West Pomeranian province, where large pig farms are 
located. An analysis of statistical information on livestock numbers in Poland in 
2010 showed that in this municipality, the number of pigs exceeded 800,000 (CSOP 
2010). This case and many others show that territorial emission distribution in the 
animal subsector is highly non-uniform. Therefore, spatial analysis of GHG 
emissions provides more accurate local data and is a helpful tool in taking effective 
policy measures to mitigate emissions. 

The highest average specific emission, by which we mean specific emission 
calculated from the province level data, ofCH4 for the animal sector is in the north­
east of Poland, in Podlaskie province (3.85 MgcH4/km2), and the lowest in the west 
provinces near Germany border, namely Lubuskie (0.52 Mgrn4/km2), Lower 
Silesian, and West Pomeranian provinces. In sparsely populated Podlaskie province 
the per capita emission of methane in the animal sector is 65 kg, while in densely 
populated industrial Silesian province only 2.8 kg. In all provinces emission of 
methane from dairy cattle enteric fermentation prevails and exceeds 50%. 

The highest specific N2O emissions from manure management occurred in 
some areas of the Kuyavian-Pomeranian province and reached average 13.18 Mg 
km-2 yr- 1 in CO2-equivalent. In this province there is also the highest average 
specific direct emissions of nitrous oxide from soils (82.9 Mg km-2 yr- 1 in CO2-eq), 
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while the lowest is in forested Subcarpathian province (17.0 Mg 1an·2 yr·1 in CO2-
eq). 

The average specific emission of total GHG in the agriculture sector 
calculated from the whole Poland spatial inventory data is equal to 102.5 Mg 1an·2 

yr·1 in CO2-eq, but its distribution is highly spatially nonhomogeneous, from 169.6 
Mg 1an·2 yr· 1 in CO2-eq in the Kuyavian-Pomeranian province with intensive 
agriculture and animal breeding, to 41.0 Mg km·2 yr· 1 in Subcarpathian province. 
The highest per capita emission is in Podlaskie province (2.62 Mg yr·1 in CO2-eq), 
and smallest in Silesian province (0.16 Mg yr· 1), with country average 0.84 Mg yr· 
I 

In all provinces, the highest absolute uncertainties were found for methane 
emission from enteric fermentation of dairy and non-dairy cattle (the largest 
absolute uncertainties of emissions are in Masovian province: 26.6 and 12. 7 Mg yr· 
1 in CO2-eq, respectively). The absolute uncertainties for methane emission from 
enteric fennentation of pigs are smaller, followed by uncertainties of methane 
emission from enteric fermentation of horses and sheep. However, the relative 
emission uncertainties were fairly uniform in the provinces and close to ±50% for 
all methane emissions from enteric fennentation. These uncertainties are greater 
than estimated e.g. by Zhu at al. (2016), who estimated the methane emission 
uncertainty for EU-27 to be 16-19%, but our results are for small territories, so less 
statistical averaging occurs. 

6. Conclusions 

The basic meaning of this study is in presenting a method of spatially resolved 
inventory ofGHG emissions from the agricultural activity. These kind of emissions 
are highly uneven in space, as documented above, both because of very 
differentiated spatially activity and of differentiated emission coefficients. This is 
connected with different soil, water availability, and meteorological conditions, as 
well as with agrotechnical practices that are much different in Polish regions, to big 
extent as a result of their different historical development. Highly space dependent 
conditions are, however, quite typical factors influencing agricultural production in 
many regions of the world. 

Spatial inventory allows for spatially specific use of emission coefficients that 
improves inventory accuracy as opposed to using average coefficients for big 
territories in a country level inventory. Preparation of a spatial inventory requires, 
however, disaggregation of activity data that are usually acquired from statistical 
reports for different administrative units. To minimize as much as possible 
uncertainty introduced by disaggregation, we use as low level of statistical data as 
only known. Moreover, for data which are known only on higher level, we use more 
accurate disaggregation method that takes into account spatial correlation of 
emissions. It is perhaps worth to add that statistical data are usually gathered with 
much better spatial resolution than those published by statistical offices. This gives 
room for further improvement of the final accuracy of spatial inventory. 

Taking into account high uncertainty of the GHG emissions from the 
agricultural activity, more accurate inventory can help in better constraining 
atmospheric concentrations of GHG connected with emission fluxes. Apart of 
possibly higher accuracy of the spatial inventory itself, it provides unique 
possibility of giving input data to atmospheric dispersion models that enable 
confrontation of predicted increment in local atmospheric concentration with the 
real one. Using inverse modelling, it is in principle possible to further improve the 
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accuracy of emissions, see Berdanier & Conant (2012), who reduced this way 
uncertainty ofN2O emissions in world regions up to 65%. 

In comparison to the approaches of other studies, like Gerber et al. (2016), 
Leip et al. (201 I) or Yao et al. (2006), our approach improves considerably the 
spatial resolution ofGHG spatial inventory, which is possible by a novel and more 
detailed modelling and processing of the source (elementary object) emissions. 
Additional improvement of accuracy is obtained due to an applied statistical 
disaggregation method for activity data, developed by the authors, that takes into 
account the spatial autocorrelation of the emissions. 

The obtained results on uncertainty analysis of methane emissions from 
enteric fermentation by animal species in the Polish regions show relatively high 
uncertainties of ±50%. This considerably impacts the uncertainty of the total 
regional or national emissions from all categories of anthropogenic activities. The 
uncertainty assessments at the level of elementary objects is hampered by lack of 
knowledge about uncertainty of some disaggregation parameters from the 
municipality to the elementary object/grid levels. 

The basic idea of the method presented in this study consists in analysis of 
emissions from possibly homogenous elementary areal sources. This elementary 
emission sources are modeled in vector maps as polygons. It gives possibility to 
keep information on the administrative localization together with the emission 
sources that finally allows us to aggregate the results to the levels of municipalities, 
districts or provinces without loss of accuracy. This paper presents implementation 
of this approach for high resolution spatial analysis of GHG emission in the 
agricultural sector of Poland. It can be, however, used for any other countries or 
regions, taking into consideration their specificity of gathering statistical data on 
the lowest administrative levels and knowledge of the corresponding emission 
factors. 

Identifying agricultural territories or administrative regions that have the 
greatest influence on overall emissions from agricultural activity opens new 
opportunities for improving the inventory process by investments in solutions to 
decrease the uncertainty in the input parameters (statistical data and emission 
coefficients). The most important is reduction of the emission coefficient 
uncertainties that play a key role in assessing uncertainty of the total emissions in 
the agriculture sector. Better estimates of the total uncertainty of regional or 
national emissions for all categories of anthropogenic activities would provide the 
authorities with data useful in reporting GHG emissions. 

Spatial inventory of GHG emissions from agriculture is highly helpful in 
supporting local mitigation strategies, to find an optimal solution to satisfy usually 
contradictory goals of environmental protection on one side, and usage of 
agriculture potential for intensification and technological advancement on the other. 
However, as argued by Burney at al. (2010), the net effect of agricultural 
intensification for higher crop yields avoids emission of carbon. This opens a 
possibility to a win-win solution of higher productivity and smaller net emission, in 
which local adaptation policies add to global reduction of the atmospheric carbon. 
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Appendix 

The disaggregation framework: The basic conditional autocorrelation model 

As explanatory variables, we used population density (denoted x1) and land 
use information (Corine Land Cover map (EEA 2006)). For each rural municipality, 
we calculated the area of the agricultural classes, which may be related to livestock 
farming. Three Corine classes were considered: 

- arable land, denoted x2; 
- pastures, denoted X3; 

- heterogeneous agricultural areas, denoted X4. 

First, the model is specified on a level of fine grid. Let Y; denote a random 
variable associated with an unknown value of interest y; defined at each cell i for 
; = 1, ... , n of a fine grid (n denotes the overall number of cells in a fine grid). The 

random variables Y; are assumed to follow the Gaussian distribution with the mean 

d . 2 
JI; an variance U y 

(]) 

Given the values JI; and u~ , the random variables Y; are assumed 

independent. The mean µ = {µ; }7=1 represents the true process underlying 

emissions, and the (unknown) observations are related to this process through a 

measurement error with the variance u ~ . The approach to modelling JI; expresses 

an assumption that available covariates explain part of the spatial pattern and that 
the remaining part is captured through a spatial dependence. The conditional 
autocorrelation (CAR) scheme follows an assumption of similar random effects in 
adjacent cells, and it is given through the specification of full conditional 

distribution functions of JI; for ; = 1, ... , n 

[ 
T n Wij { T \ r 2 l µ;/µ_; -Gau X; p+p·I,1=1-ipJ-xJPfo-, 

W;+ W;+ 
}-ti 

(2) 

where JI; denotes all elements in µ ; .vu are the adjacency weights ( wu = 1 ifj 

is a neighbour of i and 0 otherwise, also W;; = 0); W;+ = I,1 wiJ is the number of 

neighbours of an area i; x; P is a regression component with proxy information 

available for area i and a respective vector of regression coefficients; r 2 is a 

variance parameter. Thus, the mean of the conditional distribution µ;/µ_; consists 

of the regression part and the second summand, which is proportional to the average 

values of remainders µ1 - xT P for neighbouring sites (i.e. when wu = 1 ). The 

proportion is calibrated with the parameter p, reflecting strength of a spatial 

association. Furthermore, the variance of the conditional distribution A/µ_; is 

inversely proportional to the number of neighbours W;+. 
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The joint distribution of the process µ is the following (for the derivation 
see Kaiser et al. (2002)) 

(3) 

where Dis an nxn diagonal matrix with W;+ on the diagonal ; and Wis an nxn 
matrix with adjacency weights wu• Equivalently, we can write (3) as 

µ=XP+e , e-Gaun(o,n), 
with il=r2(D - pWt1. 

(4) 

The model for a coarse grid of (aggregated) observed data is obtained by 
multiplication of ( 4) with the N x n aggregation matrix C, where N is the number 
of observations in the coarse grid 

Cµ = exp+ Ce , Ce -Gaun(O,CQCT ). 
The aggregation matrix C consists of O's and l ' s, indicating which cells must be 
aligned together. The random variable ;_ = Cµ is treated as the mean process for 

variables Z = {z; }: 1 associated with observations z = {z; }:1 in the coarse grid 

Zll - GauN(1,d1 N ). 

Also at this level , the underlying process ,l is related to Z through a measurement 
. h . 2 error wit variance a-z . 

Model parameters P, a-;, r 2 and p are estimated with the maximum 

likelihood method based on the joint unconditional distribution of observed random 
variables Z: 

Z - GauN(cxp,a}IN +CQCT)_ (5) 

The log likelihood function associated with (5) is formulated, and the analytical 
derivation is limited to the regression coefficients p; further maximisation of the 

profile log likelihood is performed numerically. 
As to the prediction of missing values in a fine grid, the underlying mean 

process µ is of our primary interest. The predictors optimal in terms of the mean 

squared error are given by the conditional expected value E(µ lz). The joint 

distribution of (µ,z) is 

[;] ~ Gau,,+N([i]{ nnc aiI:~;ncr]J (6) 

The distribution (6) yields both the predictor E(µlz) and its error Var(µlz) 

E(µlz) = xp + ficr(CJ}IN + cficTf1[z - exp], 
Var(µlz) = fi-ficr(CJ}IN + cficTf1cfi. 

The standard errors of parameter estimators are calculated with the Fisher 
information matrix based on the log likelihood function, see Horabik & Nahorski 
(2015). 

Table 3 presents the estimation results (parameters with their standard errors) 
for the models with and without a spatial component, denoted CAR and LM (linear 

model), respectively. Note that in this setting, the variable /Ji (land use class Arable 
land) turned out to be statistically insignificant. Introduction of the spatial CAR 
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structure increased the standard error of estimated parameters, as compared with 
the LM model. 

Table 3. Maximum likelihood estimates of the spatial (CAR) and linear (LM) 
models parameters 

CAR LM 

Estimate Std. Error Estimate Std. Error 

/Jo 8.525 0.1605 -6.981 0.0389 

/J1 3.517 0.0148 1.932 0.0042 

/J2 - - - -

/J3 0.916 0.0034 1.786 0.0010 

/J4 3.912 0.0055 5.032 0.0013 
? 0.961 0.4052 1.506 0.1202 Uz 

T2 1.683 0.1569 - -

p 0.9889 2.62e-06 - -

The goodness of fit is described in Table 4, which contains the results of the 
analysis of residuals (d; = y; - y;', where y;' are the predicted values) for the 
considered models. We report the mean squared error mse, the minimum and 
maximum values of d; as well as the sample correlation coefficient r between the 
predicted and observed values. 

Table 4. Analysis of residuals (d; = y; - y;') of the spatial (CAR), linear (LM), and 
naive (NV) models 

mse min(d;) max(d;) r 
CAR 3069.4 -275 469 0.784 
LM 5641.2 -357 522 0.555 
NV 3374.4 -475 403 0.766 
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