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Abstract 

On asymmetric matching between sets 

Maciej Krawczak and Grazyna Szkatula 

Systems Research Institute, Polish Academy of Sciences, Newelska 6, Warsaw, Poland 
e-mail: {krawczak, szkatulg}@ibspan.waw.pl 

A comparison of two objects may be viewed as an attempt to determine the degree to which they are similar or 
different in a given sense. Defining a good measure of proximity, or else similarity or dissimilarity between ob­
jects is very important in practical tasks as well as theoretical achievements. Each object is usually represented 
as a point in Cartesian coordinates, and therefore the distance between points reflects similarities between re­
spective objects. In general, the space is assumed to be Euclidean, and a distance assigns a nonnegative number. 
From another point of view the concept of symmetry underlies essentially all theoretical treatment of similarity. 
Tversky (1977) provides empirical evidence of asymmetric similarities and argues that similarity should not be 
treated as a symmetric relation. According to Tversky's consideration, an object is described by sets of features 
instead of geometric points in a metric space. In this paper we propose the new measure of remoteness between 
sets of nominal values. Instead of considering distance between two sets, we introduce the measures of perturba­
tion of one set by another. The consideration is based on set-theoretic operations and the proposed measure de­
scribes changes of the second set after adding the first set to it, or vice versa. The measure of sets' perturbation 
returns a value from (0, 1 ], and it must be emphasized that this measure is not symmetric in general. The differ­
ence between 1 and the sum of these two measures of perturbation of a pair of sets can be understood as Jae­
card's extended similarity measure. In this paper several mathematical properties of the measure of sets' pertur­
bation are studied, and interpretation of proximity is explained by the comparison of selected measures. 

Keywords: Sets ' perturbation, Symbolic data analysis, Matching between sets, Jaccard's coefficient, Tversky's 
coefficient. 

1. Introduction 

The term "similarity" is perhaps the most frequently used as a compatibility measure of objects, 
however it is both most universal and most difficult to define. The analysis of the similarity of two ob­
jects plays a fundamental role in theories of knowledge and behavior, learning, and perception. Att­
neave (1950) stated that "It is difficult to pursue any path of psychological enquiry without encounter­
ing the problem [ of similarity] in one guise or another" and "It is obvious that when things are similar 
they are similar with respect to something. The characteristics with respect to which objects are similar 
may be conceptualized either as more or less discrete and common elements or as dimensions on 
which the objects have some degree of proximity." Defining a sound similarity measure is important 
in practical application tasks like clustering ecologically related species, in biology, ethnology, taxon­
omy biometrics an so on (Choi et al., 2010). 

Many researchers assume that dissimilarity is the converse of similarity. Typically, it is assumed 
that similarity between two objects is assigned as a value from the interval [0,1], and dissimilarity is 
defined as non-similarity, i.e., the difference between I and the similarity. However, some research in­
dicates that humans judge similarity and dissimilarity in different ways, and people often think that 



non-similarity and dissimilarity are not synonymous. In the case of similarity the common features are 
emphasized, whereas for dissimilarity the distinctive features are assessed. 

From the mathematical point of view, distance is defined as a quantitative degree of how far apart 
two objects are, and synonyms for distance include dissimilarity. Dissimilarity expresses the degree in 
which two objects are found to be dissimilar, which usually ranges between O and I. Each object can 
be represented as a point in coordinate space, and the distance between two of such points reflects dis­
similarities between the respective objects. In general, for Euclidean space, a distance is a function 
µ(.) which assigns to every pair of objects A and Ba nonnegative number, called their distance, and 
satisfies the following axioms: 

Non-negativity property: µ(A, B) <'. µ(A, A)= 0 
Symmetry: µ(A, B) = µ(B, A) 

Triangle inequality: µ(A,B) + µ(B,C) <'. µ(A,C). 

(I) 

Much work has been done to determine distances of objects described by continuous-valued attrib­
utes. In general, handling proximity of objects described by nominal-valued attributes is much more 
difficult. Namely, nominal values have neither a natural ordering nor an inherent order and are meas­
ured on nominal scales. It is said that an attribute is nominal if it can take one of a finite number of 
possible values and, unlike ordinal attributes, these values bear no internal structure. For instance, let 
us consider an attribute "taste", which may take the values "salty", "sweet", "sour", "bitter" or "taste­
less". In the case when a nominal attribute can take only one of two possible values, then it is usually 
called binary or dichotomous. 

When the attributes are nominal, definitions of similarity (or dissimilarity) measures become not 
trivial at all, and for nominal-valued attributes the comparison of one object with another can be con­
sidered whether the objects have the same or different nominal values. In this case two main ap­
proaches may be used: 

• Simple matching - for two possible values of the prescribed attribute the dissimilarity is defined as 
zero if they are identical, and one otherwise. This way the ratio of the number of matched ele­
ments and the total number of attributes is calculated. Obviously, such approach disregards the 
similarity embedded between nominal values. 

• Binary encoding - creating binary-valued attributes instead of nominal attributes. Next, a kind of 
conventional matching methods e.g. the simple matching coefficient or Jaccard's coefficient 
should be employed. However, the transformed binary attributes do not preserve the semantics of 
the original attribute and dimensionality of new attributes may increase significantly. 

One of the oldest and best known occurrence measure is the Jaccard measure, also known as the 
Coefficient of Community (Jaccard, 1901; Shi, 1993). The measure has been used extensively, largely 
due to its simplicity and intuitiveness (Shi, 1993; Magurran, 2004). There is a similar measure com­
monly used, called Sorenson measure, also known as Dice or Czekanowski or Coincidence Index. 
Calculation of the indices is relatively simple and intuitive, and both indices provide useful results 
(Wolda, 1981; Hubalek, 1982). Two other similar indices that are occasionally used are the Ochiai and 
Kulczynski measures. While Hubalek (1982) lists the Ochiai and Kulczynski indices as providing 
good results, but the Jaccard or Sorenson measures are typically more recommended and they are 
more commonly used. There is a popular approach for defining a distance of nominal attributes named 
as the Value Difference Metric (VDM), the approach takes into account the probability of a given val­
ue in classes. The approach was introduced by Stanfill and Waltz (1986) to provide an appropriate dis­
tance function for nominal attributes. For example, if an attribute color has three values: "red", 
"green" and "blue", and the objective is to identify whether or not an object is an apple, a pair "red" 
and "green" would be considered as closer than a pair "red" and "blue" because the former pair has 
similar correlations with apple classes. One of the main problem of the approach arises if a "strange 
pair" of attribute values never appears in testing sets. It worth to notice that VDM approach is not a 
metric ( as the measure is not symmetric). 

The assumption of symmetry underlies essentially the majority of theoretical treatments of similari­
ty. Some research, however, does not accept this assumption, for instance in psychological literature 
there are two main approaches: a distance model of similarity and a content model. The issue of sym-
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metry was extensively analyzed by Amos Twersky (1977). He considered objects represented by sets 
of features or attributes, instead of geometric points in a metric space, and proposed the ratio model 
where similarity was described as comparison of features. Tversky provides empirical evidence of 
asymmetric similarities and argues that similarity should not be treated as a symmetric relation. There 
is no uniform concept of similarity that is applicable to all different experimental procedures used to 
comparison of objects. So, his model does not define a single similarity scale, but rather a family of 
scales characterized by different values of parameters. 

Assuming that we have a collection of objects represented by a set of features and the observed 
similarity of objects should be determined using sets of features of these objects. This similarity is ex­
pressed as a function of their common and distinctive features and in general can be asymmetric. For 
example, a toy train is quite similar to a real train, because most features of the toy train are included 
in the real train. On the other hand, a real train is not equally similar to a toy train, because many of the 
features of a real train are not included in the toy train. In such cases it is said that the variant is more 
similar to the prototype than the prototype to the variant. Another example is related to the similarity 
of geometric figures which can also be asymmetrical. For a pair of figures, let us consider two state­
ments: "the first figure is similar to the second figure" or ''the second figure is similar to the first fig­
ure" - the statements need not be equally true. The first figure may be more similar to second figure 
than vice versa. As illustration an ellipse and circle can be compared, namely an ellipse is more similar 
to a circle than a circle to an ellipse. 

On the base of the set theory, the observed similarity of two sets A and B can be expressed as a 
some real valued function of three arguments: the intersection, the features of first set that are not 
shared by second set and the features of second set that are not shared by first set. Using these three 
arguments we can measure the degree to which two objects (viewed as sets of features) match each 
other. 

In this paper we propose a novel measure of proximity between two sets of nominal values; our 
consideration is based on set-theoretic operations. Instead of considering distance between two sets, 
we introduce a definition of a measure of perturbation of one set by another set. The developed meas­
ure describes changes of the first set after adding the second set and changes of the second set after 
adding the first set. The measure of sets' perturbation is normalized and returns a value from [O, 1], 
where 1 is interpreted as highest level of perturbation, while O denotes the lowest level of perturbation. 
It must be emphasized that this measure is not symmetric, it means that a value of the measure of per­
turbation of the first set by the second set can be different then a value of the measure of perturbation 
of the second set by the first set. There are particular cases when the perturbation measures are sym­
metric, therefore it should not be considered as the distance between the sets. The sum of these 
measures can be regarded as an extended Jaccard's dissimilarity measure (Cross and Sudkamp, 2002). 

Our work is motivated by the need to develop an effective procedures for comparing objects de­
scribed by nominal values. Additionally following Tversky's suggestions about possible asymmetric 
nature of similarities between objects we wanted to verify symmetry of objects' proximity. 

Even we can find some approaches mentioned above of the stated problem but they do not explain 
the essence of objects' proximity. 

Here we consider objects described by sets of attributes, and it is assumed that the attributes take 
nominal values. In some sense such objects description is similar to Tversky's features objects descrip­
tion. In this paper we propose a novel measure of objects proximity which is called the measure of 
perturbation of the first set by the second set, and we allow the opposite perturbation of the second set 
by the first one. In general these two cases cannot be symmetric. Our sets perturbation measure de­
scribes changes of considered two sets with respect to union of them, in other words we are interested 
how much union of two considered sets differs from each primary set. 

Our approach is dissent from other methods known in literature, basically the reason is following, 
the consideration is based on the fundamental properties of the classic sets theory, and it is interesting 
that exploration of classic theories gives new interesting results. Another interesting results were ob­
tained, namely we could prove that several used measures of sets similarities and dissimilarities can be 
described as proper functions of our perturbation measure. This way we give an explanations of the 
nature of those measures as well as give an elegant clarifications. Additionally, it must be emphasized 
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that introduced sets perturbation measure allows to treat objects described by nominal-valued attrib­
utes in a direct way without binary encoding of attributes nominal values. 

In the paper we gave a short description of application of sets perturbation measure to solve a clus­
tering problem, however the application is done for a short illustrative example we can claim the po­
tentially wide applicability of this conception to use in many applications related to sets comparisons. 
By proving relation of the selected proximity measures with our perturbation measure it seems that the 
validation of the proposed idea is straightforward. 

This paper is organized as follows: Section 2 presents the description of perturbation methodology, 
and the mathematical properties of the measure of perturbation are studied. In Section 3 proposed 
measure of perturbation is compared with the selected measures of similarity. 

2. Matching of sets 

Let us consider a finite set V of nominal values, V = {v,, v2 , ... , v L}, v,+1 etc v1 , 'di E {1,2, ... ,L- l}} . 

Assume that we have a collection of subsets {A,,A,, ... ,A8 }, where A1,A2 , ••• ,A8 s;;; V . If consecutive 
values are labeled by letters of the alphabet, we can describe an exemplary set V as e.g. 
V = {a,b,c,d,e,f,g}; or when are labeled by words, we can describe an exemplary set Vas e.g. 

V = {" sa]ty", "sweet"," sour11 , "bitter", 11 tasteless"} . 
Instead of considering distance measures between two subsets, we introduce a asymmetric measure 

of remoteness between two sets based on set-theoretic operations, i.e., the measure we called as meas­
ure of perturbation of one set by another set. The measure describes changes of one set after adding 
the other, the new measure returns a value from O to I. Details of the approach are presented in the 
forthcoming subsections. 

2.1. Measure of sets perturbation 

Let us consider a collection of sets {A,,A, , .. . ,A8 } and a pair of sets A, and A1 , A,,A1 s;;; V, 

i,j E {1,2, ... ,S}. Attaching the first set A, to the second set A1 can be considered that the second set 

is perturbed by the first set, in other words the set A, perturbs the set A1 with some degree. This way 

we introduced a new concept of perturbation of set A1 by set A,, denoted by (A,~ A1), and inter­

preted as a set A, \ A1 . 

Exemplary set A, ={e} perturbs the set A1 ={a,b,c,d,e} with zero degree because the following 

condition is satisfied (A,~ A1 )=A, \A1=0. On the other hand, the set A1={a,b,c,d,e} perturbs the 

set A,={e} withthegreaterthanzerodegreebecause (A1 ~A,)=A1 \ A,={a,b,c,d} . 

Graphically relation of two non-empty fixed subsets of the set V, A,,A1 s;;; V is depicted in Fig. l . 

A, ~-------- V 
A,\ A1 ~--....,_---~ 

'-------~ Al 

Fig. 1. A graphical illustration of the relation between two sets 

Here we propose the following way to measure a degree of perturbation of one set by another: 
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Definition 1. The measure of perturbation of set A1 by set A, is defined in the following manner: 

P;r (A HA)= card(A; \ A1 ) = card(A, \ A1 ) 

' ' card(A,nA1 )+card(A, \A)+card(A1 \A1)+A; nA; card(V) 
(2) 

where A;,A; are the complement of sets A,,A1 s:;; V. 

Now we will discuss some properties of the new proximity measure. Namely, we can prove the fol­
lowing corollary about the minimum value of the measure of perturbation of set A1 by set A, which is 

equal zero. 

Corollary 1. The measure of perturbation of set A 1 by set A, satisfies the following property 

Per(A, H A1)= 0 if and only if A, s:;; A1 . 

A A 

Proof. I) First implication: Per(A, H A)=0 • A, s:;; A1 • Let us assume that Per(A, HA)= 0. By 

Definition I, function P~r(A, H A1 ) is non negative, and reaches a minimum if a condition 

card(A, \ A1 )=0 is satisfied. If card(A, \ A1 ) = 0 then condition A, s:;; A1 is valid. 

2) Consider now the implication: A, s:;; A1 • P~r(A, H A1) = 0. Let us assume that A, s:;; A1 , thus 
A 

A, \ A1 =0 and card(A, \ A)=0. This way, we obtained that Per(A, H A)=0, by Definition I. The 
A 

equality Per(A, H A1 )= 0 is always verified if A, s:;; A1 . 

It should be noticed that the measure of perturbation of set A1 by set A, is not always symmetrical 
A A 

and the measure is symmetrical, i.e., Per(A, HA)= Per(A1 HA,), whenever the condition 

card(A, \ A) =card(A1 \ A,) is satisfied. We can say, that the asymmetry is determined by the relative 
A A 

cardinality of sets, i.e., Per(A, HA)"?: Per(A1 HA,) whenever the inequality 

card(A, \ A)-:?: card(A1 \ A,) is valid. 

Additionally we can prove that the measure of the set's perturbation is always positive and less 
than I, where I is interpreted as most level of perturbation, while O is the lowest level of perturbation, 
as shown in the Corollary 2. 

Corollary 2. The measure of perturbation of set A 1 by set A, satisfies the following inequality 
A 

0 $ Per(A, H A1 ) $ ]. (3) 
A 

Proof. 1) Let us prove the first inequality Per(A, H A1 ) "?: 0 . It should be noticed that the inequality 
A 

card(A, \ A1 )-:?: 0 is satisfied, and by Definition I we thus obtain Per(A, HA)"?: 0. 

2) Now, we will consider the second inequality, P~r(A, H A1 ) $ I . Considering two sets A, and A1 , 

A, , A1 s:;; V , it should be noticed that the inequality card(A, \ A)$ card(V) is satisfied, and then we 

, card(A \A) 
can obtain the following inequality Per(A, H A) ' ' $ I. 

card(V) 
Now we will prove an interesting property about a sum of the measures of perturbation of arbitrary 

two sets, namely perturbation of set A, by set A1 and perturbation of set A1 by set A, , as Corollary 3. 



Corollary 3 The if h 
. • sum o t e measures of perturbation of arbitr 

lowing equality ary set Ai and set A; satisfies the fol-

P~r(A; I-'> A1) + P~r(Ai I-'> A,) s 1 

(4) 
Proof. It can be noticed that the inequality card(A, \ AJ) + card(AJ \A) s card(A v A ) 
card(A, V AJ)Scard(V) are satisfied. The left side of inequality (4) can be wrl~en a• 1 1 and 

card(A, \ A1) + card(A1 \ A1 ) $ card(A, u A1 ) S card(V) -1. 

card (V) card (V) card (V) card (V) 

The binary feature vector is commonly used representations of objects, patters, etc. described by 
nominal-valued features. The proposed measure of perturbation of sets with nominal descriptions can 
be also applied to binary sets. In the next subsection, a set of nominal values can be replaced by 
a binary vector. 

2.2. Binary encoding of nominal values 

Let us consider a finite collection of subsets {Al'A,, .. . ,As} and a pair of subsets A; and Ai, 

A;,Ai ~ V, i,j E {1,2, ... ,S} where Vis a finite set of nominal values, V = {v1, v2 , ••• , v J. 
First, we will introduce a binary encoding of subset A,, A, ~ V. Each subset A,, i E {I, 2, ... , S} , 

is represented as the binary vector [w'., w',, ... , w'J of dimension L, L=card(V), in the following way: 

. {I w; = 0 
for v1 EA, 

for v1 11' A, 
(5) 

for / = 1,2, ... , L. This way we formed the new representation of the nominal subsets which are de­
scribed by binary vectors of dimension equal to the cardinality of the set V. 

Let us consider two subsets A, and A1 , A;, Ai EV, represented as binary vectors [ w'., w',, .. . , w~] 

and [ w;, w~, ... , w;.J, respectively. In the next subsection we will need to define the following sets: 

A, = A; \Ai represented by the binary vector [ w~, w:, ... , w:), where 

if w' = I and w1 = O 
l'f ' , ' 1 , for I = 1,2, ... , L; 

w;=I or w,= w,=0 

A,= A, v Ai represented by the binary vector [ w'., w:, ... , w:), where 

if w' = I or w1 = I 
I I 

if w' = w1 =0 
for I = 1,2, ... , L; 

I I 

A,= A, n A 1 represented by the binary vector [ w'., w: , ... , w'..J , where 

if w', =I and w; =1 

otherwise 
for / = 1,2, ... , L. 

(6) 

(7) 

(8) 

Thus, nominal values are replaced by binary values and the introduced measures of perturbations 
of two sets A, and Ai, represented as a binary vectors, can be calculated according to (2). There is the 

following illustration by Example I. 
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Example 1. Assume that we have exemplary set V = {b,c,d,e,f,m,n} and three sub­

setsA,,A,,A, s;; V, A,= {b,c,d}. A,= {b,c,e,f,m} and A,= {e}. According to the introduced nota­

tion, forcard(V)=7, we can describe the set A, as the binary vector [l,l,l,0,0,0,0], the set A, as 

[I, I, 0, 1, 1, I, OJ, and the set A, as [O, 0, 0, I, 0, 0, OJ . This way we can calculate the following sets: 

A, \ A2 is represented by the binary vector [O, 0, I, 0, 0, 0, OJ , A2 \ A, by the vector [O, 0, 0, 1, I, I, OJ , 

A, u A, by the binary vector [I, I, I, 1, I, I, OJ , A, nA, by the binary vector [l, I, 0, 0, 0, 0, OJ . 

In the next subsection the use of the developed perturbation measures between the sets in the task 
of grouping the binary vectors. 

2.3. Grouping based 011 sets perturbatio11 

Let us consider a finite collection of binary vectors {A,,A,,A,, ... ,A8 } of dimension L, 

where A; =[w;,, w;, , ... , w;J, w; E {0,1}, / = 1,2, ... ,L , i E {1,2, ... ,S} . The subtraction A; \A1 , summa­

tion A;uA1 and intersection A;nA1 of vectors, i,jE{l,2, ... ,S} is calculated according to formula 

( 6), (7) and (8), respectively. The aim is to group "the most similar" vectors in order to obtain a new 
set of vectors, say number C of vectors. 

In order to solve this problem we propose a hierarchical agglomerative approach with elements of 
measures of perturbation. The procedure starts with S vectors and a pair of vectors described by the 
lowest value of measure of perturbation is coupled and a new vector is formed - thereby the number of 
vectors is decreased by one. The progress of the procedure is stopped when C new vectors are generat­
ed. Basic steps of the proposed algorithm are shown below: 

Step I. There is a collection of S binary vectors, C - assumed final number of vectors, iteration= 0. 
Step 2. Iteration = iteration + I. Create a matrix of measures of perturbation of the vectors. 
Step 3. Find two vectors with minimal values of the measure of perturbation (A;, ,Aj' ). 

Step 4. Create a new binary vector A;, u A1, . The number of current vectors is decreased by one. 

Step 5. Ifthe required number of vectors equals C then STOP; otherwise return to Step 2 and modi-
fy the matrix of measures of perturbation. 

The described approach will be presented by the following illustrative example. 

Example 2. We consider the set V of nominal value, V = {a,b,c,d,e,f,g,h,m,n,o,p} and six sub­

sets A, ={a,c,d,f} , A2 ={a,c,d,e} , A3 ={a,g,n,o} , A, ={b,e,f,g} , A, ={b,h,o,p} and 

A, ={b,m,n,p}. According to (5), each subset A,, i=l,2, ... ,6, can be represented by binary vector. 

Exemplary set A, is represented by [I, 0, I, 1, 0, I, 0, 0, 0, 0, 0, OJ, etc. Thus we have a collection of binary 

vectors {A,, A2 , ••• , A6 } shown in Table I. 

Table I. The current binary vectors 
A, I 0 I I 0 I 0 0 0 0 0 0 

A, I 0 I I I 0 0 0 0 0 0 0 

A, I 0 0 0 0 0 I 0 0 I I 0 

A, 0 I 0 0 I I I 0 0 0 0 0 

A, 0 I 0 0 0 0 0 I 0 0 I I 

A, 0 I 0 0 0 0 0 0 I I 0 I 

The problem is formulated as comparing "the most similar" vectors, and next selecting a pair of 
vectors giving the lowest value of vectors pair perturbation, and join this pair of vectors into one vec­
tor. This way the procedure starts with 6 vectors and is stopped when two vectors is found, C=2 by as-
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A 

sumption. Values of the measures of perturbatjon Per(A, H A1 ) between A, and A1 , for 

i,j E {I, 2, .. . ,6}, are calculated as shown in Table 2. 

Table 2. The measure of perturbation 

A1 A, A, A, A, A, 

A, {},\l~.i 3112 3112 4112 4112 

A, };!\l,B 3112 3112 4112 4112 

A, 3112 3112 '~·· . 3112 3112 3112 

A, 3112 3112 3112 . 3112 3112 

A, 4112 4112 3112 3112 ,' ~\)2;; 
A, 4112 4112 3112 3112 ;~)?\' 

The minimal values of the perturbation measure appear for pairs ( A" A,) and (A, , A6 ), then we 

create new vectors A, \.J A, and A, \.J A6 , as shown in Table 3. 

Table 3. The current vectors 
A1 vA, 1 0 I 1 1 1 0 0 0 0 0 0 

A, 1 0 0 0 0 0 1 0 0 1 1 0 

A, 0 1 0 0 1 1 1 0 0 0 0 0 

A, vA, 0 1 0 0 0 0 0 1 1 1 1 I 

Next, the procedure of calculating the perturbation measures is repeated, this time for four vectors, 
as shown in Table 4. 

Table 4. The measure of perturbation of sets 
A1 u A2 A, A, A, v A, 

Al VA2 . 4112 3112 5112 

A, 3112 3112 if;J2V2:1::;; 
A, ''" 3112 3112 

A, v A, 6112 4112 5112 . 

The minimal values of the measure perturbation appear for pairs of vectors (A, , A, u A,) and 

( A3 , A, u A6 ), this way new vectors A, u A2 u A4 and A, u A6 u A3 can be created, as shown in Ta­

ble 5. 
Table 5. The current vectors 

A, uA, uA, 1 1 1 1 1 0 0 0 0 0 

A, vA, v A, 0 0 0 0 I I 1 I 

This way we obtain two final binary vectors A, u A, u A, = [l, I, I, I, I, 1, 1, 0, 0, 0, 0, OJ and 

A, \.J A6 u A, = [I, I, 0, 0, 0, 0, I, I, I, I, I, I]. The procedure was performed for C=2. 

Table 5 can be easy interpreted, namely the first binary vector determines the set of nominal val­
ues A1 \.J A, \.J A4 ={a, b, c, d, e,f, g} and the second binary vector determines the set 

A, uA6 uA3 ={a, b, g, h, m, n, o, p}, and visualization of that is shown in Fig. 2. 

A1 uA, uA, 
c,d, e.f 

h, m, n, o,p 
A, uA, uA, 

Fig. 2. A graphical illustration of the sets 
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3. Sets perturbation and corresponding measures 

The problem of similarity degree of two objects arises in many theoretical as well as practical con­
siderations, and is treated usually for objects described by real-valued attributes which can be repre­
sented as a point in some coordinate space. Meanwhile often are faced issues described by nominal­
valued attributes, such problems are more difficult to handle. 

First, let us consider the finite set of objects 01>0,, •• . ,oN. We will consider each object O;. 

i E {1,2, ... ,N} to be described by a finite set of L nominal or binary attributes and defined by the val­

ues of these attributes - it means attributes take nominal or binary values. Therefore, each object O; is 

represented as a ordered set A; (vector) of values for /-th attribute, l = 1,2, ... , L. as follows 

(9) 

where w; E dom1,h 011, ;6.,. , l = 1,2, ... , L . Thus a comparison of two objects can be based upon the values 

of these attributes. In general, a measure of similarity between objects is based on the compatibility of 
sets A;, i E {1 , 2, ... ,N} . 

Here we would like to present a short review of the most important features of similarity measures 
for nominal and binary attributes, and placing of our sets perturbation proposal within the nom_irlal­
value attribute similarity measures. 

Case of nominal attributes is presented in the forthcoming subsection. 

3.1. Nominal attributes case 

Let us assume, that each set dom,,h . 11,16. ,., l = 1,2, ... ,L , is a finite set of nominal values. For nominal 

values, the comparison of one object with another one, i.e., one ordered set with another ordered set, 
can be considered in terms whether the sets contain the same or different values. In this case two main 
approaches can be distinguished. Simple matching describes the similarity as a ratio of the number 
of matching attributes and the total number of attributes, while binary encoding is defined exactly 
in the same way but considered attributes values must be preceded by binary encoding of the attributes 
values. Now let us discus the selected measures: 

• Jaccard's coefficient (measure of similarity) and Jaccard's distance (measure of dissimilarity) are 
measurements of asymmetric information and can be applied to binary and non-binary cases. The 
Jaccard' s coefficient between two sets, S10,,.,d(A;,Ai ) is defined as the size of intersection divided 

by the size of the union of these two sets: 

card(A; n Ai ) 
SJacca,AA;, A) = d(A A) 

car , u i 
(JO) 

The Jaccard's coefficient is zero if two sets are disjoint, and is one if two sets are identical. Mean­
while, the Jaccard's distance, D1""0 ,-(A; , Ai ), measures dissimilarity between two sets, and is com­

plementary to the Jaccard's coefficient as subtraction of the Jaccard's coefficient from I. Simple trans­
formation shows that the Jaccard ' s distance is equivalent to the difference of sizes of union and inter­
section of two sets divided by size of union of these two sets: 

card(A1 u Ai ) - card(A1 nAi ) 
DJa"a,d (A,, Ai ) = 1- SJa"a,d (A,, Ai )=----~-----~ 

card(A;uAi ) 
(I I) 

Here we would like to give a remark that the size of the common part of sets A~ n A~ is not in­

cluded in the Jaccard index, where A,c ,A~ are the complement of sets A;,Ai in the set V, and there­

fore we can recall the following extended Jaccard's coefficient: 
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• Jaccard's extended coefficient takes into account complement sets A,c , A~ of sets A,, A1 in the set 

V. This coefficient is sometimes called the simple matching coefficient (Cross and Sudkamp, 
2002), and can be written as follows: 

card(A, nA1)+card(A; nA~) 

card(V) 
(12) 

where A'.' , A~ are the complement of sets A,, A1 in the set V. It is important to notice that Jae-

A 

card's extended coefficient S(A,, A) takes into account not only the elements belonging to both com-

pared sets, but also the elements not belonging to these sets. In other words, the similarity of objects 
affects not only the common property but also the common shortcomings. 

The next used coefficient is characterized by normalization of intersection of two sets. 

• Dice's similarity coefficient, Smc,(A,, A1) , is shown below: 

2-card(A,nA) 
So;" (A,,A1) = _d_(_A_)--d-(~A-) 

car 1 +car 1 
(13) 

The coefficient normalizes intersection of two sets A, n A1 with the average of its constituents. 

The function ranges between zero and one, like Jaccard's. Unlike Jaccard's distance, the correspond­
ing difference function I-Smc, (A,,A1 ) is not a proper distance metric because it does not possess 

the triangle inequality property. 
It should be noticed that the following equalities are valid, namely 

Smce (A,,A1 ) 2-S,accan/A,,A1) 
S,accan1(A1,A1 ) = 2 _ 8 . (A A) and Smc,(A,,A1) = ( ) , 

D1ce 1, J l+SJoccard A;,Aj 

it means mutually monotonic. 
Another interesting coefficient is described below: 

• Overlap coefficient - this coefficient normalizes the intersection A, n A1 with the minimum cardi­

nality of its arguments: 

card(A, n A1) 
Ovl(A1,A ) = -----~--

' min{card(A,), card(A1)} 
(14) 

We would like to call attention to Tversky's consideration about proximity which took its origin in 
psychology, namely: 

• Tversky's similarity is the measure of degree to which two objects (viewed as sets of features) 
match each other. The matching between objects is expressed as a linear combination of the 
measures of common and distinctive features. The matching value is normalized to a value ranged 
from 0 to I and the formula used for this purpose is: 

Tversky(A B· a /J) = f(A n B) 
' ' ' f(AnB)+a•f(A \ B)+/J·f(B \ A) 

(15) 

for some parameters a,fJ>0. The values of a,fJ determine relative importance of the distinctive 

features in the similarity assessment, if a c/c /3 we get a directional similarity measure that focuses 
on the distinctive features. The similarity is based on a function.I(.) called the measure of sets. Finite 
sets can be measured by the number of elements, i.e., the cardinality of a set, but may be measured by 
any function that satisfies feature additively, i.e., is a function satisfying f(A u B) = f(A) + f(B) for 

disjoints sets A and B. 
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It seems that an interesting point of object similarity consideration is to treat the first object o1 as 

the prototype and the second object o2 as the variant, and then parameter a corresponds to the weight 

of the prototype while parameter /J corresponds to the weight of the variant. Discussion related to 

participation of prototype and variant in (I 5) can be very interesting, but for example we would like to 
emphasis the case when the weighting of prototype features is equal to 100% (a= I) and variant fea­
tures to 0% (/3 = 0) - it means that only the prototype features are considered as important. In such a 
case, a Tversky' s similarity value 1.0 means that all prototype features are represented in the variant, 
while 0.0 means that none of them. 

Taking into consideration the common part of sets A; n A~ , where A,c , A~ are the complement of 

sets A;, Ai in the set V, we can define the following Tversky's extended similarity measure: 

• Tversky 's extended similarity measure between set A, and set Ai taking into account a sets 

A'.: , A~- , can be written in the following form: 

A • card(A,nA)+card(A; nA'. ) 
Tversky(A; ,A ,a,/3) =----------~-~-~----- (16) 

1 card(A; n A) +a•card(A, \ Ai )+ fJ· card(Ai \ A,)+ card(A; n A'. ) 

where A~, A~ are the complements of sets A;, Ai in the set V. 
A 

It is easy to notice that Tversky's extended similarity measure Tversky(A, ,Ai ;a,/3) for parameters 

a = fJ = I can be seen as a matching coefficient of similarity. Additionally we can prove an interest­

ing property of the introduced in this paper the perturbation of one set A, by another A1 and the Jae­

card's extended coefficient of sets A; and A1 presented as Corollary 4. 

Corollary 4. The sum of measures of perturbations of sets A, and Ai satisfies the following equality 
A A A 

Per(A; HA)+ Per(Ai HA,)= I-S(A,,A1 ) (1 7) 

A 

where S(A; , Ai ) is Jaccard's extended coefficient between two sets A;, A1 . 

Proof. By Definition I the left side of equations (17) can be rewritten as follows 
A A card(A,\ Ai )+card(Ai\ A,) 

Per(A HA)+ Per(A HA)=---'----'------'---
' 1 1 ' card(V) 

card(A; \ Ai )+card(A1 \ A;)+card(Ai n A,)-card(Ai nA;)+card(A~ n A; ) - card(A~ n A; ) 

card(V) 

card(A1 nA;) + card(A~ nA; ) A 

=1--------~-- I-S(A,,A1). 
card(V) 

The meaning of Corollary 4 is illustrated in the forthcoming example. 

Example 3. Let us consider the set V={b,c,d,e,j,m,n}and two subsets A,,Ai s;;V, A1 ={b,c,d}, 

A2 = {m,b,c, e,f}, Fig. 3. 

Fig. 3. A graphical illustration of the subset A1 and set A2 in V 
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The perturbation measures between two sets and the Jaccard's extended coefficient are calculated 

in the following way: P~r(A1 f-) A,)=_!_, P~r(A, f-) A1) =l, S(A"A2 )=l and formula (17) is obvi-
7 7 7 

ously satisfied. 
In the next subsection we will discuss several similarity measures for binary-valued attributes. 

3.2. Binary attributes case 

Let us assume that each set dom,,. ""''' "" , I = 1,2, ... , L, is the set of binary values. A binary attribute 

contains only two possible values: I (positive or present) or O (negative or absent). Ifthere is no pref­
erence for which values should be coded as O and which as I, the binary attributes are called symmet­
ric. For example, the binary attribute "gender" with values: "the same weight when a proximity meas­
ure is computed. If outcomes of a binary values are not equally important then such attribute is called 
asymmetric. Example of a such attribute is the positive or negative outcomes of a "disease test". While 
you say that two people who have been tested HIV positive have something in common, you cannot 
say that people who have not been tested positive have something in common. The most important 
value is usually coded as I (present) and the other is coded as O (absent), additionally the agreement of 
two 1 ' s (present-present) is more significant than the agreement of two Os (absent-absent). 

Commonly used measures accept symmetric and asymmetric binary attributes . In order to measure 
the similarity or dissimilarity binary attributes should take into account whether the binary values are 
symmetrical or not. When both symmetric and asymmetric binary attributes occur in the same vector 
then the mixed approach can be applied (Han and Kamber 2006). 

Now let us consider two binary vectors A, and Ai , A, = [ w',, w', , ... , w'J , and 

Ai = [ w; , w; , ... , w;_ ], where w!, w( E {O, l} , V / E {1,2, ... , L} . Next let us calculate the following num­

bers: ii as the number of elements equal I in both vectors A, and A1 , i.e., w', = w; = l ; and b as the 

number of elements equal I for vector A, and O for vector Ai , i.e., w'. =I, w; =0 ; and c as the num­

ber of elements equal O for vector A, and I for vector Ai, i.e., w', =0, w; =l; and d as the number 

of elements equal O for both vectors A, and A1 , i.e., w'. = w; = 0 . Thus the total sum of ii+ b + c + d 
(i .e., the total number of elements) is always equal to dimension of the binary vector. It should be no­

ticed that the sum ii + d represents the total number of matches between A, and Ai; the sum b + c 
represent the total number of mismatches between A, and Ai, as is shown in Table 6. 

Dissimilarity for symmetric binary values can be used as approach to dissimilarity of vectors A, 

and Ai which can be defined in the following way: 

n symmelric(A,,A .) --- ~+ ~ --­
} a+b+c+d 

(18) 

Dissimilarity based on asymmetric binary values, where d is considered unimportant and is ig­
nored in the computation, is define in the following way: 

12 
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Do,\y111111etric (A . A .)= b~c 
,, 1 a+b+c 

(19) 

The above definitions can be easy interpreted by considering the following example. 

Example 4. Let us consider two binary vectors A, =[l,0,0,0,0,0,0,0,0,0] and A2 =(0,0,0,0,0,0,l,0,0,l]. 

According to expressions (18) and (I 9) the distance between them are different for symmetric and 
asymmetric binary values, 

D'Y'"'"'";' (A,,A,)= /o, Dmymm,M'(A,,A)=f =I. 

In literature we can find various forms of the distances measures and similarity measures. Table 7 
contains definition of the few selected measures for symmetric binary cases (Cross and Sudkamp, 

2002; Choi et al., 20 I 0). The proposed in this paper measures of sets perturbations, i.e., P~r(A, H Ai) 
A 

and Per(Ai HA,), A, ,Ai ,;;;V, can be compared with the selected measures for binary data. Accord-

ing to the used notation the following relationships can be introduced: a =card(A,nA1), 

b = card(A, \A1), c=card(A1 \A,), J=card(V\(A, uA)). This way we rewrite equivalent defini­

tions of the few selected measures based on our sets perturbation measures, see the third column in 
Table 7. Complete expressions are included in Appendix. 

Table 7. Definitions of selected distance and similarity measures for binary data 

Measure Definition Equivalent formulation based on the set's perturbation 
Jaccard's extended similarity " a+d I -(P~r(A, H A1)+ P~r(A1 HA,)) (Simple matching similarity) S(A,,A1l- a+b+c+J 

Distance mean-Manhattan E+c Per(A1 HA,) + Per(A, H A1) 
DM,M(A,,A1l = a+b+c+d 

Distance variance E+c ¾ (Per(A1 H A,)+Per(A, H A1)) Dv(A,,A1) 
4(a+b+c+d) 

Similarity Sokal and Michener s~M<A,,A1) 
a+J 

1-(P~r(A, H A1)+ P~r(A1 HA,)) 
a+b+c+J 

Similarity Faith I -
_l__(I+ card(A1 nA,) a+-d + Per(A, H A1 ) + Per(A1 HA,)) 

S,(A,,A1)- _ - 2_ - card(V) 2 
a+b+c+d 

Similarity Russel and Rao ii 
s •.• <A,,A1J= ii+b+c+d 

card(A,uA1) 
- (Per(A, H A1) + Per(A1 HA,)) 

card(V) 

Similarity Hamann s (A A)= (ii+dJ-(h+_c) 
H 1 ' 1 ii+b+C+d 

I - 2(Per(A1 HA)+ Per(A1 HA,)) 

According to the above consideration we can claim that the introduced measure of perturbation of 
sets is quite a general measure which can be successfully used to redefine many sets' similarities 
measures, what is shown in Table 7. The next example shows interesting relationship between selected 
proximity measures for two binary vectors. 

Example 5. Let us consider two binary vectors [l,l,l,l,0,l,0,0,0] and (l,1 ,0,1,l,l,l,0,0]. The problem 
is to calculate degrees of proximity between these vectors. The values of the measures of perturbation 
and the few selected measures: Jaccard's extended similarity, distance mean-Manhattan, distance vari­
ance, similarity Sokal and Michener, similarity Faith and similarity Russel and Rao are compared. 
The graphic illustration of calculated selected measures and the measures of vectors perturbation is 
shown in Fig. 4. 
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Fig. 4. A graphical illustration of few selected measures 

Additionally, the example shows that different criteria to evaluate the distance or similarity be­
tween sets will lead to different values. 

3.3. Specific sets perturbation illustration 

In general, there is not one the best measure for checking proximity between two objects as well as 
two vectors described by nominal-valued (or binary-valued) attributes. Many known in literature prox­
imity measures were developed specially for considered data and stated problems. It can often happen 
that some measures are not able to give any rational result in vector or objects matching. 

Here we will give a simple example of three sets and the task is to find which pair gives the great­
est proximity. These three sets were especially generated in such a way that within the few chosen 
measures generates the rational solution. The values of the measures of perturbation and the selected 
measures of similarity are calculated, and the results are presented by the following illustrative exam­
ple. 

Example 6. Let us consider the set V of nominal value, V = {a,b,c,d,e,f,g,h}, and three subsets 

A, = {a,b,c,d,h}, A, = {a} and A, = {c,d,e} . The task is to find a pair of sets which provide the best 

proximity. The values of the measure of perturbation (2) between A; and A1 , for i,jE{l,2,3}, and 

three other selected measures: overlap coefficient (14), Jaccard's coefficient (10), Dice's similarity 
(13) are calculated. The results are given in Table 8. The greatest value of degree of proximity, i.e., the 
minimal values of the set's perturbation and the maximal values of measures of similarity, are shad­
owed. 

A, 

A, 

Table 8. The values of the selected measures 

Ovl(A,,A,) =2/3 

A, 

P;r(A, HA2)=1/2 

S,_,(A,,A,) =1/5 

S,,,,,(A,,A,) =1/3 

P;r(A, >-> A,) =1/8 

S,-.,,,(A,, A,) =0 

S,,_(A,,A,) =0 

Ovl(A,, A2 ) =0 

A, 

P;r(A,>->A,)=l/8 

S,__,(A,, A,) =0 

S""'(A,,A,) =0 

Ov/(A2,A1 ) =0 
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The minimal value of the sets perturbation appears for a pair ( A2 , A,); the maximal values of the 

Jaccard's similarity and Dice's similarity appear for a pair (A,, A3 ); the maximal value of the overlap 

similarity appears for pair (A,, A2 ). 

According to (5), each subset A1 , i=l,2,3, can be represented by a binary vector [w1
1,w1

2 , ... ,w1,J 

of dimension 8 where w; E {0, I}, \;f / E {1,2, ... ,8}. The first set A, is represented by the following vec­

tor [I, I, I, 1,0,0,0, I], etc. In order to visualize these three vectors we use two-dimensional diagrams. 

Each entity of the diagram represents respective values w~, w:, w;1 , w: (rows) and w;5 , w;6 , w;1 , w: 
(columns), for i = 1,2,3. In Figure 5 all the vectors are depicted. 

0 0 
~ 
_Q_ I 0 

I 0 

_Q_ 0 
I I 

_Q_ I 
I 
0 0 

r--;- 0 

,-2- I 
I I 

,-2- 0 
I I 

,-2- I 
I 

A, 

/ 

/ 

A, / 
/ 

.,, 
/ 

/ 

/ 

/ 

A,~ 
0 

0 I 0 

0 I' 0 I' 0 I 

0 I 0 I 0 I 0 I 0 I 0 

Fig. 5. A graphical illustration of vectors 

I 

I 

0 

I 0 I 

I 

0 I 

w, 

w, 

w, 

It easy to notice that for the applied proximity measure the results are ambiguous. According to the 
perturbation measure and the,. ov~rlap coefficient sets A, and A, are located more closely than other 
pairs, it was mark by arrows in Fig. 5. However, according Jaccard's coefficient and Dice's sim­
ilarity measure the sets A, and A, are located closer, it was highlight by other arrows+--+ in Fig.5. 

The first case seems to be more intuitive than the second one. 
This way we can claim that the measure of sets perturbation can be considered as a competitive 

measure of sets (vectors) proximity especially when the sets (vectors) are characterized by asymmetric 
similarities. 

Conclusions 

In this paper we propose the measure of remoteness between sets of nominal values. The concept 
is based on set-theoretic operations. Instead of considering distance between two subsets, A, and A1 , 

in the set V, we introduced an idea of perturbation one set by another, and next we define a measure of 
perturbation of one set by another set. In result we obtain an extended view of similarities of two sets. 
The mathematical properties of the measure of perturbation are studied. It must be emphasized that the 
measure of sets' perturbation is generally asymmetrical. The developed measure of perturbation of the 
sets was compared to the selected measures for nominal and binary data. 

In the authors' opinion the measure of perturbation can be of practical significance. The proposed 
measure of perturbation sets with nominal descriptions can be extended for objects and for the groups 
of objects with nominal descriptions. The generic elements of the idea of perturbation of groups of ob-
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jects can be found in the papers by Krawczak and Szkatula (2013a,b). The proposed measure of 
groups' perturbation can be applied for constructing data mining algorithms, e.g. for clustering prob­
lem. For example the authors developed Clustering Perturbation Method (CPM); the algorithm be­
longs to a family of hierarchical clustering algorithms, and starting with N objects as individual clus­
ters then a pair of clusters described by the lowest value of the clusters ' perturbation measure is 
merged. This way a new cluster is formed, and the number of clusters is decreased by one. The algo­
rithm was applied to solve a clustering problem of time series data available at the Irvine University of 
California. The result of clustering confirmed the efficiency of the developed clustering algorithm 
(Krawczak and Szkatula, 2014). 

Appendix 

Equivalent definitions of few selected measures based on our sets perturbation measures is shown 
below. 

Jaccard's extended similarity 

S(A ,A ) ~ +d _ _ card(A, nAi )+card(V \ (A, uAi )) _ 

' 1 ii+b+ c +d card(V) 

= card(A, nA)+ card(V)-card(A, uA) _ 1 _ card(A,uA1)-card(A,nA) _ 

card(V) card(V) 

= 1 - card(A, \ A)+card(Ai \ A,) I - (P~r(A, H Ai )+ P~r(Ai H A, )) 
card(V) 

Mean-Manhattan distance 

b+c 
DM ,M(A,,Ai ) - - - - -

a+b+c+d 

card(A1 \ A,)+card(A, \ Ai ) 

card(A, nA1 )+card(Ai \ A, )+card(A, \ Ai )+ card(V \ (A, u Ai )) 

= card(Ai \ A, )+card(A, \ A1 ) card(A1 \ A, ) + card(A, \ Ai ) 
Per(Ai HA,) + Per(A, H Ai ) 

card(V) card(V) card(V) 

Distance Variance 

4(card(A, nA1 )+card(Ai \ A, )+card(A, \ A1 ) + card(V\ (A, u A1 ))) 

card(Ai \ A, )+card(A, \ A1 ) I ( ) 
Per(A1 H A,)+Per(A, H A1) 

4(card(V) 4 

Sokal-Michener similarity 
_ ii +d _ card(A, n A1)+ card(V \ (A, u A1)) _ 

s ,.M(A,, A) - _ _ _ _ 
a+b+c+d card(V) 

_ card(A, n A)+card(V)-card(A, uA) _ 1 _ card(A, u A1 )-card(A, n A1) _ 

card(V) card(V) 
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=1 - card(A, \A)+card(A1 \A,) 1 - (P~r(A, HA1)+P~r(A1 HA,)) 
card(V) 

Faith similarity 

a +.!__J card(A1 nA, )+.!__card(V\(A, vA1 )) 
Sp(A, ,A1) _ _ 2_ _ 2 

a+b +c + d card(A, nA1 )+card(A1 \A, )+card(A, \A1) + card(V\(A, vA1 )) 

_ card(A1 nA;) +card(A1 nA,)+card(V\(A, vA1)) _ 

2 card(V) 

_ card(A1 nA,) +card(V)-card(A, \A)-card(A1 \A;))_ card(V)+card(A1 nA,) + 

2 card(V) 2 card(V) 

card(A, \A1 )+card(A1 \A;) 1 card(A1 nA,) 
+ ---~---~-- -(!+ --~-- + Per(A, HA)+ Per(A1 HA,)) = 

2 card(V) 2 card(V) 

Russel and Rao similarity 
a card(A,nA1 ) 

SR _R(A,,A1) - - - - -------------~-------­
a+b+c+d card(A,nA1 )+card(A1 \A,)+card(A, \A1)+card(V\(A,vA)) 

card(A, v A)-card(A, \A1)-card(A1 \A,) = 
card(V) 

card(A, vA1 ) 
- (Per(A, HA)+ Per(A1 HA,)) 

card(V) 

Hamann 's similarity 
card(A, nA1 )+card(V\(A, vA)) - (card(A1 \A,)+ card(A, \A)) 

SH(A;,A) 
1 card(A, nA1)+card(A1 \A, )+card(A, \A1)+card(V\(A, vA1)) 

= card(V)-(card(A, vA1)-card(A1 n A,)) - card(A1 \A,) - card(A, \A1)) 

card(V) 

_ card(V)-card(A, \A)-card(A1 \A,) - card(A1 \A;) - card(A, \A))_ 

card(V) 

_ card(V)- 2card(A, \A1)- 2card(A1 \ A, ) 
-------~---~---! - 2(Per(A1 H A1) + Per(A1 HA,)) 

card(V) 
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