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Abstract. In the paper, the multi-attribute objects with repeating qualitative values of attributes are 
considered. Each object is represented by a collection of multisets drawn from sets of values of the 
attributes. Formalism of the theory of multisets allows taking into account simultaneously all the 
combinations of attribute values and various versions of the objects. The effective procedure for 
comparing such obj ects as well as groups of such objects is developed. The considered measure of 
perturbation of one object by another is proposed as the difference of the multisets representing the 
objects. The measure describes remoteness between the objects, and, in general , is asymmetrical , and 
therefore cannot be treated as the distance. Next, we introduce the new measure of perturbation of one 
group of objects by another group of objects and then generate the description of each group of objects 
in the form of the classification rules to distinguish the considered groups. A practical illustration of 
the proposed approach is carried out for the task of grouping of text documents described by multisets. 

Keywords : Pe1turbation of multisets, multi-attribute qualitative objects, asymmetry of objects' 
proximity. 

1. Introduction 

In data mining tasks there is a genuine problem ofusing a suitable measure of proximity between objects. 
Here, we consider a pair of objects A and 13 ·{ndi~ating a'distance measure and the similarity between these 
two objects. Generally, a distance represe,its a 0qtiantitative· degree and shows how far apart two objects are. 
Meanwhile, similarity describes degree indicates how close two objects are. It is imp01tant to notice that 
similarities focus on matching of relations between non identical objects while the differences focus on 
mismatching of attributes. Usually, there is an additional assumption about symmetry of objects ' proximity, 
i.e. , the proximity of the object A to the object B is equal to the proximity of B to A. 

However, there are many types of data proximity which are non-symmetric, e.g. in psychological 
literatt1re, especially related to modeling of human similarity judgments. It happens that considering two 
objects one can notice that the object A is more associated with object B than the other way round. 
Asymmetry may have variot1s meaning. Possible examples are like telephone calls between cities, e .g. the 
nt1mber of telephone calls from city A to city B can be different from the number of telephone calls from city 
B to city A. Another case, the cost of transformation of figt1res, e.g. the figure "~ " is more similar to the 

figure " c ", than the figure" c "to the figure" ~ " . This way, judging the similarity, e.g. Tversky found, 

that the less prominent stimulus was more similar to the prominent stimulus [Tversky, 1977]. Thus, objects 
can be viewed either as similar or as different, depending on the context and frame of reference [Goodman, 
1972]. Sometimes researchers perform some preprocessing of the data to get symmetric. According to Beals 
at. al. [ 1968], "if asymmetries arise they must be removed by averaging or by an appropriate theoretical 
analysis that extracts a symmetric dissimilarity index". On the other hand, asymmetry may carry out 
important information, e.g. [Tversky, 1977, 2004], [Tversky and Gati , 1978], [Tversky and Kahneman, 
1981 ]. Thus, it seems that the assumption of symmetry shot1ld not be established in advance, because often 
asymmetry of data should not be neglected. · 



We can distinguish qualitative properties describing objects in subjective terms as well as quantitative 
properties describing objects in objective terms. The task of comparing of objects requires choosing proper 
methods of data representation as well as the computer's data representation. In general, quantitative data 
represent numerical information about objects, such information may be measured, i.e., length, height, 
weight, time, cost, etc. While, qualitative data represent descriptive information about objects. Quality 
information are subjective and cannot be definitively measured. Thus, qualitative data can be observed but 
not measured, for example beauty, smells, tastes, etc. In general, the qualitative data are described by sets of 
attributes and the attributes are measured by nominal scales. Determination of similarities between 
"qua! itative" objects by using common dista1)ce ri;Jeasures cannot be directly applicable for qualitative data. 
The problem of defining of proximity rneasi.11'es, seems to be less trivial for nominal than for real-valued 
attributes. 

[n the present paper, we consider a finite, non-empty set of objects, each object is described by a set of 
attributes, and each attribute is described by nominal values, and additionally it is assumed, that the values 
of the attributes can be repeated in the object description . In other words, each multi-attribute object can be 
presented in m copies or versions, and the descriptions of the copies may vary within the values of the 
attributes. Such problems are faced when e.g. some object is evaluated by several independent experts upon 
the multiple criteria, or the attributes of the object were measured in different conditions, or by different 
methods. The multiple-valued attributes can be processed using transformations like "averaging" or 
"weighting", or so on. However, in such a case, a collection of objects can have different structure. Therefore, 
the new methods for aggregating such kind of objects are required. Formalism of the multisets theory allows 
to take into account all possible combinations of attributes' values simultaneously and therefore various 
versions of the objects can be compared. It seems to be obvious that the multisets theory gives a very 
convenient mathematical methodology to describe and analyze collections of multi-attribute qualitative data 
with repeated values of objects' attributes. 

In the classical set theory, a set Vis a collection of distinct values, v E V . If repeating of any value is 
allowed, then such a set is called the multiset. Thus, the multiset Scan be understood as a set of pairs, with 
additional information about the multiplicity of occurring elements. Let us assume now, that every subset of 
the set V of nominal values, in which repetition of elements is included, is called a multiset. The term 
"multi set" was introduced by Richard Dedekind in 1898'.· A complete survey ofmultisets theory can be found 
in several papers wherein appropriate op:e1·atib1is' and tliefr .pl'operties are investigated, e.g. [El-Sayed, Abo
Tabl, 2013; Girish, and Sunil, 2012; Petrov~ky, 1994, 200 I, 2003; Singh, Ibrahim, Yohanna, and Singh, 2007, 
2008; Syropoulos, 200 I; Krawczak and · Szkatula, 2015b, 2015c, 2016]. For instance, an exemplary 
description of the multi set { (l,a),(3,b),(2,c)} is · understood that the set of three pairs is considered wherein 

there is one occurrence of the element a, three occurrences of the element b, and two occurrences of the 
element c. The applications of multisets theory can be divided into two main groups: in mathematics 
( especially, combinatorial and computational · aspects) and computer science. The paper [Singh, Ibrahim, 
Yohanna, and Singh, 2007] contains a con1prehensive survey of various applications ofmultisets. 

In this way, each multi-attribute qualitative object can be represented by a collection of multisets drawn 
from the sets of nominal values V of the attributes describing each object. Following [Pelrovsky, 1994, 1997, 
2001, 2003) we will recall selected cases of qualitative data: evaluation of projects, retrieval of textual 
documents, and recognition of graphic symbols. Case first, evaluation of research projects by expe11s using 
predefined criteria with qualitative scale. This way, each project can be described in a form of a multiset, 
wherein the number of the elements is equal to the number of evaluations with qualitative scale, while the 
value multiplicity is equal to a number ofexpe11s evaluating the project. Case second, a collection of textual 
documents described by qualitative attributes is considered. The lexical attributes like descriptors, keywords, 
terms, labels, etc., express a semantic contents of documents. The description of each such document has the 
form of a multiset, where the multiplicities are equal to numbers of values of the lexical units appearing in 
the document. For many lexical units, the collection of such multisets constitutes another multiset. Case third 
concerns a collection of graphic symbols and a collection of standard symbols. Each such graphic symbol 

._; ,:·;, __ ·; <· 



has a form of a multiset, where the multiplicity is equal to the valuation of the recognized graphic symbol 
comparing to the standard symbols. 

In our present work we develop the effective procedure for comparing the nominal-value data wherein 
the attributes values are allowed to be repeated within the object's description. For such kind of data 
represented by multisets, the new asymmetric measure of remoteness between two multisets is developed. 
Additionally, following Tversky's suggestions about possible asymmetric nature of similarities between 
objects, our aim is to verify asymmetry of objects' proximity. Therefore, for data described by multisets we 
develop the new mathematical tool which provide satisfactory comparisons of two objects and then also two 
groups of objects. Although, there are known fairly many proximity measures of objects, however, usually 
there is an assumption about similarity. But, it seems to be obvious that there are problems wherein the 
direction of objects' comparison is significant. The appropriate choice of the applied measure depends on 
both properties of the objects considered. and the natuie of data under consideration. 

This paper is a continuation as well as exte1ision of authors' previous papers on the pe1turbation of sets 
[Krawczak, and Szkatula, 2014a, 2015a]. 1;he teim "perturbation of one set by another set" is used in the 
general sense and ccmesponds to Tversky's considerations about objects' similarities [Tversky, 1977, 2004]. 
The considerations are based on the theory of the multisets and their basic operations. First, we define 
a description of each multi-attribute object as a K-tuple of the multisets, i.e., an ordered collection of 
multisets. Next, it is defined a novel concept of perrurbation of one multiset by another multise/ which 
constitutes a new multiset. Then, it is shown that the perturbation of one multiset by another multiset is 
described by a difference between these two multisets, and therefore the direction of the pe1turbation of 
multisets has significant meaning. Due to normalization of the cardinality of this difference, the developed 
measure of the perturbation ranges between 0 and I, wherein 0 indicates the lowest value of pe1turbation 
while 1 indicates the highest value of pe1turbation. We propose two types of the measure of multisets' 
pe1turbation. The first is called the measure of perturbation type 1, where the pe1turbation is normalized by 
the arithmetic addition of these two multisets [Krawczak and Szkatula, 2015b, 20 I Sc] . The second is called 
the measure of perturbation type 2 [Krawczak and Szkatufa, 2016], where the pe1turbation is normalized by 
the union of these two multisets. Then, we developed a description of a group of objects as an ordered 
collection of the multisets, and next a concept of perturbation of one group of objects by another group of 
objects is defined. The perturbation represents the difference of the description of one group compared to the 
description of another group. The direction of the pe1turbation of the groups has significant meaning also 
therefore, that the difference of multisets (e.g. the arithmetic subtraction of multi sets) is used. For example, 
the methodology allows to generate classifications rules distinguishing the considered groups (e.g. the text 
documents as shown in Section 5). These rules can be used to classify new objects to one of the prescribed 
group. Another example of application ofthis ' IT)ethodol6gy"is possibility to evaluate groups' distances in 
order to solve clustering tasks, analogically' tci'the authors' pi;evious paper [Krawczak and Szkatula, 2014b]. 

, ' ' 

The paper is organized as follows: Section 2: pi-esents preliminary considerations on the asymmetric nature 
of the similarity of data. In Section 3 we present the description of the pe1turbation methodology for multiscts 
and the mathematical properties of the measure of pe1turbation type I and type 2. ln Section 4 we present the 
measures of interactions between objects described by multi sets. Section 5 presents the application of the 
measures of objects' pe1turbation for classification problem. The considered classification rules have the 
form "IF certain conditions are satisfied THEN a given object is a member of a specific group". 
The developed methodology is explained by an illustrative example. 

2. Asymmetry of data proximity 

There are several ways to model asymmetries of proximity of data. The only assumption is, that a measure 
of similarity or dissimilarity between two objects must be defined. Let us provide a sho1t discussion of some 
of such models, for instance the prospect theory, "salient" and "goodness" of the form, and "cost" of objects' 
transformation. 



Tversky and Ka/111ema11 prospect theo,y 
Human perception can be modeled by the prospect theory developed by Tversky and Kahneman [Tversky 

and Kahneman, 1981]. In outline, this theory describes people rationality in decisions involving risk. The 
theory states, that people make decisions based on the potential value of losses and gains. The value function 
is s-shaped and asymmetrical, see Fig. I. 

Value 

losses (i' 
I 

Gains-

-100 +100 

__ .,.,,,,,, 
Fig. I. A hypothetical value function (Tversky and Kahneman, 1981]. 

The most evident characteristics of the pro;pect theory is that the same loss creates greater feeling of pain 
compared to the joy created by an equivalent gain. For example, see Fig. 1, the feeling of joy due to obtaining 
$100 is lower than the pain caused by losing$ I 00. 

"Salient" and "goodness" of the form 
The issue of symmetry was extensively analyzed by Tversky [Tversky, 1997, 2004], who considered 

objects represented by a sets of features, and proposed measuring of similarity via comparison of their 
common and distinctive features. Such assumptions generate different approach to comparisons of objects. 
Namely, comparing two objects A and B there are the following fundamental questions : "how similar are A 
and B?", "how similar is A to B?" and "how similar is B to A?" . The first question does not distinguishes the 
directions of comparison and corresponds to symmetric similarity. The next two questions are directional 
and the similarity of the objects should not be a symmetric relation, meanwhile. For example, comparing 
a person and his potirait, we say that "the portrait resembles the person" rather than "the person resembles 
the po1irait" [Tversky and Gati, 1978]. 

The perceived similarity is strictly associated with data representation. In general, the direction of 
asymmetry is determined by the relative "salience ofthe \; timuli". Thus, "The less salient stimulus is more 
similar to the more salient than the more salient stimulus is similar to the less salient" [Tversky, 1977]. 
If the object B is more salient than the object A, then A is more similar to B. In other words, the variant is 
more similar to the prototype than the prototype to the variant. A toy train is quite similar to a real train, 
because_most features of the toy train are included in the real train. On the other hand, a real train is not as 
similar to a toy train, because many of the features ofa real train are not included in the toy train. 

The psychological nature of human perception was discussed among others by Tversky and Gati [ 1978]. 
They hypothesized, that both "goodness of form" and complexity contribute to the salience of geometric 
figures. Moreover, they expected that the "good figure" to be more salient than the "bad figure" . 
To investigate these hypotheses, they conducted two sets of eight pairs of geometric figures. In the first set, 
one figure in each pair (denoted p) has "better" form than the other figure (denoted q). In the second set, one 
figure in each pair (denotedp) was "richer or more complex" than the other (denoted q). Example two pair 
of figures from each set are presented in Fig. 2 and Fig. 3. 



figure q figure p 

Fig. 2. Example of a pair of figures from set I, used to test the prediction of asymmetry [Tversky and Gati, 1978]. 

figure q figurep 

• 
Fig. 3. Example of a pair of figures from set 2, lised to test the prediction of asymmetry [Tversky and Gati, 1978]. 

/\ group of 69 respondents were involved in the experiment whom two elements .of each. pair were 
displayed side by side. The respondents were asked to choose one of the following two state~ents: "the left 
figure is similar to the right figure," or "the right figure is similar to the left figure". The order of the presented 
figures were randomized so that figures appeared an equal number of times on the left as well as on the right 
side. In results, more than 2/3 of the respondents selected the form "q is similar top". 

Within the secon_d experiment, the same pairs of figures were used. One group of respondents was asked 
to estimate (on a 20-point scale) the degree to which the figure on the left was similar to the figure on the 
right, while the second group was asked to estimate the degree to which the figure on the right was similar 
to the figure on the left. In results the hypothesis was confirmed that the average pairs' similarity of the 
figures q to the figures p, S(q,p), was significantly higher than the average pairs' similarity of the figures p 
to the figures q, S(p,q). 

These experiments confinned their hypothesis that similarity is asymmetrical, but it does not clarify the 
concept of"goodness of the form". 

"Cost" of transformation 
The objects' distance may be referred as a transformational distance between two objects. Such distance 

is described by the minimal costs (the smallest number of elementary operations) of transformation by 
a computer program of the first object's representation to the second object's representation. This concept is 
known as Levenshtein 's distance [Leven~htein, i 966]. The developed measure of perturbation concept can 
be regarded as an extension of Levenshtein's 'distance. However the concept perturbation is evidently much 
more general because is bidirectional and conce1'11s nominal-valued attributes. 

According to Tversky [I 977] as well as Garner and Haun [ 1978], the objects' transformations involve the 
operations of additions and deletions. It seems that deleting of feature typically requires a less complete 
specification than addition of its. Each comparison of the representations has a "short" and a "long" 
transformation, the arrows indicate the tempo1'al order of stimulus presentation. 

Such transformations for the exemplary shapes A and B can be illustrated in Fig. 4. In order to generate 
the right figure from the left, the bottom line should be deleted. In the opposite case, the process of adding 
bottom line is more complex because requires specification of"what" and "where" exactly to add. 



: •• 1 deletion (short) 

A 

I 
A B 

addition (long) 

Fig. 4. Example of two shapes A and B [Garner and Haun, 1978]. 

Also can be considered the overall tra11.1formation distance between two representations, which is 
characterized by the number of steps required to change one representation to other [Hodgetts et.al. , 2009]. 
They distinguished three general transformations for comparing shapes: 1) create a new feature, that is 
unique to the target representation; 2) apply feature, this operation takes a feature created via step I and 
applies it to one or both of the objects in the target representation; 3) swap feature between a pair of objects, 
e.g. shape or color. The transformation from the exemplary pair of two shapes A to the pair of two shapes B, 
and in the opposite direction, can be illustrated in Fig. 5. 

transformation (short) 
A 

•• A 
transformation (long) 

Fig. 5. Example of two pairs of two shapes A and B [Hodgetts et.al., 2009; Hodgetts and Hahn, 20 12]. 

Let us consider first case, in order to calculate the transformation distance from the pair of shapes A to 
the pair of shapes B. Then, there are required to use only one transformation apply for existing square, i.e., 
app!y(square)=I. In the second case, the transformation distance from the pair of shapes B to the pair of 
shapes A requires using two transformations, creation of a new triangle and application of this new triangle, 
i.e., create(triangle) + app!y(triangle)=2. Thus, the transformation distance from the pair of two shapes A to 
the pair of two shapes B is "sho1i" (requires one operation), whereas the transformation from the pair of two 
shapes B to the pair of two shapes A is "long" (required two operations). Applying a feature that is currently 
available is simpler than introducing a new feature. 

In the next section we present the description of the perturbation methodology for multisets. 

3. Matching of multisets 

Let us consider the multisets defined in so-called multiplicative form [Meyer and McRobbie, 1982; 
Petrovsky, 2010], drawn from a non-empty and finite ordinary set V of nominal-valued elements, 
V={v 1,v2 , ... ,vJ, V;+J atv;, lfiE{I, 2, .. . , L-::1} ._ 

Definition 1 (Multiset). The mu!riset S drawnfi·o.m the ordinlllJ' set V can be represented by a set of ordered 
pairs: 

S = {(ks(v),v)}, v'vEV 

where ks: V • {0, 1 ,2, ... } . 

(I) 



In (I) the function k., (.) is called a counting.fimction or the multiplicity jimction, and the value of k,1. ( v) 

specifies the number of occurrences of the element v E V ii, the multiset S. The element which is not included 
in the multiset S has its counting function equal zero .. The mulliset space is the set of all multisets with 

elements of V, such that no element occurs more than m times, and is denoted by [VJ"'. 
Definition I can be formulated in the followii1g way 

(2) 

understood that the element v1 E V appears k s (v,) times in the multiset S, the element v2 E V appears 

ks(v2 ) times and so on. In the case where k,1. (v;) = 0 then the element 11; E V is omitted. 

Let us consider two multisets S 1 and S 2 , such that S 1 , S, E [VJ"', where a collection ofmultisets [VJ"' 
is drawn from the set V ,= {v 1, v2 , ... , vL} of nominal elements, 

S1 = { (ks, (v1 ), v1 ), (k81 (v2 ), v2 ), •• • ,(ks, (v1), v,)}, 

S, = { (k,, (v1 ),v1 ),(ks, (v,), v,), ... ,(k,, (vL), vL) }. 

(3) 

According to [Krawczak, and Szkatula, 20 I Sb, 20 I Sc, 20 I 6) the following basic operations and notions 
of the multisets can be distinguished. 

• The union of multisets 

S1 v S2 = {(ks1 us, (v), v): \iv E V, k81 us, (v) = max {ks, (v),ks, (v)}}. 

• The inlersection ofmultisets 

S, n S, = {(ks,vs, (v), v): Vv E V, ks,~s, (v)_,;= min{ k.,·, (v), ks, (v)}} . 

• T11e arithmelic addition ofmultisets :: 

S1 EBS2 ={(ks,ffis2 (v),v): \fveV, ks,as-/v)=ksj'(v)+k82 (v)} .'' 

• The arithmetic subtraction ofmultisets 

S10S2 = {(ks,es, (v), v): Vv E V, ks,es, (v) = max{ks, (v)-ks, (v), 0}}. 

• The symmelric difference ofmultisets 

S/:,.S2 = {(ks,i1s, (v), v): \iv E V, ks, 68, (v) = /ks, (v) -ks, (v)/}. 

On the basis of the authors' previous research, the new asymmetric measure of proximity between two 

multisets S I and S 2 is introduced. The details ofthe_proposed approach are presented below. 

3.1. Concept of multisets' perturbation 

Comparison of the first multi set S I to the second multiset S 2 is meant that the second multiset is 

perturbed by the first multiset, while comparison of the second multiset S 2 to S 1 is meant that the first 

multiset is perturbed by the second one. It is important to notice that the direction of the perturbation has 
significant meaning. ln other words, one multisct can pe1turbs another multiset with some degree. 
In [Krawczak and Szkatula, 20 I Sb, 20 I Sc, 2016], there was developed the definition of a novel concept of 
perlurbalion of one multiset S 2 by another multiset S 1 , denoted by (S1 HSi) , which is interpreted as 

a difference between one multiset and another multiset, S,0S,, in the following way: 

(4) 

The counterpait definition is similar 

(S2 H S1) = Si<;,s1 = {(ks,,-,s, (v), v): \iv E V, k82 ,_,,1., (v) = max fks, (v) -ks, (v), O}} (5) 



The interpretation of the perturbation of one multiset by another multiset is presented in the following 
example. 

Example I. There is considered the followin_g set V = {a,b,c,d,e} and two exemplaty multisets 

S1 = {(1,a),(1,e)} and S 2 = {(l,a),(1,d),(3,e)}, S1, S2 E[V]3. The pe11urbation of the multiset S2 by the 

multisct S 1 is the empty multiset, because (S1 HS2)'=S10S2 =0. The perturbation of the multisct S 1 by 

the multiset S 2 is the following multiset (S2 H S1) = S20S1 = {(J,d),(2,e)}. 
D 

Note, that each finite multisct drawn from the ordinary set of L elements can be shown as a point in 
L- dimensional space. For example, assume that L=2, then the multiset {b,a,b,b} can be written in 

a simplified form as {(1,a),(3,b)} (since the order of elements is irrelevant) and by omitting the names of the 

elements, we get the point (1,3) in 2-dimensional space. 

The geometrical interpretation of the proposed concept of the pe11urbation in 2D space is provided below. 

3.2. Geometrical interpretation of multisets' perturbation 

Let us assume that card(V) = 2 , i.e., V = { v1, v2 } , and then consider two multi sets S1, S2 E [VJ"', denoted 

by S1 ={(ks1(111),111),(ks1(v2 ),v2 )} , and S2 ={(ks2 (v1),v1),(ks2(v2),v2)}. Each considered multiset can be 

represented as a point in 2-dimensional space, see in Fig. 6, and these two points have the following 
coordinates (ks, (v 1 ), ks, (112 )) and (ks, (v1),ks, (112)), respectively. 

According to ( 4) and (5), the pe11urbation of an arbitrary multi set S 2 by other multiset S I is interpreted 

as a new multi set described as follows [Krawczak and Szkatula, 201 Sb, 201 Sc, 2016]: 

(S1 HS2) =S/~l5'2 = {(ks,,-,s, (v1),111),(ks, ..... ,, (112),112)}= {(rnax {ks, (v1 )-ks, (v1 ),0), v1 ), (rnax {ks1 (112 ) - ks, (112),0), v2 )) . 

And, in the opposite case, the perturbation of the multise:t S I by the multiset S 2 has the similar definition, 

[Krawczak and Szkatula, 2015b, 2015c, 2016(. · · ·· 

(S2 HS1) =S20S1 = {(ks2,-,,, (v1), v1),(ks2,...s1 (v;), v2)}·"= {(max~s, (v1)-ks1 (v1),0), v1),(max{k82 (v2 )- ks, (v2),0}, v2)}. 

The two-dimensional geometrical interpretations of the perturbations for the exemplary multi sets S I and 

S 2 are presented in Fig. 6. Within the figure, there are indicated two petiurbations, i.e., the pet1urbation 

(S1 HS2) in the left figure, and (S2 HS1) in thearight figure. 

k(v2 ) 

(0,111) ---------------- -- ------------, (111,111) 

s, 
' 

' 
' 
' ' , 
' ' 
' ' ' 
' ' ' 

k(v2 ) 

(0,m) ----- - ------ --- --------------- : (m,m) 

s, 
k.,.,(1•2) r 1-.__._ 

ks, H,,, (v,)Jf "-.,.. 

k ( ) .............................. s 
S1 1'2 ( I 

··•"·•'T 

' 
' I 

' 

' ' 
' ' 
' 
' ' 
' ' ' 
' 

(0,0) k.,·, (i•,) ks, (v,) (111,0) ,1-(v1) (0,0) k_,,(1•1) k.,,(v1) (111,0) k(v1) 

Fig. 6. The graphical interpretations cif perturb,itions .of the multisets S I and S 2 • The arrows indicate the 

directions of the pe11urbation. 



Analyzing Fig. 6, one may notice that for the exemplary multisets S 1 ,S2 e (V]"', the perturbation of one 

multiset by another creates a new multiset, obtained as the subtraction of these two multisets. Thus, the 
multisets' perturbation describes difference between multisets, and therefore the direction of the perturbation 
cannot be neglected. The following conditions ks,>->s, (v1) = ks, (111 )- ks, (111) and ks,,-,s, (v2)=0 , as well as 

ks,,-,s,(v1)=0 and k,1•,Hs1(v2)=ks2 (112)-k81 (112), are satisfied. The segments marked by the thick lines indicate 

positive values of the counting functions ks,>->s, (111) and ks2Hs1 (v2 ) , respectively. In the case of the 

perturbation (S1 HS2), the beginning of the segment is the point (k,1•2 (v1),k_1•1 (112)), and the end of the segment 

is the point (ks, (v1),ks, (v2)). While, for the opposi_te perturb\ltion (S2 H S1), the beginning of the segment is 

the point (ks, (v1 ), ks, (112 )) , and the end is' the point (ks, (v, ), k,., (112)). 

The cases shown in Fig. 6 have been especially selected in order to obtain the perturbations as single
element multisets, just indicated by the thick lines. Thus, the first perturbation, depictwed at left -side of 
Fig. 6, can be rewritten in the following multiset form 

(S1 H S2 ) = {(ks,,-..,s, (v, ), v, ), (k_1•1H ,1., (v2 ), 112 )} = {(ks, (v1) - ks, (111 ), 111 ),(0, v2 )} 

while the second perturbation, depictured at right side of Fig. 6, can be rewritten as 

(S2 H S1) = {(k.1-, Hs, (111), v1),((ks,Hs, (v2 ), v2))} = {(O, 11 1),(ks, (v 2 ) - ks, (v2), v2 )}. 

Next, we will present details of the proposed approach of the measure of the perturbation of one multiset 
by another multiset. 

3.3. Measure of 11111/tisets' perturbation 

Again, let us consider two multisets S1,S2 e [V]111 , V = {11 1, 11 2 , ... ,v,J. The perturbation of one multi set by 

another constitute a new multiset, and there is a problem of estimating numerical values of the multisets' 
perturbations. For this purpose, we give two proposals of defining the measure of the perturbation of one 
multiset by another multiset, which values range between O and I. Value O indicates the lowest value of the 
perturbation measure while 1 is the highest value. The definitions are based on the cardinality of the multiset 

as a function that assigns a non-negative real number to _e~ch finite multi set Se [V] 111 , i.e., carcl._S) = I>s(v). 
' . ~ 

At the beginning the arithmetic subtractio1i of two 1irnltisets, S10S2 , is determined and its cardinality is 

described, and then the result is nonnalized. 
Here, we propose the measure of perturbatio11 type 1 of one multi set by another with normalization done 

by the use of the arithmetic addition of these two multisets S1 © S 2 , and another measure of perturbation 

type 2 with normalization caused by the union of two considered multisets S1 u S2 • 

First, let us consider the measure of the multiscts' perturbation type l of the multiset S 2 by the 

multiset S 1 • This measure of the perturbation is calculated in the following way [Krawczak and Szkatula, 

2015b,2015c]. 

Definition 2 (Measure of perturbation type I). The measure of perturbation type 1 of the multiset S 2 by the 

multiset S 1 , denoted by Pe,Ls (S1 H S 2 ) , is defined by a mapping Per,'1s : [v J" x ~,, J" • [O, I] , in the 

following manner: 
L 

·d(S'-'S) L(ks,(11,)-ks,ns,(v,)) 
p . I (S H S ) = ea, I"" 2 - ~'=~I ,--_____ _ e/ MS I 2 --~-~- -- / 

card(S1 EB S2 ) -..:' (k ( ) k ( )) 
~ S1 V; + S1 Vi 

(6) 

i=I 



The intuitive meaning of the above definition can be given as follows, namely the measure of perturbation 
of one multiset by another is understood as the total number of elements appearing in the multiset which is 
created as the arithmetic subtraction of these multiset. The measure is normalized by the total number of 
elements within the multiset created by arithmetic addition of these multisets. The normalization causes that 
the measure is not greater than I. 

In the counterpart case, the measure of perturbation of the multiset S1 by the multiset S 2 is defined in 

the similar way: 
L 

P , 1 (S H S )- card(S20S1) e1 MS 2 I 
card(S2 EB S1) 

L(ks, (v;) - ks1,.;,·, (v;)) 
;-1 

L 

L(ks, (v1)+ks1 (v,)) 

(7) 

i=I 

'fhe definitions of these two cases are similar, however the difference is involved in the directional 

character of the arlthmetic subtractions S/2>S2 and S/8JS1 , respectively. 

The measure ofmultisets' perturbation type I satisfies the following properties : 

Corollary 1. The measure of perturbation type 1 of the multi set S2 by the multiset s, satisfies the.following 

conditions 

1) 0 s Pe,A1
1s(S1 H S2 ) s 1. 

2) PerA'.is(S1 H S 2 )=0 ifandonlyifks1(v1)=k.1.,,--.s,(v;), \iiE{l,2, ... ,L}. 

3) If Vi E {1,2, ... ,L}, k.1., (v;) = 0, and :3ks, (v;) > 0, i E {I, 2, ... ,L }, then the condition Pe,]4s(S1 HS2 ) = 1 is 

satisfied. 

Proof. See [Krawczak and Szkatula, 201 Sb; 20 I Sc]. 

Now, the measure of the perturbation type 2 is defined in the following way [Krawczak, and Szkatula, 
2016]. 

Definition 3 (Measure of perturbation type 2). The measure of perturbation type 2 of the multiset S 2 by the 

multiset S 1 , denoted by Pe1A!s(S1 H S2), is defined by a mapping PerA~s: [v ]" x [v ]" -> [0,1], in the .following 

manner: 

Per/1s (S1 H S2 ) = card(S10S2 ) 

card(S1 u S2 ) 

/. 

l)ks, (v,:).,-' ks,ns,(v,)} · 
i=I. , 
L 

Imax{ks, (v1 ),ks, (v1)) 

l=I 

The deffoition of the counterpart case is similar 

l 

2)ks, (v;)-ks,ns, (v,)) 
l•I 
/, 

Imax{ks, (v,),ks, (v1 )} 

i=I 

(8) 

(9) 

The remark is the same, i.e., the difference relies on using the arithmetic subtractions S10S2 and S20S1 , 

respectively. The measure of perturbation type I of multisets differs from the measure of perturbation type 2 
with respect to different form of the denominator. Namely, in the Definition 2 there is the arithmetic addition 

S1 ffi S2 , while in Definition 3 there is the union of multisets S1 uS2 • 

The measure of perturbation type 2 of one multi set by another set satisfies the following properties: 



Corollary 2. The measure of perturbation type 2 of the multiset S, by the multiset s, satisfies the following 

conditions 

I) 0 s Per/1s (S1 H S2 ) .s I. 
2) Pe1i!s(S1 HS2 )=0 if and only if ks,(v;)=k,1.,r8,(v1), 'v'iE{l,2, ... ,L} . 

3) {f 'v'iE{l,2, ... ,L} , k5, (v,)=0, and 3ks/v1) > 0, iE{l,2, ... ,L}, then the condition 

Per/18 (S1 H S2) = I is satisfied. 

Proof. See [Krawczak and Szkatula, 2016]. 

The idea ofmultisets' perturbation we will be now illustrated by the following example. 

Example 2. Let us consider the set V = {a,b,d ,e}, i.e., L=4, and two multisets s1,s2 E[V]4 drawn from the 

ordinary set V, where for example S 1 = {(l,a),(l,e)} and S 2 = {(1,a),(l,d),(3,e)}. Due to Definition 2, the 

measures of perturbation type I is calculated in the following way: 

' L(k, , (v,) - ks,ns, (v,)) 
Pe1;',s(S1 HS2 )= '-', Q, 

L(k.,., (v,)+k.,, (v,)) 
i.=I 

' L (ks, (v, ) - ks, ns, (v, )) 3 
Pe1,~s(S, H S1)=~'"~',-- ---

L(k,., (v, )+ks, (v,)) 
7 

/ ,: I 
D 

In the subsequent subsection we provide the geometrical interpretations of the proposed measure of the 
multisets' perturbation in 2D and 3D space. 

3.4. Geometrical interpretation of measure of multisets' perturbation 

In order to demonstrate the meaning of the measures of the perturbation both type I and type 2, of 

a multiset S 2 by another multiset S 1 , i.e., Pe,{1s(S1 H S2 ) and PerA~s (S1 H 8 2 ), as well as the counterpart 

cases, i.e., Per;.'.1s (S, H S1) and PerA:ts (S2 H S1), we draw some geometrical interpretations of the measures 

of the perturbations of the multisets in 2D and in 3D. 

Case 2D 

Let us assume that V = {a}, i.e., L = card(V) = I, and consider the following two multisets S1,82 E (V]5, 

denoted by S1 = {(k.,1 (a), a)}, and S2 = {(k82(a), a)} . According to Eq. (6) and (7) the measures of 

perturbation type 1 have the following forms: 

Per I (S H s ) - ks, (a)-ks,,-,s, (a) Pe,:' 'cs ~ s) = ks, (a) -ks,r..s, (a) 
MSI 2 - 'A,JS2 I 1 

ks, (a)+ks, (a) k,1.2 (a)+ks1 (a) 

and according to Eq. (8) and (9) the measures of perturbation type 2 have the following forms 

P . 2 (S S ) _ k.1-1 (a)-ks,f'.I·, (a) p , , (S S ) _ k.,2 (a)- k82 ,,s1 (a) e, MS I H 2 -~-~~-' e, MS 2 H I -~-~~~- ' 
max{ks1 (a),ks, (a) max{ks, (a),ks, (a) 

Addit ionally, it is assumed, that the counting function for the multiset S 1 equals 2, i.e., ks1 (a)= 2; while 

the counting function for the multiset S 2 is changed from Oto 5, i.e., k,1•2 (a) E {O, 1,2,3,4,5}. In this way, we 

consider the pairs of the multisets: S, and S 2 , where the multiset S1 is fixed, i.e., S1 ={(2,a)} and the second 

multiset S 2 is changed as follows: S, ={(O,a)}, S, = {(l,a)}, S, ={(2,a)}, 82 = {(3,a)}, s, ={(4,a)}, 



S2 == {(5,a)}. Fig. 7 shows comparisons between the values of the measures of the perturbations for such 

pairs of the multisets S1 and S2 • 
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Fig. 7. The measures of perturbations Pe,~.,s(.) and Pe1:i~s(-): the perturbation (S1 HS2) - the blue lines, the 

perturbation (S2 HS1) - the red lines. The value of k,;, (a) is equal 2 and ks, (a) is changed from Oto 5. 

In the left figure, there are displayed the measiires of the perturbation type 1, denoted by Pe,J,s(.), while 

in the right-hand figure there are displayed the values of the measures of the pc1turbation type 2, denoted by 

Pe,}18 (.), for the pairs of the multisets S 1 and S 2 • 

The figures display changes of the values of the perturbation measures with respect to the values ks, (a) 

(which are changed from O to 5), for fixed value of the function ks1 (a) == 2 . For the first case of the 

perturbation (S1 H S2), the measures Per},,1• (S1 H S 2 ) and Pe,},s(S1 H S2) (indicated as the points on the 

blue lines in Fig. 7) are equal O for k81 (a)== 2 s; k82 (a) s; 5. for the second case of the pe1turbation (S2 HS1) , 

the values of the measures of the perturbation: Per},s (S2 H S1) and Pe,A'.,s(S2 H S1) (indicated as the points 

on the red lines) are equal O for O s; ks, (a) s; ks, (a) == 2 . It is interesting to note that the both curves are convex. 

Case 3D 
Now, let us consider a case characterized by V == {a,b}, i.e., L == card(V) = 2 , and two exemplary multisets 

s, = {(ks, (a),a), (k~., (b) ,b)} and s, = {(ks, (a),a) , (ks, (b),b)) , where S1,S2 E[V]4. It is assumed additionally, that the 

value of each counting function for S 1 is equal 2, i.e. , k81 (a) == 2 and ks, (b) == 2 ; while the values of the 

counting function for S 2 are ranged between O and .4, i.e., ks (a) , ks (b) E {0,1 ,2,3,4}. In this way, we 
· , . . ; · 2 2 

consider the pairs of the multisets S 1 and, S 2 ,: where .the multiset S 1 is fixed, i.e., S 1 == {(2,a), (2,b)} and 

the second multiset S 2 is changed as follows 

S2 = ((O,a), (O,b)}, S2 = {(O,a), (l ,b)}, S2 ={(O,a), (2,b)}, S2 = {(O,a), (3,b)}, S2 = {(O,a), (4,b)}, 

S2 = {(l,a), (O,b)}, S2 ={(l,a), (l,b)}, S2 =={(l,a), (2,b)}, S, =={(1 ,a), (3,b)}, S2 ={(! ,a), (4,b)}, 

S2 ={(4,a), (O,b)} , S2 = {(4,a), (l,b)}, S2 ={(4,a), (2,b)}, S, = {(4,a), (3,b)}, S2 ={(4,a), (4,b)} . 



As an example of 3D case, let us consider the measure of perturbation type 2 for the multisets s, and 

S2 , denoted by PerA!s(S2 H S1), and des~ribed by Eq. (9) :' · 

2 

L(ks, (1';) - ks,rS, (v; )) 

Pe,},s (S2 H S1) = -";;"'-1------

I max {ks, (v;),ks2 (v;)} 
i=I 

k_1., (a)+ks, (b) - ks,,-,s, (a)-ks,,-,s, (b) 

max{ks, (a),k8, (a)}+max{k,1-, (b),k.1., (b)} 

Thus, each considered measure of pe1turbation type 2, for the fixed multiset S1 = {(2,a), (2,b)} and for 

changing the multisel S2 = {(k82 (a),a), (ks, (b),b)} (i.e., for changing values of ks, (a) and k.1•2 (b) from 0 

lo 4 ), can be represented as a point on a plane in Fig. 8. Jn a 3-dimensional space, each such a point has the 

following coordinates (ks, (a), ks, (b), Per},s(S2 HS1)). 

0 2 3 4 
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ks, (h) 

Fig. 8. The changes of the measure of the perturbations. 

Fig. 8 shows, that the measure of the pe1turbation type 2, denoted by Pe,/,s(S2 H S1), is equal O if 

ks, (a)E{O, I, 2} and ks, (b)E{O, 1, 2}. The value of the measure of the pe1turbation is greater than zero if 

ks2 (a)e{3,4} or ks2 (b)E{3,4}. 

3.5. Comparing proximity measures 

Let us consider two multi sets S 1 and S 2 , drown from the set V ={v1, v2, ... ,vi} of nominal elements, such 

that S, ,S2 E [VJ"'. It is important to mention, that there are several known measures which can be applied for 

comparison of two multisets. Comparing proximity measures can be analyzed analytically, where two 
measures are considered equivalent or one measure is expressed as a function of the other measure, 
or empirically, for a given data set. Both cases are discussed below. 

Empirical case . . . . . 
Let us compare the proposed pe1turbation§ oLony nJl,\ltiset by another multiset to three commonly 

used distance measures, namely Chebyshev :( dci ''b•l·•·(S1,S2 )= max /ks (v1)-ks (v)/ ), Manhattan 
. ,, ·. 1t ~-f w1 . /e{l, 2, ... ,L} I 2 1 

L · L 

( dManhmrun (S1 ,S2 ) = I/ks, (v;)-ks, (v;)/ ), and the Euclidean distance (dE(S1, S2) = L(ks, (v,) - k.1•2 (v1))2 ). 
~ ~ 



Let us assume that L=2 and let us consider two exemplary multisets S1 = {(k81 (a),a),(ks, (b),b)} and 

S2 = { (ks2 (a),a), (ks, (b ),b)} drown from the set V = {a, b} , where S1, S2 E [V] 5 • It is assumed additionally, 

that ks1 (a) =2, ks1 (b) =3, and ks2 (a)=3, ks,(b)=I. In this way, we consider the pair of the multisets 

S1 ={(2,a),(3,b)} and S2 ={(3,a),(l,b)}. The rnultisets,S.i and.S2 can be represented as points in 2D space 

specified by the coordinates k(a) and k(b) , ~amely as points (2,3) and (3,1), respectively. And then, there 

arises a problem of calculation of degrees of proximity between these two multisets. 

According to (4) and (5), the perturbations for the multisets S 1 and S 2 are interpreted as the new 

multisets , described as follows : 

(S1 HS2) = { (max { ks, (a) -ks2 (a), O}, a), (max{ k8 , (b) -k82 (b ), 0}, b )} = {(O,a),(ks,Hs, (b),b)} = {(0,a),(2,b)}, 

(S2 HS1) = {(max { k.1•2 (a) - k81 ( a), O}, a), (inax { k82 (b) -ks, (b), O}, b)} = {(k82 ,...81 (a),a),(O,b)} = {(l,a),(0,b)}, 

The values ofnonzero counting function of proposed petiurbations are ks,Hs, (b) = 2 and k82 ,._.s, (a)= I . 

The graphic illustration of the selected measures and the counting functions of proposed petiurbations, for 

the fixed multi~ets S I and S 2 , is shown in Fig. 9. 

k(b) 

5 ············ ···· ···· ···········•·········· ···· ····· ········ 

<f.\fa>111cll(m( S1 , S 1 ) 

0 k(a) 

Fig. 9. A graphical illustration of few selected measures for fixed multi sets S1 and S 2 • 

It is easy to confirm that the different criteria of evaluation of the distances between multisets will lead to 
different results , Obviously, the Chebyshev measure d c''""Y'''"'' (S,, S 2 ) = 2 (the purple segment) as well as 

Euclidean de,,c1;,,'"" (S1 ,S2 ) = ✓5 (green segment) and Manhattan du""'"'"""(SpS2 ) = 3 (the red path shows one 

of possible realization) are symmetric. However, if the direction of comparison of multisets cannot be 

neglected, then the counting functions k.,·"-'"' (b) = 2 and ks,Hs, (a)= I of the petiurbations (two black 

segments) may be used. Thus, it is obvious that it is impossible to indicate which measure is better in general. 
In other words, there does not exist the best measure for evaluation of proximity between two arbitrary 
multi sets and the choice depends on the nature of data under consideration. 

Analytic case 
The different measures known in the literature can be expressed as some functions of the measures of 

perturbations type I of one multiset by another · multiset [Krawczak and Szkatula, 2015b, 2015c], or the 



measures of perturbations type 2 (Krawczak and Szkatula, 2016]. These measures can be spread into two 
components, which correspond to the directional two perturbations. In the following corollaries we present 
several very important properties of the select few measures, in which there is involved our idea of the 
perturbation measures. 

For example, the Bray-Curtis dissimilarity (d11_c(S1,S2 )= cal'cl(S/..Si) ) (Bray, Curtis, 1957), that is 
card(S1 EB S2 ) 

popular in the environmental sciences, can be rewritten in such a way that the equivalent definition contains 
the sum of the measures of the perturbation type I. 

Corollary 3. The sum of the measures of the pei:titrbation type 1 satisfies the following condition 

d 8 _,:(S1,S2 ) = Per}18 (S 1 H S2 )+Per}1s(S2 H S1 ). 

Proof. See Appendix. 

Likewise, the equivalent definition of the Steinhaus distance ( ds(S1,S2 ) = card(Si l'i.Si) ) [Dcza, and 
card(S, uS2 ) 

Laurent, 1997], can be obtained as follows. 

Corollary 4. The sum of the measures of the perturbation type 2 satisfies the.following condition 

ds (S1 ,S2) = Pet/1s (S1 H S 2) + Per},s (S2 H S1). 

Proof. See Appendix. 

Thus, the introduced measures of perturbations of one multiset by another multi set can be used to provide 
equivalent interpretations of the distances between two multisets. 

Equipped with the fundamental definitions about the pe11urbation of multisets, in the forthcoming 
sections, we will define a description of the multi-attribute object with repeating nominal values of attributes, 
as an ordered collection of multisets. Nex~, ;the concept of the measure of pe11urbation of one multiset by 
another multiset is adopted to all multisets within describing the considered object and the group of such 
objects. 

4. Multiset approach to multi-attribute objects 

Let us consider a collection of multi-attribute qualitative objects U={ ~,}, indexed by n, n = 1,2, ... ,N. The 

objects are described by K attributes A= {ap ... , aK} indexed by j, j = l, ... , K. The set V01 = {v,.1, v2.1, ... , v1,1_1} 

is the domain of the attribute a; EA, j = 1, ... , K, where L.i denotes the number of nominal values of the 

attribute (/;, Li ;::>:2 , Then we assume, that the considered multi-attribute objects can be characterized by 

repeated values of the attributes. We have additional information, how many times each value v,,.i E v;,_;, for 

i=l,2, ... , L1 and J=l, ... ,K,isrepeatedfortheobjecteEU,wherethenumberof J=l, ... ,K determines 

the considered attribute a1 . 

4.1. Description of multi-attribute object 

Assuming, that the objects are represented by their descriptions, the description of an object e is denoted 

by G •, and can be represented by an ordered collection of multisets, see the following definition . 
' .i . 



Definition 4 (Description of object). Every object e, e e U, can be represented by an ordered collection of 
K multisels SJ.tU.•>' j = 1,2, ... , K, drcrwnfi'om the ordinmJ' sets of nominal values 1~,, ={v,.;, v,.J" .. ,vL,.J} of the 

attributes a1, described as follows 

Ge=< sl,1(1,e)> s2,1(2,e)> ... ,sK,t(K,e) > (15) 

where the multiset SJ,1(j,,) E[V,,1r', i.e., I:,; card(SJ,t<J,,J):,; 111 for jE{l, ... ,K}. 

In Definition 4, the description of the prescribed object e is denoted by G c , while each consisting multiset 

represents respective attribute a1, J=l,2, ... ,K. This way the subscript j,t(j,e), forj=l, .. . ,K, specifies 

that we consider the attribute a1 of the object e, while the multiset SJ,t(.i,e) represents this attribute description. 

Eachj-th multiset SJ,tU.•l (the number ofj specifies which attribute a1 is considered) can be represented by 

a set of L1 pairs 

SJ.tU.e>={(k81.,u.,J (v;.1u.,)), vi.tU.•l): i = 1,2, ... ,L1 } = 

= { (ksJ,tU,e) (vl,t(J,e) ), V1,1(J,e) ), (ksJ,tU.eJ (v2,1(J,e) ), V2,1(J ,e) ), .. . ,(ks1.,u.,) (vl; ,t(J,e) ), v,,1 ,t(J,e))} (16) 

where v; 1(1-,JEV,,. forj=l, ... ,K. The value k~ . (v11<1·,i), for i=l,2, ... ,L1 , specifies the number of 
• • J 'J,l(},u) • , 

occurrences of the value v,.1u,,J E Va1 in the multiset SJ,t(J,e). Another subscript ;, t(j, e) specifies which 

element v . t<. ·> from the set V . = {v11. , v2 ,·, ... , vL . 1} for the attribute a1-, and for object e, is considered. Thus, /, .f.C 0) , ,. J , 

the applied notation states, that for the object e, and for the attribute a1 , the value v1,1U,e) E V,,1 appears 

ks_;,,u.,> (v1_1u.,)) times, the value v2,1(J,e) E Va1 appears ks,,UP> (v2_1(1,,)) times, and so on. Thus, it is obvious that 

each multiset SJ,t(J,e) represents the separate attribute a1 which take the values v,,iu.,) E V,,1 , j = 1, ... ,K. 

Example 3. In this example let us consider the object e described by two attributes A= {a1, a2}, where the 

sets V = {\Ill' \12 I' V3 i} ' and Va = {vi 2; 1;~ 2l are''the ' do1na11;s of this attributes, respectively. According 
ll] , , , 2 , , : . 

to (15), the object e can be described by an ordered collection of two multisets in the following fo1m: 

G, = < S1_1(l,,)' S2_1(2,,J >. According to ((6), the exemplary multisets S1,1(l,eJ and S2,1c2,,J have the form 

s l,i(l,e) = {(2,v1,1),(0,v,,1),(l,v3_1)} = {(2,v1,1),(1,v3,J)} and s2,1(2,e) = {(2,v1,2),(0,v2,2)}={(2,v1,J} , Thus, the 

description of an object e can be written in the following multiset form G, = { (2, v1_1 ),(!, 1'3_1 )} ,{ (2, v1,2)}. 

• 
A single object e1 is characterized by a lack of repetitions of values of all attributes, and each attribute a1 , 

j = I, ... , K , can take only one value vi(J)JU,ei) E Va1 . Because the value vi(j),i(J,ei) appears once in the 

rnultiset S. 1<J )' then ks . . (v( .)i( · ))=!. In this case, the multiset S11(/eJ for j=l, ... ,K, in (16) is 
J, ,CJ J,l(J,c1) 1 1, J,ei , , I 

reduced to the fonn s1,,u,,1) = {(I, v,(J);(l,,,J)}, where vi(JJ,tU.•, > E V,,1 . The index of i(j) E {l,2, ... ,£1 ) specifies 

what value for the attribute a1 is considered. This way the description of a single object e1 is reduced to 

the form 



where ''iu).1U.•il E r~,.i for j = 1, ... , K. Such notation states that the attribute c~, j = I, ... , K, takes only one 

value V;(J).t(J,ei) for the object i:;. The index i(j),l(j,e 1 ), for jE{l,2, ... ,K}, i(j)E{l,2, ... ,L1}, specifies 

which value of the set Va .i = {,'i,1 , v2.1 , ... , "L;,J} is used in the description of the single object e1 • Thus, ( 17) 

can be treated as a generalization ofrepresentation of a single object e1 by multisets. 

Let us again consider two objects i:; and 1'i , and their descriptions G,1 and G,2 , where 

G,I = <S1,1{ l,ei)• S2,1(2,e1)' ... ,sK,1(K,c1) > and G,2 = <S1,1{1,ez)• S2.1(2,<2)' ... ,sK.l(K.e,) >. The arithmetic addition of 

multisets is a new multiset, and can be applied to all multi sets of descriptions G,1 and Ge2 . In this way we 

can introduce a definition of the join between the descriptions of objects. 

Definition 5 (Join between descriptions of objects). The join between the description ofan object i:; and the 

description of an object 1'i is described as follows 

( 18) 

The definition says, that the description of two joined objects is again a collection of K multisets. Each 

such j-th multiset, j = I, ... , K, is constructed as the join of two multisets S.1.,u.,,> EBS1,,u.,,> describing the 

attribute c~ for the objects i:; and fi, respectively. 

Case K = I 
Now let us consider another special case, for K = 1 , i.e., an object e is described by a single attribute 

A = {a1}, and the set Va1 = {v1.1, v2•1, ... , vL1 ,I} is the domain of this attribute. Each object e can be represented 

by a single multiset s1.,0_,) drawn froin the ordinary set of values V01 , In this case, the description of each 

object e defined in ( 15) is reduced to the form G, = <Si.,(I.,) >, where S1,,(l,e) is the multiset •Si.,ti:,) E [V0 J" , 
and is defined by (16), and now can be written in the following form · 

( 19) 

where v;{l),,(l,c) E f",, 1 , for i(l) e {I,2, ... ,L1}. The index i(l),1(],e) specifies which value ";(IJ,1{l,e) E Va 1 of the 

attribute a 1 is used in the object e . Foi· the object ·e and fo1' the attribute a 1 the value V;(l).r(I.,) appears 

k,. (v.( I ) (I )) times in the multiset S1 ,(1·,•)' for i(l) E {1,2, ... , L1}. 
•11,1(1,c) I ,f ,e , , 

Next, we will present details of the proposed approach of the measure of the pe1turbation of one object 
by another object. 

4.2. Measure of objects' perturbation 

There are considered two objects e1, e2 EU, described by K attributes A== {a1 , ... ,aK} and the set 

v., ={v,J, v,J, ... ,v,.,J} is the domain of the attribute a1 e A, j = 1,2, ... ,K. According to (15), the respective 

descriptions are following: 

G'-'l =<S1,1(1..:i)) S2.1(2,l·1)> .•. ,sK,t(K,ci) >' 

G,:1 =< s1.,0,t.'2)' s2,,(2,t.>i.)' ... ,sK.,(K,t.',) >, 



where S;,,u,e,)'si,rU,ei) E[T,;,J", j = 1,2, ... ,K, The novel concept of objects' perturbation is defined as follows. 

Definition 6 (Perturbation of objects). The perturbation of the object E?i by the object «i, denoted by 

(G,, HG,,), can be represented by an ordered collection of multise/s S.1.,u,,, J0S1,,u.,2 J, j = 1,2, ... ,K, drawn 

fi'om the ordinwy sets of nominal values Va 1 of the attributes a;, respectively 

(G ,1 H Ge,) =<(S1,r(J,,1) HS1,r(J,e2)),(S2,1(2,q) HS2,1(2,e2J), ... ,(SK,r(K,,1) HSK,r(K,e2J)>= 

=< s,,,n,'I) es,.,(1.,, )' s,_,(2,,, )0s,,,c2,e2 )' ... , s K,1(K.e1 /!JS K,1(K,c2) >. (20) 

Thus, the perturbation of the object £'i by the object '1 is represented by the collection of multisets 

constructed as difference of the multisets sj,1(.i,e, )esj,l(J,e,) for each attribute aj, j = 1,2, ... ,K. 

The counterpati case is defined in a similar way, i.e., 

(G,, HG,,)=< (S,_,(1.,,1 H sl,r(l,,1)), (S,.,,,.,,l H s,.,,,.,,J), ... ,(SK.r(K,ez) H sK,l(K,'J)) >"" 

=< s,.,c1.,, J0sl.r(l,e1)' s,.,,2,e2)0s,.,,2,q)> ... ,SK,1(K.,,)0sK.r(K,e1) >. (21) 

In turn, the measure of the perturbation of the one object by another object is a number ranged between 
0 and 1 and obtained via some aggregation operator. The aggregation is done on a set of the measure of the 

perturbations associated with each attribute aj, j = 1,2, ... ,K, see Definition 7. 

Definition 7 (Measure of perturbation of objects). The measure of the perturbation of the object £'i by the 

object e1 , denoted as Pe,h(G,, HG,,) , is defined in the following manner: 

Pe1;,(G,, HG,,)= Agi,,,Pe1;,.,.(s,.,,,.,,1 H sl.1(1.,•2)), Pe1;.,.,(S,_,(2.,,1 H s,.,,,.,,l), ... ,Pe1;.,.,(SK.1(K,e1) H sK.1(K.,)) (22) 

where Agg is the aggregation operator. 

In the opposite case, the measure of the perturbation of object '1 by object ~' is defined in a similar way: 

PeliJ(G,, HG,,)= Agg{Pel).,s(S1.,(1.,,> H sl,1(1.,,)), Pel)1s(S2.1(2.e,) H S2,1(2.,,)), ... ,Pe1A1S(SK,1(K,c2) H SK,l(K.c,))). (23) 

The aggregation operator used in (22) and (23) is defined as a mapping Agg :[O,l]K • (0,1], which 

assigns any K-tuple (p 1,p2 , ... ,pK) of real numbcrs to a real number and satisfies the following conditions: 

idempotence: Agg(p, p, ... , p) = p, 

monotonicity: if P; ~ q; for i = 1,2, .. :,K; then Agg (p 1, p; , ... ,PK) ~ Agg(q1, q, , ... , q K), 

boundCIIJ' conditions: Agg(0,0, ... ,0) = 0 and Agg(I, 1, ... ,1) = 1, 

commutativity: Agg(pi, p2 , ... ,pK) = Agg(p,, ,P;2 , ... ,p;K) for every permutation i1,i2 , ... ,iK of I, 2, ... , K . 

In general, the result of the aggregation is lowe1' than the highest element aggregated (the maximum) and 
is higher than the lowest one (the minimum) [Kacprzyk, and Pedrycz, 2015], i.e., the following inequalities 

. min ,{p1 }sAgg(p1,p2 , ... ,PK)S max {pj} are satisfied . 
1~1,2, ... ,R J-1 ,2, ... ,K 

The aggregation operator Agg can be realized by various functions, e.g.: 

• minimum: Agg(p1,p2, ... ,pK):=min{Pi,P2, ... ,pK}, 



• maximum: Agg(p1,p2 , ••• ,pK):=max{p1_,p1, ... ,pK}, 

. . I K 
• anthme/1c average: Agg(p1, p2, ... ,pK) :=-L,P;, 

K J=I . 

K 
• weightedaverage: Agg(p1,p2 , ... ,pK):=--h-I(w1 •pJ, 

K J=I 

I 

• generalized arithmetic mean: Agg(p1, p2 , ... , pK) :=[_!_I, paJ-;; 
K J=I ; 

Let us assume, that 111 >0, determines the importance of the element p1 , for j = I, 2, ... , K. In the fu1ther 

considerations in this paper we assume, that the aggregation operator Agg is realized by the function of 
K 

weighted average of its arguments, i.e., Agg(p1, Pi, ... ,pK) =_!_I, w_; . p1 . Due to such assumption, according 
K .i=I 

to (22), the measure of the perturbation of the object~ by the object Cc\, is rewritten in the following manner 

for the measure of perturbation type I: 
l · 

1 K I K f (ks;.,u.,,/v;)- ks1.,u.,,r11.1u.,,/vi>} 
Peio(G,, HG,,) =K ~(wj · Pe1;,s(SJ,1(/,e1) HSj,l(j,,,))) =K;(wj' ,. , L; ) • 

. - ;- LV's1.1U."J) (v,) +ks1,1u.,,/v,)) 
i=I 

While the opposite case, the perturbation of the object Cc\ by the object~ is rewritten similarly, 

r or fu1ther considerations, let us assume, that w1 = I, for j = 1, 2, ... , K. 

(24) 

(25) 

Additionally, we can prove some properties of the measure of the objects' perturbations which are proved 
in the following corollaries: Corollary 5, Corollary 6 and Corollary 7. 

Corolla,)' 5. Measure of perturbation of the object e2 by the object e1, represented by respective 

descriptions G,2 and G ,, , satisfies the following inequality 

05'Per0 (G,1 HG,):<:; 1 . (26) 

Proof. See Appendix. 

Corollary 6. 711e sum of the measure's of pettw'baiion · A !i0(G,1 HG,2 ) and Pe,0(G,2 H G"I) satisfies the 

following inequality 

0 ~ Pe,0 (G,1 H G,2 ) + Per0 (G,2 H G,1 ) ~ I 

Proof. See Appendix. 

(27) 



Corollary 7. The sum of the measures of perturbation Pe10(G,, HG,,) and Pe10(G,, HG,,) satisfies the 

following equality 
. . l ' .. 

,, 2-~k1. ,. (v.) I " 2.., ' ,1.,u.,1) 0 •',/,l(},,z) 1 

Per0 (G,1 HG,,)+ Per0 (G,2 H G,1 ) = J - - L 1. 1=1 (28) 
K .1- 1 ~ { ) 

- 2.., \k,,.,1,,cMl ( v;) + ks.1.1u.,, (v;) 
/ c.:o [ 

Proof. See Appendix. 

Thus, the sum of the measure of perturbation of tlie object t; by the object ei, and the measure of 

pe1turbation of the objects ei by the objects t;, gives an equivalent interpretation of dissimilarity of two 

objects. In this way, Eq. (28) can be rewritten , and the equivalent definition of the similarity of the objects 
can be obtained: 

Sim O (G,,, G,2 ) = I- (Pe10(G,1 HG,2 )+ Pe10(G,~ HG,,)), 

which is based on our idea of the objects pe1turbation measmes. 

Tn order to make closer the idea, how to represent the objects using the multisets, and how the 
perturbations are realized, let us discus the following illustrative example. 

4. 3. Illustrative example - students described by several sets of the semester grades 

The example concerns on the question, how to describe the object which exists in several versions, 
e.g. students described by several sets oftbe semester•grades, Interesting examples can also be found in the 
paper [Petrovsky, 20 I OJ. 

Let us consider the high school student e1 and his two sets of the semester grades in the same four 

obligatory subjects (attributes) {a1,a2 ,a3,a4 } and four optional subject (attributes) {a5,a6 ,a7 ,a8 }, all with 

qualitative scale V={v2 ,v3 ,v4 ,v5 }= {2-"unsatisfac fOIJ' ",3-"sati~facto ,y",4-"good",5-"excellent "} . 

Thus, this student (i.e. , object) is already described not by a single vector of grades but by two vectors of 

grades (i.e., values of attributes). For example, two versions of the semester's grades of the student e1 , 

denoted by e?) and ef2l , are represented as follows 

e/'l = {(a 1 = 4), (a 2 = 5), (a 3 = 4), (a4 = 5), (a 5 = 4 ), (a6 = 5), (a7 = 4 ), (as = 4)} 

ef'l = {(a 1 = 5), (a2 = 5), (a 3 = 5), (a 4 = 5), (a 5 = 5),(a7 = 4 ),(as = 4 )} , 

where a superscript (i), for i= l, 2, determines the number of the semester. 

We note, tl1at the student e1 can be represented by the vector of"average" grades , such as 

e 1 = {(a1 =4.5),(a2 =5), (a3 =4.5),(a4 = 5),(a5 = 4.5),(a6 = 5),(a., =4),(as =4)}. 

However, the new vector does not correspond to any paiticular point within the assumed scale 
V = { v2 , v3 , v4 , v5 } = {2, 3, 4, 5} and it will be necessary either to expand the rating scale by introducing 

intermediate numerical steps, e.g. {2 .00 , 2.25, 2 .5, 2.75, ... ,4.5, 4.75, 5.00} or the rating scale must be treated 

as continuous. Such modifications will change the original statement of the problem. 
However, applying the multisets, each' ve,'s'idn of the sttJdent's grades can be described in a form of two 

multisets (K=2 is related to two sets of considered attributes, namely {a 1,a2 ,a3 ,a4 } and {a5 ,a6 ,a7 ,as} ), 

where numbers of' the elements are equal to the proper number of qualitative scale V = {v2 , 113 , 114 , v5}, while 

each multiplicity is equal to the number of the assessment, as shown below 



Thus, according to Eq. (19) the descripti~n of the sen;1ester grades G,_1 of the student e1 is formed from two 

versions G '" and G ,,, , and now is rep1'esented by two multisets, as shown below 
c1 Ill 

In a similar way we can determine the description of the semester grades of other exemplary student e 2 

as two another multisets, as shown below 

Thus, we consider two exemplary students e1, e2 with the descriptions G,1 and G ,2 (i.e., their semester 

grades). Each description is represented by two multisets drawn from the ordinary sets of values 
V = {v2, v3 , v4 , v5 }. According to (20) and (21 ), for K=2, the perturbations have the following form: 

(G,, HG,,)=< (S1,1(1,,1) H S1,1(1,,,)), (S2,1(2,,,l H S2,1(2,,,)) > =< (S1,1(1,,,)GS1,1(J,e2)), (S2,1(2,,1)0S2,1(2,,,)) >= 

= < { (0, V2 ),(0, V3 ),(1, V4 ), (6, V5)}, { (0, 1'2 ), (0, 1'3 ),( 4, 1'4 ), (2, V5)} > , 

(G,, HG,,)= <(S1,1(l,e2) H sl,1(1,e,J), (S2,1(2,e,) HS2,1(2,,,J) >=< (S1,1(1,e,)GS1,1(l,~)), (S2,1(2,,,)0 S2,1(2,,,J) >= 

= < { (1, l'z ),(6, 1'3),(0, 1'4),(0, 1'5 )}, { (0, V2 ),( 4, 1'3),(0, V4 ),(0, V5)} >, 

1t is shown, that the multi-attribute objects described by a set of repeated nominal-valued attributes can 
be represented by collections ofmultise\s .. Tlwn, ,\he perturbations are realized by arithmetic subtractions of 
respective multisets. · · · 

Going further, the concept of the measuring of perturbation of one object by another object can be 
extended to the groups of objects. Details of' the proposed approach are presented in the f01ihcoming 
subsection. 

4.4. Measure of perturbation of groups of objects 

Now, let us assume, that every non-empty subset of a finite set U = {e,,) , n = I,2, .. N, is called a group. 

We assume, that !he description of a group g is denoted by q. Let us consider a non-empty group of the 

objects g,;;;,U containing the objects {e,,: n Elg<;;; {l, ... ,N) }. According to (15) every object e,, E g , can be 

represented by an ordered collection of multi sets SJ,i(J,e,,), j = I, 2, ... , K, drawn from the ordinary sets of 

values V,, . = {v11., v2 1., ... ,vl · ,·} of the attributes a1., i.e., G, = <S1 i(J, J• S2 1(2, )• ... ,SK i(K, l >, for s1 i(J . l E [V0 ] 111 • 
.J ' •. }'· n • , II , • II • • II , ,en j 

Thus, the group of objects g can be represented by an ordered collection ofmultisets, while each multiset is 

drawn from the ordinary sets of values V0 .i , for j = I, 2, ... , K, and the description of such a group is defined 

as follows, Gg = EB G,,, , see Definition 8. 
neJg 

Definition 8 (Description of group of objects). A group of objects g, can be represented by an ordered 

cof/ection of multisets SJ,i(),g) , j = 1,2, ... ,K, drm~n .tJ:~1ii the ordinWJ' set of nominal values V0 . of /he 
' 1 

attribute a 1, and is described as foflows 



cg =<s,.,o.i:i• s2.,(2.gi, ... ,sK.,(K.g) > (29) 

where the multi set S;,r(j,g) E U~,1 ]
111 for j E {l, ... ,K}. 

This way, considering two groups of objects g 1 s;;; U and g2 s;;; U , described as follows: 

Gg, = <Sl,1(1,g,)' s2,1(2,x,l' ... ,SK,i(K,g,) > and Gg, =<S1,1(1,g2)' S2,1(2,g2)' ... ,sK,l(K,gz) > , for sj,l(J,g,) E [Vu) 111 and 

SJ,,u.i:2) E [Ji;,)111 , j E {1,2, .. .K} , we can define the :groups' perturbations as well as their measures. 

The considered group g contains the objects {e,,: nEJg, ~{1, ... ,N}}, while the group g 2 contains the 

objects {e,,: nE.fir, ~{l, ... ,iV} }, where J,, nJ,, =0. 

Definition 9 (Perturbation of one group by another). The perturbation of the one group of the object g, by 

the another group of the objects g,, denoted (Gg, HGg,), can be represented by an ordered collection of 

multisets SiJU,i:, J0SJ.i(.i.g2 ) , j = 1,2, ... , K , drml'n from the ordina,y sets of nominal values V01 of the 

attributes a1 , respectively, and is defined as follows 

(Gl/1 HGK2 )= <(Si,1(1.g,) HS1,1(l,g2)),(S2,1(2,g,) HS2,1(2,g2)), ... {SK.l(K,g,) HSK.1(K.g2))>= 

=<S1.,o.giJ0s1.,o.g2l' s2.,(2.g,J0s2.,(2.g2)' ... ,sK,1(K.g,l0sK,1(K,g2J >. (30) 

Thus, the perturbation of one group of objects by another group of objects is defined in an analogous way 
to the perturbation of one object by another object. Namely, the perturbation of the one group of the objects 

g 2 by another group of the objects g, is represented by a collection of pe1turbations s1.,(J.g,)0Sf.lU,g2 ) 

generated for separate attributes a1 , j = 1,2, ... , K. In result, it constitute a collection ofmultisets. 

The counterpait case is defined in a similar way, i.e., 

cc!/2 H cir,>= <cs,.,(l.1;2) HSi.,o.g,)),cs2,;(;'.g2)H;s;.,(2.g,)); .:.tskAK.g2) HsK,,(K.g,>)>= 
=<S1.,(1.g2l®s1.,c1.g·,i, ·s2,;c2.i:2>0s2.,(2.g, )' ... ,sK,1(K.g2l®sK.1(K,g1J > • (31) 

The measure of the perturbation of the group of the objects by another group of the objects is a number 
ranged between O and I and obtained via using of some aggregation operator. The aggregation is done on a set 

of the measures of the perturbations associated with each attribute aj, j = 1,2, ... ,K, see Definition 10. 

Definition 10 (Measure of pe1turbation of one group by another). The measure of the perturbation of the 
group of the objects g 2 by the group of the objects g1 , is denoted by Pe1a0 (G"' HG"'), and is defined in the 

following manner: 

Pel'r,0 (G"' HG,,)= 

= Agg(Pe1;,,,.,es,.,(l,m) H s,.,(l,g2)), Pe,,.,s(S,.,c,,.,i H s2,1(2,gz)), ... , Pe1,,s(SK,1(K,K[) H sK,t(K,gi))) (32) 

where Agg is the aggregation operator, defined as a mapping Agg :[O,Jt • (0,1). 

The considered developments can be applied in data mining tasks with redundancy, like classification 
problems of multi-attribute qualitative objects, wherein the values of the attributes can be repeated, 
The objects' classification is based on representing of each object by multisets, and on a set of elementary 
rules, and allows to assign the objects into proper groups. Thus, in the fo1thcoming section, the groups' 



pe1iurbations and their measures are applied to generate the description of the groups of objects in the form 
of the classification rules . 

S. Case study - classification problem 

In order to suppo1i our investigations, let us analyze following interesting problem. Let us consider the 
set of objects e,, eU, where in the attributes values describing the objects are allowed to be repeated. 

The proposed methodology consists of three main steps: 1) The first step is to preprocess the data, i.e. 
transforming the object into a proper data as the multisets representation. 2) The next step is to analyze the 
preprocessed data and gather the objects intci the distinguished groups, whereas the groups are also 
represented by multisets. To do that, here, we use the . method proposed by Czekanowski (Czekanowski , 
1909] . 3) In the final step, the descriptions of the distinguished groups of objects in the form of the 
classification rules are generated. Each such classification rule has the following form 

"IF certain conditions are satisfied THEN a given object is a member of a specific group" . 

In this case, the conditional pa1i of rules will contain the disjunction of conditions related to the subset 
of the value of attributes. In this paper, the generation of such rnles is made on the basis of the perturbations 
of the multisets, which allow to distinguish considered group from the rest of objects belonging to other 
groups. The classification rules are generated separntely for each group [Kacprzyk and Szkatula, 201 0]. 
Finally, the generated classification rules can be applied to classify the new objects. The classification is 
carried out tlu·ough verification of fulfilment of conditions in the conditional parts of the rules [Szkatula, 1995]. 
Tlrns, the basic steps of the methodology can be shown in Fig. 10. 
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Fig. I 0. Scheme of our approach to create the classification rules. 

• Classification 
rnles 

Details of the third step are presente·d in tii'~ fo1ihc;~mi11g subsection. The whole developed approach is 
illustrated by the example of grouping text d~cu,n1ent~ 'in Se,ction 5.2. 

5.1. Ge11erntio11 of the class(fication m/es ha~'.~~i on perturbation idea 

Considering for example text documents like articles, books, repo1is, etc., and ignoring the context and 
the semantics, let us assume, that the objects e,, e U, indexed by n, n= 1,2, ... ,N, are described by the set of 

repeated keywords, phrases, descriptors, etc., denoted by the set of values V={v1,v2, ... ,vi}, where V; cfcv1 , 

for Vi* j, i,j e {1,2, ... ,L}. There is available additional information about the multiplicity of each value 11, 

i = 1,2, ... ,L, in each object e,,. In this way, each object e,, (i.e., a text document) can be represented by the 

multi set S,,, drawn from the set of values V. According to ( 18), the description of an object e 11 is denoted 

by G,,,, =<8,_.,, >, where the multiset s,,, e [VJ"' is defined as follows 

for v; E V, i = 1,2, ... ,L. This notation states that the keyword V; appears ks,,, (v1) times in the multiset s,,, 



Let us consider in general two groups of objects. In the first group g1 r;;;,U, there are objects 

{e,,: 11EJg1 r;;;,{l, ... ,N}}, card(Jg,)=N" while another objects {e,,: 11EJ"2 r;;;,{l, ... ,N}), card(Jg)=N2 , do not 

belonging to the first but belong to the second group g 2 <;;;, u, where J,1 nJ,, = 0. Additionally, it is assumed 

that the cardinality of each group is similar, i.e., N 1 "' N 2 • The classification rule for distinguish the objects 

belonging to the group g1 can be generated in the following algorithmic way. 

~ 
The groups of objects g1 and g 2 can be represented as multisets drawn from the same set V, 

V ={v1, v2, ••• ,vi}. According to (29), the description of the group g1 and g 2 , denoted by Gg, =<Si:,> and Gg, 

=<Sg, >, respectively, can be written as follows 

denoted 

S g, = {(ksg, (v,), v,), (ks"' (v2), 112), ... ,(ksgJ (vL), Vr)) = {Sg, ·"', sg,,,,,, ... ,sg, .,.,.}, 
denoted 

Sg2={(ksg, (v,),v,), (ks"' (v,),v,), ... ,(ks"' (v,J,vl)} ~ {Sg,.v,,sg,.,., .... ,sg,.,.J, 

which can be rewritten as Gg = EB G, 
I neJCI II 

and G, = EB G, .. 
.~2 neJI:2 ,,, 

Step 2. 

Separately, for each keyword V; E V, for i=l,2, ... ,L, there is constructed the i-th measure of 

perturbation of one multiset by another multiset. Such measures of perturbations are defined according to 
Eq. (6), and are called here as the elementmJ' measures in the following form 

In this way, there is considered the set of L pairs of the elementary measures of perturbation and the 

keywords v,. , for i = 1,2, ... ,L. Such pairs are denoted as PER,. , , " and written as follows 
.,I:I ,......,.,1 g2 

(33) 

Step 3. 

The set of L pairs PERs,,>->s,, of the:.Hh elementary measure of perturbation and the keywords V;, for 

i = 1, 2, ... ,L, should be rearranged by sorting with respect to their highest values of the elementary measure 

of perturbation. The rearrangement creates a new permutation, i1, i2 , ... ,iL of 1, 2, ... , L , of the pairs; in result, 

one receives the following set of pairs 

PER'" 1->S" =\Per(S., ,, HSg2 ,. ),v,)I i=i1,i2, .. . ,iL), 
.J Kl K2 l ol• I • I , .• 

(34) 

where the conditions Per(S8, I' · H sg ,, ) ;:,: Pe,{Sg " H Sg ,, ) ;:,: ... 2: Pe,{Sg , .. H Sg ,. ) are fulfilled. 
I• 11 2, I\ I• lz 2, tz I• IL z, 'L 

Step 4. 
We can consider any real number as a parameter a E [O, I] treated as the a -threshold. The parameter is 

applied to the set of sorted pairs PERs,, >->s., , defined by (34), lo construct a new reduced set of pairs, denoted 

by PER a . The reduction is done via consideration of those pairs which values of the elementary 
Sg 1HS/.:Z 



measures are greater than or equal to the value of the threshold parameter a. The new set of the pairs is 
written in the following way 

(35) 

Step 5. 

Then, the set of pairs PER a described by (35) can be used to create the set of the one-condition 
,\'g1 HSgl 

elementary rules describing the group g 1 • Each such one-condition elementa,y rule for the group g 1 , 

denoted by R;,, "; , for i = i1, i2 , ... , i la , is defined in the following manner 

R;, ,,., : IF [considered value= V; ];q(R;,,,•;) THEN a given object is a member of a group g 1 (36) 

where q( 11" ,,.) , for i E {i1, i2 , ... , i L } , is called the strength coefficient of the rule R~ ,, , and is described 
.,~I, I a • gJ, I 

by the elementary measure of pe1turbation (35), i.e., q(R:,,,,;) = Per(,S8,,,•; 1->S8 ,,.;) . It is evident that 

Osq(R:,,,,;)sl, \/iE {i,,i2,, .. , ila}, 

We consider the classification rule for the group g 1 , denoted by R~ , as disjunctions (V) of the one

condition elementary rules for this group, denoted by R;,,,,,, \/ i E {i1 ,i2 , ... ,;La}. Thus, the classification 

rule for the group g I is described in the following way: 

R ;, : IF R8~ ,. v R~ ,. v · • · v R~ ,. THEN a given object is a member of a group g 1 J, I] ol, l2 o\, Ila 
(37) 

According to (36) the classification rule for the group g 1 (37) has the following form 

Rga : IF [considered value = V; ];q(R~,. ) v ... v [considered value= V; ];q(Rga ,,. ) 
I I ol• I\ I.a I, 'La 

THEN a given object is a member of a group g 1 (38) 

where q(R;,,,.;) = Per(Sg,.,•; H S82 ,";) , is the strength coefficient of the one-condition elementary rule R ;, ·''; , 

i E {ii, i2, .. ,, ila } ' 

The above procedure shows, how to create the classification rule for one group, taking into account the 
two existing groups. When we consider more than two groups, the procedure is rnn in a very similar way. 
Namely, generating the classification rule for the group g, all other groups are considered as one group 

containing the objects do not belong to the group g. Then, e.g. considering the classification rnle for the 

group g 2 , the objects from the rest groups (i.e., g I and g, , g 4 , and so on) are considered as one group. 

The classification rules are sequentially fo1:ni.ed for each group. 

The already generated the classification rules (37) (i.e., R:i , R;2 , and so on) can be applied to 

classification of a new object e. The classification is carried out through verification offulfilment of conditions 
in the conditional pa1ts of the rules. The classification is unequivocal where the only one classification rule is 
fulfilled. In the case of equivocal situations, when more than one of the classification rule is fulfilled, 
a matching degree to the group is calculated [G. Szkatula, 1995]. The greatest degree of matching is the basis 



for grading. For example, for a new object e and tlie" group g 1 , described by the classification rnle (37), 

denoted by R;1 , the matching degree MD.(e, R;,) can be calculated in the following way: 

MD(e,R~ )=MD(e,Rga ,. vR~ , .. v .. ,vR~" ) = 
b I I• 'I c- I• 12 , I• 'la 

=Agg(MD(e,R; ,. ),MD(e,R;" ), .. ,, MD(e, R;" )) . 
I' 'I ! ' '2 I' 'Lu 

(39) 

1 , ·'D( Ra ) {q(R; , .. ) if rule R;1 , •• is fulfilled by object e W 1ere lVL e, K ,,. = t, 1 • , , 

1·' 0 otherwise 

Agg is the aggregation operator, e.g. the maximum function, the value q(R%,,,,)E[0,l], for i = i1 , i 2 , ... , i 1_0 
, 

is the strength coefficient of the one-condition elementary rule R ;, .,., , according to (36). 

The developed approach to generate the group description in the form of the classification rules will be 
illustrated by the following example. 

5.2. Illustrative example - grouping text documents 

Practical presentation of the proposed approach was carried out for the task of grouping of the text 
documents, assuming that the context and the semantics are neglected. Here, a text document Sis modeled 
as a multiset, drawn from the ordinary set .of ,inique keywords and phrases appearing in the text, and can be 
represented by a set of I-ordered pairs, accqrdiiig to (i ), i.e:; 

S={(the number of occurrence of the keyword or phrase in the text document, the keyword or phrase)}, 

where L is the number of distinguished unique keywords and phrases. Usually, the keywords and phrases 
can be weighted in various ways, but here for simplicity, we assume the same importance for all keywords. 

Data processing 
Let us assume, that there are objects as text documents e,, EU, 11 = 1,2, ... ,6, which are described by the set 

of repeated keywords from the set V described as follows: 

V = {v 1, v 2 , ... , v6 } = {" financial 11 , 11 guarantee 11 >" h·aining ","paper"," subn1ission ", "artic/e 11 }, 

and the multiplicity of each keyword is equal to a number of values of the keyword l}, i = 1,2, ... ,6, appearing 

in the text documents e,,, n = 1,2, ... ,6. Thus, each the text document e,, can be represented by the multiset 

s,,, drawn from the set of values V. Thus, the descriptions of text documents e1,e2,e3,e4 ,e5 and e6 can be 

written in the form ofmultisets G,1 =< S,1 > , G,2 =<Se,>, ... ,Ge6 =< S,6 >, as follows: 

S, 1 = {(3, "financial"), {I," guarantee "), (2, "training"), (0," paper"), (0 , " submission "), (0, "article")}, 

S,, 2 = { (0, "financial") , (0, "guarantee"), (0, "training"), (1, "paper"), (I, submission "), (3, "article")}, 

S,3 = { (0," financial"), ( 1, "guarantee" t (0 ,l'taining "_); (O,"' paper", (0, "submission "), (4, "article")} , 

S,4 = { (2, "financial"), (0, "guaran/ee "), (3,,0 fi•aining "),(],"paper", (0, submission "), (1, "article")}, 

S,, = { (0, "financial"), (0, "guarantee") , (0, '.'.training"), (1, "paper"),(!," submission "), (2, "article")} , 

S,6 = { (l,".financial "),(I , "guarantee "),(2,"training "),(0,"paper"),(0,"submission "),(0, "article")} . 

Having such objects (i.e., the text documents), the task is to divide the objects into similar groups and 
determine the number of these groups. 



Grouping of the objects 
The aim of this task is to divide the set of the considqred the text documents U into non-empty, disjoint 

groups, together containing all the considered documents. 
First, in order to define the number of groups 'we applied the taxonomic method proposed by Czekanowski 

in 1909 [Czekanowski,1909]. The so called Czekanowski's diagram is a graphic methodology for 
multidimensional grouping of objects, which used to be widely applied in physical anthropology, plant 
sociology, agricultural economics, etc. The Czekanowski method is regarded as an early, perhaps the first 
method of cluster analysis in the world. Obviously, Czekanowski's methodology cannot be applied in all 
cases, however the methodology gives very important outlooks on the structure of the considered data as well 
as the number of groups of the data [Liiv, 2010]. Thus, considering a set of data characterized by the same 
keywords, let us form a square matrix with cells describing the values of the measure of the distances between 
all possible pairs of objects; with all diagonal values equal zero. 

In the relative literature, there are known several distance measures. One of them is Chebyshev's distance, 
given as 

cl Cl,ehyshe,• (S,p 's,'I) = ,./rt~.Jksp (v,) -k.,'I (1'; )I 
where the multi sets S, and Se represent the documents with the counting functions ks (.) and ks: (.), 

1:-,, " p q 

respectively. In this way, the Chebyshev distances between any pair of objects are shown in Table I. 

TABLE I. The Chebyshev distances 

s,, s., s,, s,, s,, s,, 
s.,, d 3 4 I'. 3 2 
·sc~. 3 , 6 l 3 1 3 

5\l 4 I 0 3 2 4 

SC,t _- I. 3 3 0 3 I 
s,, 3 I 2 3 0 2 

s1/6 2 3 4 1 2 0 

For better visualization of the structure of the values of Chebyshev's distances between the text 
documents, there are used special graphic characters, i.e. the black circles of different sizes. Czekanowski's 
diagram with random arranged objects is provided in Fig. l I. 

s,, s,, sc3 s,., s,, s"" Legend: 

s,, • • • • 0 

s,, • • • • 
sl'J • • • • 2 

sr.!,,, • • • 3 

s,, • • • • 4 

S,.,, • • • •· 
Fig 11. Czekanows!<i-!s diagram with random objects' order. 

Meanwhile, applying simple swapping rows and columns, the matrix can be rearranged in order to gather 
the closest objects in distinguished groups. The proper reordering ofrows and columns of the matrix can be 



treated as an unsupervised learning discovering similarity as well as relationships between the objects. 
Formerly, in the original works by Czekanowski, the reordering of rows and columns was done manually 
and was very burdensome. Fo1tunately, nowadays, there are several computer programs for generating 
Czekanowski 's diagrams, e.g. the software called MaCzek [Soltysiak, and Jaskulski, 1999]. 

In the considered example, the reordered Czekanowski's diagram is provided in Fig. 12 . 

. ··,,· 
s,, s,, S"c, .s,.~ .. .s,, sl!J Legend: 

S,., • • • • 0 

s,, • • • • 
S,., • • • • • 2 

s,, • • • • 3 

s,, • • • 4 

si:3 • • • Fig 12. The ordered Czekanowski ' s diagram. 

The rearranged objects in Fig. I 2 clearly demonstrate that there are distinguished two groups of 
considered objects, indicated by two separated blocks of meaningful symbols. In this way, it can be assumed, 
that the considered text documents can be divided into two separated groups, namely g1 = {e1,e4 ,e6 } and 

g 2 = { e2 , e3 , e5 } , Then, we can create the descriptions of these two groups in the form of the classification 

rules. Details of the applied procedure can be described in the following way. 

Generation of tlze classification rules . 
Now, let us consider the group g 1 = {e 1,e4 ,'e~} and ' the group g 2 = {e2 ,e3 ,e5 } of the objects. Our aim is 

to construct the classification rule for the group 'g 1 , as disjunctions of the one-condition elementary rules. 

The proper algorithm is described in the following steps. 

~ 
Let us form the description of the group g I and the group g 2 • Such descriptions are obtained by applying 

a simple text documents' aggregation. Because, each object is represented by the proper multi set, then each 
group is also represented by the aggregated corresponding multiset. This way, the descriptions of the groups 
g I and g 2 (denoted by Gg, and Gg,, respectively) are also represented as multisets drawn from the same 

set V, in the following way: 

GKI = $ G, =<Sg >= 
n=l,4,6 11 1 

= {(G,"jinancial "), (2, "guarantee "),(7," training") ,(!," paper"), (0," submission "),(I," article")), 

Gg = EB Ge =<S., >= 
2 11 = 2,J,5 II o-2 

= { (0, "financial") , (1, "guarantee" ), (0, "training"), (2," paper"), (2, "submission") , (9, "article")). 

Step 2. 
Next, using the i-th elementary measures of perturbation described as 

ks (v )-ks s (v ) 
Per(S,.,HS ,,. )= "' 1 

"'""' 
1 fori=l,2, ... ,6, 

8 1,, K2,, k (v .)+k . (v .) ·.•. , ... . 
S.!,'1 I 5K2 . . I 



let us consider the set of six following pairs, denoted by PER s" H.1."' , due to Eq. (33), 

PER s H s = !(Per(S .. , ,, H S . 2 ,, ),"financial"), ... ,(Per(S. ,. H s, ,,6 ),"article")}= 
• J..' I L J..' 2 t .., . ~ , ~1 . 6 2, 

{ 
k.,·, ("financial")-k .,- . ros . ("financial") ks , ("article") - ks ros , ("article") } -

= ( >.: i 1:i ,: z ,"financia/ 11 ), .. . ,( 81 ~ 1 i:i ,"arhcle") -
k. ("financial") +k . ("financial") k . ("article") +k ("al'licle") 
~ ~ ~ ~ 

{ 6 - 0 2-l 7 - 0 1- 1 0 - 0 1-1 }-= (-- "financial") (-- "guarantee") (-- "training") ·(- "paper") (--" submission") (- "article" ) -
6 + 0 ' ' 2+1' '· 7 + 0 ·' · ' 3 ' ' 2 ' ' 10' 

={(I," financial" ), (0.3," guarantee "),(1 , " training"), (0, " paper"), (0," submission "), (0, "article")) . 

Step 3. 
The above six pairs were rearranged with respect to the descending values of the elementary measures of 

pertmbations, according to (34 ). In result there is considered the following set of rearranged pairs: 

PER. 
·' .i: 1 HSi:2 

={(I , " financial" ), (I , " training"), (0.3, "guarantee"), (0, "paper"), (0, "submission "), (0, "article")}. 

Step 4. 
Next, the value of the threshold was assumed to be a=0.7. Then, the reduced set of pairs, according to 

(35), for which the values of elementary measures of perturbation are greater than or equal to 0.7, has the 
following form: 

PER 0·7 = {(1, "financial "),(I," training ")} . 
S8 1 H,\',: 2 

Step 5. 
At the final step, according to (36), the classification rule for the group g1 is described as the following 

disjunctions of two one-condition elementary rules: 

Ri;1 : IF [considered value ="financia/"];1.0 v [considered value ="training" ];l.0 

THEN a given object is a member of a group g1• 

Tn this way the classification rule for the group g 1 was constructed. Next, let us construct the 

classification rule for the group g 2 • The corresponding algorithm is described step by step below. 

~ 
Again, let us form the descriptions of the group g 1 and the group g 2 , denoted by G82 and Gg, , 

respectively, in the following way: 

G82 = { (0, "financial") , (I, " guarantee"), (0, "trnining "), (2, "paper"), (2 , "submission "), (9, "article ")} , 

G g, = {( G, "financial "), (2 , "guarantee "), (7 , "training "), (1," paper"), (0 , "submission "),(I," article")} . 

Step 2. 
Next, using the i-th elementary measures of perturbation described as 

, k~i:, (v;) - ks., ,-,.i·., (v;) 
Per(S H S )= -~-~~~- for · I 2 6 g,,o•; m,,., k ( ) +k ( ) , = , , ... , , 

S,:1 V; ,\'g1 V; 

let us consider the set of six following pairs 



PERs,, HS"' = \(Per(S g,,,,, H S g, ,,,1 ), "financial"), ... , (Per(S g, ,,,6 H S g, ,,,6 ), "article")}= 

{ 
ks, ("financial")-ks, ,-,s , ("financial") ks, ("article")-ks, ,-,s ("article") } 

= ( 2 " " , "financial") ... ( "' "' " "article") = 
k . (" financial")+ k , ("financial") ' ' k , ("article")+ k ·. ("article") ' 
~' ~, ~ ~ 

= (-- "financial') (-- "guarantee') (-- "trainilr") (-- "paper") (-- "submission") (-- "article") = { 0-0 1-1 0-0 2 - 1 2-0 9-1 } 
0+6' '1+3' '0+7' 6 '2+1' '2+0' '9+1' 

= {(0, "financial "),(0," guarantee"), (0, "training"), (0,3, "paper"), (I," submission "),(0,8, "article")} , 

Step 3. 
The above six pairs were rearranged with respect to the descending values of the elementary measures of 

perturbations, in result there is considered the following set of rearranged pairs: 

PER.1."' Hs,, ={(I, " submission "), (0,8, "article"), (0.3," paper), (0, "financial"), (0," g11ara111ee "), (0 , "training")} . 

Step 4. 
Next, the value of the threshold was assumed to be also a = 0.7, and then the reduced set of pairs, for 

which the values of elementary measures of perturbation are greater than or equal to 0.7, has the following 
form: 

PER 0·7 = {(!,"submission "),(0,8, "article")}, 
,\'g21-+.\'g1 

Step 5. 
At the end, the classification rule for the group g 2 is described as the following disjunctions of two one

condition elementary rules: 

Ri/: IF [considered value ="submission "];1.0 v [considered value ="artic/e"];0,8 

THEN a given object is a member of a group g, . 

In this procedure, the classification rule for the group g, was constructed. 

Brief analysis of the classification rules 
Now, let LIS consider the six considereq :text .docume.n.ts, f 1,e2,e3 ,e4 ,e5 and e6 represented by multisets, 

and the generated classification rules R i;1 '~11d• kt1 for the group g I and g 2 , respectively. Both generated 

classification rules are shown in Table 2. 

TABLE 2, The classification rules for the group g 1 and g 2 

Keyword financial training submission article 
Classification rule 

R o.1 
q(R;~(inm1cinl) = l .O q(Ri:ra111111g) =1 ,0 - -g, 

Ro.1 - - q( R~~rnhmisslnn) = 1.0 q(R~:arlic/e) =0,8 K2 

The number associated with each keyword is considered as the strength coefficient of the proper 
elementary rule, according to (38), The testing classification of these documents to the appropriate group is 
carried out tlu·ough verification offulfilment of conditions in the conditional pa1ts of the rules [Szkatula, 1995], 
Details of the calculations are presented below, 



The classification is unequivocal where the only one classification rule is fulfilled. The text documents e 1 

and e 6 were unequivocal classified to the appropriate group g 1 , and the text documents e2 , e3 and e5 

were unequivocal classified to the appropriate group g 2 . 

In the case of equivocal situation, when more than one of the classification rule is fulfilled, the matching 
degrees of this documents to the groups have been counted. According to Eq. (39), for the text document e4 , 

and applying the function maximum as the aggregation operator, we receive the following values of the 
matching degrees to the groups g 1 and g 2 

MD(e4 ,Ri;1 ) = MD(e4 , RZ;;1;,,,,,,cial V RZ;;g,,ara,,,ee)= Agg(MD(e,1, Ri;'._(i,,,mcial ),MD(e4 ,Ri;'.K""'wllee )) = Agg(l,O) = I, 

MD(e4 , Ri;7 ) = MD(e4 , Ri/.rn1,,,,1ss;1111 V Ri;\rlicle) = Agg(MIX_e4, RZ;~.,-,,hmlssim),MJ.X.e4, Ri/,,r1;c1,))= Agg (0, 0 ,8) = 0.8, 

Due to the fulfillmenl of the inequality ML(e4 ,R0·7 ) > MIX_e4 ,R0·7 ), the text document e 4 was correctly 
g1 g2 

classified to the group g 1 • 

It is wo1th to notice, that all the considered text documents (100%) were correctly classified to the 
appropriate group, according to Czekanowski 's division. 

The aim of the above described example was to illustrate the way of generating the classification rules 
based on Czekanowski 's division as well as the developed multisets ' pe1tmbation methodology. 

6. Conclusions 

In this paper we propose the new measure describing remoteness between the multi-attribute objects with 
repeating qualitative values of attributes and the groups of such objects. The concept is based on multi sets 
operations. In our opinion the approach can be considered as a new as well as alternative measure of 
remoteness between qualitative data, pa1ticularly where repetitions of values of attributes are permitted and 
the direction of comparison has significant meaning. 

It seems to be important to emphasize, thiil this paper is the next one within the series of the papers, written 
by the present authors, which are dedicated to the perturbation of one set by another, wherein there were 
considered different kinds of "sets", like the ordinary sets, the multisets, the fuzzy sets, the intuitionistic 
fuzzy sets and so on. The aim of the papers series is comparing the objects described by nominal-valued 
attributes represented by differ.en! kinds of sets. Up till now, we have already developed the perturbations of 
the ordinary sets [Krawczak, and Szkatula, 2014a, 20 I Sa], the multisets [Krawczak, and Szkatula, 20 I Sb, 
201 Sc, 2016] including this paper, and the fuzzy sets [under review]. 

Applications ofthe developed approach for dealing with objects within large, real databases (e.g. grouping 
of similar objects, retrieval of textual documents, documents classification, etc.), seems to be an interesting 
topic for the future research. 

Appendix. Proofs of corollaries 

Proof of Corollary 3. The left side of equation can be rewritten as follows 

d ,(S S ) = card (S1L'.S2 ) 

B-C. 1' 2 card(S1$S2 ) 

L 

I; lks1 (v,) - ks, (v, )I 
i=I 
L 

L U<si (v;)+ ks, (v, )) 
/=I 

l L 
L (ks, (v;)- ks 1,--,s2 (v,)) l)k.1-2 (v1)-ks,,--,s, (v,)) 

= i=I + i=l 
!. L 

L (ks, (v;) + ks, (v1 )) l)ks, (v1 )+ ~s, (v1 )) 

i=I 1,,,,1 

/, 

I; (ks, (v1 )- ks,,--,s, (v1) + ks, (v1) - ks,,--,s, (v1 )) 

i=I 

card(S10S2 ) 

card(S1 EB S2 ) 

L 

L (ksi (v;) + ks, (v, )) 
i=I 

+ card(S20S1) = 
card(S2 EB S1) 



Proof of Corollary 4. The left side of equation can be rewritten as follows 

L L 

card (S /'; S ) L/ks1 (v; )- ks, (v, )/ L (ks, (v,) - ks,ns, (v;) + ks, (v, )- ks,,.s, (v; )) 
d 8 (S1 ,S2) = 1 2 = ~'~=1~------=~i=~I _____________ _ 

card (S1 u S,) L ,. L max{ks1(v1 ), ks, (v, )} L max{ks, (v;), ks, (v;)} 
i=l i=l 

L L 
L (ks, (v, )- ks,ns, (v; )) L (ks, (v;)- ks,ns, (v;)) 
i=I + i=I 
L l 

card(S 10S2 ) + card(S20S 1) = 

Imax{ks, (v;),ks, (v1)} Imax{k82 (v;),ks1 (11;)} 
card(S 1 uS 2 ) card(S2 uS1) 

i= l l=I 

Proof of Corollary 5. I) First, we prove the first inequality Pe10(G,1 HG,,);?: 0. It should be noticed, that 

the inequality ks . c· ·>(v;)<?:ks c·•>"s c·· >(v;), \t;e{l, 2, ... ,L,.} , j=l,2, ... ,K, is satisfied, and then 
j,I J,q j,f j,CJ J,f .f,C2 . 

ks . (v;)-ks ,.s . (v;)~O . DuetoDefinition7andEq.(24)thefollowinginequalitycanbewritten 
/,l(J,Cj) },l(},t![) j,l(j,tz} 

!.1 ( ) 
I K L ks1.,11.,,> (v; )- ks1.,u.,,>nS1.,u.,,l (v;) 

Pe,n(G,, HG,2)=;~ 1=1 l ~O · 

J- f (ks1.,u.,,> (v1)+ks1.,u_,1/v;)) 
i=I 

2) Then, we prove the second inequality, Pe10(G,1 HG,,) s I . It should be noticed that the inequality 

k, . . (v;)-k1 . . nS . (v;)sk~ . . (v;)+k1• >(v,), 'v'iE{l,2, ... ,L1 }, j=1,2, .. . ,K is satisfied. Thus, '].l(H1) 'J.l(J.<1) }.l(J.e2) · /.l(J.CJ) . • J,l(J,<'2 

the following inequality can be obtained 

. _ _!_ K t(ks1,1c1.,1/v;) - ks1.,u.,1\nS1,,11.,2/v;)) <_!_ K t(ks,.,u,,·1\(v;)+ks1.,u.,2/v,)) 

Pe1a(G,1HG,,)-K~ L1( ) -K~L1( ) 1· 
J- "k (v •)+k (v .) J- "k (v.)+k (v) L, s/,1(}.e/) I s/,1(/,,, I L, s/,IIJ,,1) I S;,,u,,, i 

~ ~ 

Proof of Corollary 6. I) First, we prove the left hand side inequality O s Pe10(G~ HG,,)+ Pe10(G,., HG,,). 

According to (26), (i.e., the inequality o_:co. {e10(G,1 c;7G,2 ) a,n_d Os Pe,0 (G,2 H G,1 ) are satisfied), we obtain 

the following inequality Pe,0(G,1 HG,2 ) + Pe10(G,2 HG,1 ) 2·0. 

2) The second inequality Pe,;,(G,, HG,.,)+ Pe,0(0,, HG,,) s I can proved in the following way. One can notice 

that each inequality ks c· . r-S · c . (v;)20, vie{l,2, ... ,L}, j=l,2, ... ,K, is satisfied, thus, according to Eq. 
],I ./,Cl) J ,I 1,1:2) 1 

(24) and (25), we obtain the right hand si de inequality 

l1 ( ) 
k v . + k. JI. - 2 · k . v J KL S1,,u.,1)( ,) S1.1u.,,i< ,) sj,l(j.,i)"SJ.1(},e2)( ,) 

Per (G HG )+Per (G HG )=_.._.., - 1 < 
O c1 e2 a cz e, . L..J L . 

K J-l J ( ) - k v. +k. v . L S j ,1(1.,1) ( I) S j,1(;.,, ( I) 
l=I 



l; ( ) . 

I K LV's;.,u.,,/v,)+ ks;.,u.,,/v,) . 
:,;- ""'l=I =I. K~0( ) 

J=I k. v. + k. V L ·'Nu.,,J ( , ) •11.ru.,, ( 1) 
i=l 

Proof of Corollary 7. Due to Definition 7 and Eq. (24) and (25), the following equality can be obtained 

Per0 (G,, HG,,)+Per0 (G,, HG,,)= 

<' (k (v )- k. . (v )) , <' (k (v ) - k. (v )) I f L, 8/.IU.•·O ' ·'1.,u.,,1""vu.'1l ' 1 • L, s1 .. ,u.,,1 1 ·'1.,c;.,,rsJ.1c;.,,1 1 . 

= KL, /-1 L; ( ) + K I-=-/-1 ~I,. -( ----)-
J=I ~ k. (1 1 ) + k. (v ) , =, k. (v ) + k. (v.) 

L, >j,l(J,,1) I •'J,l(/,,1) I 'J.1(/,,•J) 1 'J.1(/-'l) ' 
~ ~ 
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