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1 Introduction

Statistical process control (SPC) is a collection of methods for achieving con-
tinuous improvement in quality. This objective is accomplished by continuous
monitoring of the process under study in order to quickly detect the occur-
rence of assignable causes. The Shewhart control chart, and other control
charts - like CUSUM, MAV, and EWMA - are the most popular SPC methods
used to detect whether observed process is under control. Their classical, and
widely known, versions are designed under the assumption that process mea-
surements are described by independent and identically distributed random
variables. In the majority of practical cases these assumptions are fulfilled at
least approximately. However, there exist production processes where consecu-
tive observations are correlated. This phenomenon can be frequently observed
in chemical processes, and many other continuous production processes (see
Wardell et al. {25] or Alwan and Roberts [2] for examples). The presence of
correlations between consecutive measurements should be taken into account
during the design of control charts. This need was noticed in the 1970s, see
for example the papers by Johnson and Bagshaw (9] and by Vasilopoulos and
Stamboulis [24], but the real outburst of papers related to this problem took
place in the late 1980s and in the 1990s.

There exist several approaches for dealing with serially correlated SPC
data. First approach, historically the oldest one, consists in adjusting con-
trol limits of classical control charts. This approach was used, for example, in
papers {11},{12],{13},[18],[19],[23],{24],[30]. The second approach, which is rep-
resented by a seminal paper by Alwan and Roberts [1], profits from the knowl-
edge of the correlation structure of a measured process. Alwan and Roberts
{1} propose to chart so called residuals, i.e. differences between actual obser-
vations and their predicted, in accordance with a prespecified mathematical
model, values. This approach has its roots in the statistical analysis of time
series used in automatic control, originated by the famous book of Box and
Jenkins (3]. Among many papers on control charts for residuals we can men-



tion e.g. the following: [11],{12],(13},[16],[19). Lu and Reynolds [11],{12],(13]
compared control charts for original observations (with corrected limits) with
control charts for residuals. They have shown that the best practical results
may be obtained while using simultaneously EWMA (or CUSUM) modified
charts for original observations and Shewhart charts for residuals. Accord-
ing to the third approach, introduced in the area of SPC by Yourstone and
Montgomery [28],[29], a process is monitored by charting statistics, such as
the coefficient of serial correlation, that reflect the correlation structure of the
monitored process. Another original approach of this type was proposed in the
paper by Jiang et al. {8] who proposed a new type of a chart for monitoring
of autocorrelated data an ARMA chart.

SPC procedures for autocorrelated data have been usually proposed for
charting individual observations that are typical for continuous production
processes. Relatively few papers have been proposed for the analysis of SPC
procedures in case of autocorrelation within the sample. A good overview of
those papers together with interesting original results can be found in the pa-
per by Knoth et al. [10]. Another important problem which has attracted only
few authors is related to the control of short-run processes. Some interesting
results in this area can be found in papers {21},[27].

The number of papers devoted to the problem of charting autocorrelated
processes is quite large. Therefore the readers are encouraged to look at those
papers for further references. The review of first papers devoted to the problem
of SPC with correlated data can be found, for example, in the aforementioned
paper by Wardell et al. [25], and in a short overview paper by Woodall and
Faltin [26). A good overview of the papers published in 1990s can be found in
[10],12]

While discussing different SPC methods used for the analysis of correlated
data we have to take into account their efficiency and as it was pointed out by
Lucas [14] in the discussion of [25], simplicity. The results obtained by Wardell
et al. [25] for the case of Auto Regressive Moving Average (ARMA) time se-
ries that describe correlated measurements have shown that Alwan Roberts
type control charts for residuals in certain cases of positive correlation may
be outperformed even by a classical Shewhart control chart with unmodified
control limits. However, in other cases the application of these rather com-
plicated procedures (their usage requires the software for the analysis of time
series) may be quite useful. Also the results obtained by Timmer et al. {22]
show that in the case of Auto Regressive AR(1) processes the application of
simple control charts based on the serial autocorrelation coefficient as the only
SPC tools may be not effective.

While dealing with correlated data we cannot rely, even in the case of
classical control charts, on the methods used for the estimation of their pa-
rameters in case independent observations. Some corrections are necessary, as
it was mentioned e.g. in the paper by Maragah and Woodall [15]. Another
problem with the application of the procedures designed to control autocorre-
lated data is the knowledge of the structure of correlation. In the majority of



papers it is assumed that the type of the stochastic process that describes the
process data is known. Moreover, it is also assumed that the parameters of this
stochastic process are also known. However, Lu and Reynolds {12],{13] have
shown that precise estimation of such parameters requires at least hundreds
of observations. Taking into account that all computations required for de-
signing and running SPC procedures for autocorrelated data are not easy for
an average practitioner, the probleni arises then: how to verify the hypothesis
of correlation in a simple way? The answer to this question is very important,
as it indicates the amount of possible future difficulties with running SPC
procedures. It is quite obvious that practitioners would like to avoid these
problems as it can be only possible. The simplest solution to this problem is
to use the serial autocorrelation control chart, as it was proposed in [28],[29).
However, the coefficient of serial autocorrelation performs well for processes
with Gaussian random error components. For more general processes special-
ists in time series analysis suggest to apply nonparametric statistical tests.
An interesting review of such tests can be found in the paper by Hallin and
Mélard [7]. Unfortunately, the majority of those tests are either complicated
or unsuitable for process control. However, one of the recent papers [5) on the
application of Kendall’s tau statistics for testing serial dependence seems to
be promising in the context of SPC. We consider this possibility in this paper.

In the second section of the paper we present some basic information on
the Kendall’s tau statistic when it is used for the analysis of autocorrelated
data. Using basic properties of this statistic we propose a relatively simple
control chart based on this statistic. Statistical properties of this control chart
have been investigated using Monte Carlo simulations. Inn the third section
of the paper we present the results of Monte Carlo experiments in the case
when two consecutive observations are described by a two-dimensional normal
distribution, i.e. in the case of a simple autoregressive model. We compare
the behavior of our chart with the behavior of a chart based on the serial
autocorrelation coefficient. In the fourth section we analyze the results of
simulations when the dependence structure is more complicated. We consider
the case when two consecutive observations are described by a two-dimensional
copula with different marginal probability distribution functions. In the last
section of the paper we formulate some conclusions, and propose the directions
for further investigations.

2 Control chart based on Kendall’s tau statistic for
serially autocorrelated data

Many of problems experienced when applying traditional SPC to monitoring
processes are caused by the violation of the basic assumption of statistical in-
dependence of consecutive observations. However, in practice this condition is
very often not fulfilled, and consecutive observations are correlated. It should
be stressed that some small disturbances of independence conditions may be



natural and even desirable (e.g. in case of the existence of favourable trends
of process parameters). However, in the majority of cases autocorrelation of
process parameters should be considered either as an obstacle in monitoring
the process or even as unwanted feature, when it increases process variation.
In such situation special statistical methods for detecting dependencies (au-
tocorrelations) between consecutive process observations are strongly recom-
mended. For this purpose we propose to use the Kendall’s T statistic, which
is a fundamental statistical measure of association.

Let Zy,Z,...,Z, denote a random sample of n consecutive process ob-
servations and (X;,Y;), where X; = Z; and Y; = Zjy, fori=1,2,...,n—11is
a bivariate random vector. Then, the Kendall’s T sample statistic measuring
the association between random variables X and ¥ is given by the following

formula

4 n—1
Tn = — E:‘G -1, (U
i=1
where
Vi=Card((/\"n):X12<‘\"}/j<y"},i=1,--.,n~1. (@)
n—

In terms of the original observations Kendall’s tau can be represented as
a function of the number of disconcordances M, i.e. the number of pairs
(Z;,Zi41) and (Z;, Z;41) that satisfy either Z; < Zj and Z;yy > Zj4 or
Z; > Zj and Z;yy < Zjy;. In these terms we have

4M (3)

where
n—1ln-—1
M=3"S"1(Z < 25, Zigy > Zi), (4)
i=1 j=1

and I{A) represents the indicator function of the set A. In case of mutually
indepeudent pairs of observations (X;,Y;), i = 1,2,...,n — 1 the probability
distribution of (1) is well known. However, in case of time series, even in the
case of mutual independence of Zy, Z, ..., Z, pairs of observations (X;,Y;)
become dependent, and the probability distribution of 7, for small values of
n has been obtained only recently [5]. Ferguson et al. [5] obtained precise
probabilities P,(M < m) for n = 3,...,10, and approximate probabilities for
n > 10. In Table 1 we present the probabilities of 7,, > 7.i¢ for some selected
small values of n. This type of presentation is more useful for the discussion
of the applicability of Kendall's tau in SPC. First of all, from Table 1 it is
clearly seen that except for the case n = 6 and 7.4 = 1 it is not possible to



construct a one-sided statistical test of independence against the alternative
of positive dependence with the same probability of false alarms as in the case
of a Shewhart control chart. By the way, this exceptional case is equivalent to
a well known supplementary pattern test signal on a classical control chart:
”six observations in a row are either increasing or decreasing”. Moreover, all
critical values of 7, that are equal to one correspond to sequential signals of
the type ”n observations in a row are either increasing or decreasing”, and
for the values 7. that are close to one it is possible to formulate similar
pattern rules. Thus, for small values of n it is in principle impossible to make
precise comparisons of control charts based on Kendall’s tau with classical
three-sigma Shewhart control charts. Close investigation of the probability
distribution of M presented in [5] shows that due to a discrete nature of the
Kendall’s tau this situation is the same in case of a two-sided test and also
similar even for larger values of n.

Table 1. Critical values for Kendall's tau statistic in presence of dependence be-
tween pairs of observations

n=6 ] n=7 ] n=8 , n=9

Terit P{Tn > Tcnt)l Terit P{ma 2 Tcrit)} Terit Pmn > Tcne), Terit  P(Tn 2 Terit)

1 0.00267( 1 0.00042 1 0.00006 1 0.00001
0.8 0.00834 | 0.866 0.00119| 0.904 0.00014 | 0.857 0.00007
0.6 0.03056( 0.733 0.00477| 0.809 0.00069{ 0.785 0.00021
0.600 0.01356 | 0.714 0.00178 | 0.714 0.00071

0.619 0.00565 | 0.642 0.00185

0.571 0.00514

Consecutive values of 7,, are dependent even for independent original ob-
servations. Therefore, it is rather difficult to obtain the values of ARLs. In
Table 2 we present such values, each based on over 1 million simulations in case
of small ARLs and over 10 000 simulations for very large ARLSs, obtained for
the case of mutual independence of normally distributed observations, when
the alarm signal is generated when 1, > 7ri. The results presented in Table 2
confirm our claim that the construction of a test having statistical properties
similar to the properties of a Shewhart control chart is hardly possible. Due
to a discrete character of 7, ARLs in case of independence are either very
large, and this suggests poor discrimination power of the test, or rather low,
resulting in a high rate of false alarms.

Bearing in mind the requirement of simplicity we can now propose a Shew-
hart type control chart based on 7,, with control litnits of the following form:

LCL = max (E(r,) — ko{r,), —1), (5)



UCL = min (E(ta) + ko(m,), 1), (6)

where LCL and UCL are the lower and upper limit, respectively. In the
remaining part of this paper we will name it the Kendall control chart. To
calculate the limits of the Kendall control chart we use the following formulae
for the expected value and the variance of 7, given in (5]:
E = 2 >3 7
(Tn)——a(n—_r),n_ ) (7
3 2
20n° — T4n +54n+148,n24. (8)
45(n — 1)%(n — 2)?
It is worth noting that for small values of n the probability distribution of
Tn 18 not symmetric. Therefore, the properties of the proposed control chart
for testing independence of consecutive observations from a process may be
improved by using control lines that are asymmetric around the expected
value of 7,,. However, for sake of simplicity, in this paper we will not consider
this possibility. The properties of the proposed control chart are investigated
in the next section of the paper.

V(Tn) =

Table 2. Values of ARL of Kendall’s test for independent observations

n=6 l n=7 , n==8 i n=9
Terit ARL| 7o ARL|  7eit ARL] et ARL
1 422.0 1 2885.8 1 22586.0 i > 150000.0
0.8  151.4| 0.866  1013.5]  0.904 7799.0{  0.857 15395.0
0.6 47.5]  0.733 270.6]  0.809 1891.2(  0.785 5618.0
0.600 106.5|  0.714 705.9| 0714 1784.7
0.619 246.0(  0.642 724.9
0.571 291.4

3 Properties of the Kendall control chart in case of
dependencies described by a multivariate normal
distribution

In order to analyze basic properties of the proposed Kendall control chart
let us consider the simplest case when two consecutive observations are de-
scribed by a bivariate normal distribution. Let X; = Z; and Y; = Z;;1,
i = 1,2,...,n ~ 1 denote the random variables describing two consecutive
observations in a sample of size n. We want to model the stochastic depen-
dence between them. In order to do it we assume that the join probability



distribution of the random vector (X,Y") is the bivariate normal distribution
with the following probability distribution

1
flz,y) = mexp(—@, (9)
where
_ 1 (z —mx)? (z—mx)y—my) (y—my)?
@= 1~p? { o% o oxoy - of }’ (10

and parameter p is the coefficient of correlation. If the variables X and ¥ are
independent, then we have p = 0.

The conditional cumulative distribution function of Y given X = z is the
normal distribution with the mean my +p(0x /ov)(xz — mx) and the variance
of oy /1 — p?. In a particular case when mx = my =0 and 0y = oy =1
it is the normal distribution with mean of zp and variance of /1 — p?. Thus,
the proposed model is the well known autoregression model.

The basic characteristic that describes the performance of control charts
is the Average Run Length (ARL). ARL is calculated as the average number
of samples (or individual observations) plotted on a control chart up to and
including the point that gives rise to a decision that a special cause is present.
In Table 3 we present the results of simulation (each entry of the table is
calculated as the average from one million simulation runs) for different sample
sizes (numbers of considered consecutive points) n, and different values of the
correlation coefficient p .

Table 3. Values of ARL of the Kendall control chart with k=3 for observations
described by a bivariate normal distribution

n
P 6 7 8 g 10 20 50
08 47.36  63.71 67.81 50.56 44.96 26.67 50.11
0.5 9094 16544 22186  165.35  154.87 66.41 59.94

0.2 140.82 416.60 702.13 610.14 689.44 473.52 328.82
0.1 146.23 520.36 1156.77 859.95 1593.03 1026.06 1058.76

0 141.90 595.74 1623.15 1043.36 1497.27 1502.60 2597.57
-0.1 129.64 607.00 2003.14 1020.18 1597.13 1011.92 1053.87
-0.2 111.47 577.85 2286.24 796.90 1257.70 465.59 327.97
-0.5 56.18 220.44 952.73 194.62 247.45 61.30 58.82
-0.8 23.97 53.98 145.83 41.04 43.43 23.78 50.05

The results presented in Table 3 reveal that a simple Kendall control chart
with a simple to remember three-sigma decision rule, and a small sample size



r, is not a good tool for finding dependencies between consecutive observa-
tions. Obviously, the common value & = 3 cannot be used for all values of
n. Moreover, the discrimination ability of the Kendall control chart for the
sample sizes n smaller than 10 seems to be insufficient, even if we decrease
the value of k. For larger value of n the situation looks better, but the dis-
crimination power of this simple Kendall chart is still insufficient.

Now, let us analyze the behavior of a simple autocorrelation chart in sim-
ilar circumstances. To design this chart we assume that the expected value
of the plotted statistic and its variance are equal to their asymptotic values.
Hence, we set E{p,) = 0, and for the calculation of the variance we use an
approximate simple formula proposed by Moran [17]

Vo) = 5 (an

Now, let us define control limits of this simple autocorrelation chart as
+ko(pn), and set & = 3. The values of ARLs for different values of n and p
are presented in Table 4.

Table 4. Values of ARL of the autocorrelation control chart with k=3 for observa-
tions described by a bivariate normal distribution

k3

P 6 7 8 9 10 20 50

08 27134 88.7 39.0 30.0 26.5 2.0 50.0
05  1539.3 251.7 1158 87.6 75.7 51.7 57.0
0.2 732.8 796.3 494.7 415.5 386.1 352.9 301.1
01 400.4 991.1 793.0 720.3 693.6 8227 10189
0 4006 10048  1183.0 11902 11437  1427.0  2797.7
0.1 287.3 8343 14542 16623 14857 11217 10936
0.2 200.1 590.9 13269  1677.6 12538 499.2 319.6
0.5 61.3 133.9 266.9 297.2 1853 57.8 56.8
0.8 19.5 28.3 38.0 37.6 29.3 22.8 50.0

The results given in Table 4 look rather surprisingly. We would expect that
for the assumed mode!l of dependence the behaviour of the autocorrelation
chart should be much better than the behaviour of the Kendall chart which
is based on a nonparametric statistic. Surprisingly though, the behaviour of
a simple autocorrelation chart does not seem much better. For small values
of n the coefficient of autocorrelation is obviously biased, and the simple
Moran’s approximation may influence the results in a negative way. The direct
comparison of the both charts using the data given in Table 3 and Table 4
is, of course, impossible. In order to make this comparison relevant we have
compared both charts for n = 10 and n = 50. In case of n = 10 for the Kendall



chart we set k to 2.7, and for the autocorrelation chart we set k to 2.65. In case
of n = 50 for the Kendall chart we set k to 2.2, and for the autocorrelation
chart we set k to 2.16. For these values of the parameters the ARLs in case of
independence are nearly the same in both cases. The results of the comparison
(each value based on 10° simulations) are presented in Table 5 and Figure 1.

The results presented in Table 5 confirm our previous finding that a sim-
ply designed autocorrelation chart (without a correction for bias) for small
values of n does not perform better than the Kendall chart. For large value
of n, such as n = 50, surprisingly though, for the assumed dependence model
the autocorrelation chart does not perform better, as it is expected to do. The
effect of bias is still observed, and this results in better discrimination of neg-
ative dependence, and visibly worse discrimination for positive dependence. It
is also worth noticing that fast detection of small correlations requires samples
even much larger than n = 50.

Table 5. Values of ARL for equivalent Kendall and autocorrelation control chart

' n=10 ' n=50

P ( Kendall autocorrelation I Kendall autocorrelation
0.8 30.9 19.8 50 50
0.5 84.3 43.3 52.1 51.9
0.3 189.1 97.9 73.9 75.8
0.2 271.2 156.8 1175 127.4
0.1 344.6 249.4 226.6 259.1

0 351.2 351.9 350.7 350.9
-0.1 286.4 385.6 226.3 189.8
-0.2 200.6 305.8 117.1 99.3
-0.3 132.2 193.3 73.3 66
-0.5 55.7 67.0 51.8 50.9
-0.8 19.4 19.4 50 50

4 Properties of the Kendall control chart in case of other
models of dependence

Let us consider now the sensitivity of the proposed Kendall chart and the
simple autocorrelation chart to the change of some basic assumptions. First,
we check how changes the performance of these charts when we assume that
the consecutive observations in a sample are not independent. To describe
diffrent kinds of dependencies between them we need model different from
autoregression.,

For the bivariate normal distribution the correlation coeflicient completely
defines the dependence structure between random variables. However, it is
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Fig. 1. ARL comparison for Kendall control chart {black line) and autocorrelation
control chart (grey line) (a) n = 10, (b} n = 50

worth to notice that the random vector (X,Y) can be described by any two-
dimensional probability distribution function. In such case, the information
given by a correlation coefficient may be not sufficient to define the dependence
structure between random variables. Therefore, to fully capture this structure
one may consider another type of dependence described by a so called copula.
The copula contains all of the information on the nature of the dependence be-
tween random variables. The joint cumulative distribution function Fia(z,y)
of any pair (X,Y) of continuous random variables may be written in the
form Fia(z,y) = C(Fi(z), F2(y)), =,y € R, where Fi(x) and F3(y) are the
marginal density functions of X and Y, respectively, and C : [0,1]* — {0,1] is
a copula. In this paper, to model another type of dependence between random
variables we use, as examples, the Farlie-Gumbel-Morgenstern (FGM) copula
(Craar), Plackett copula (Cp) and Frank copula (C'r). Using the probability
integral transformations u, = Fi(z), u2 = F2(y), where ui, u have a uniform
distribution on the interval [0, 1], we can write the particular copulas as

Crom(ur,u2) = ujug {1+ a(l = u )1 - ug)}, a€(-1,1],

(12)

(14)

U ug, a=1,
Cplur,up) = [z+(n-1)(u.+u2)]j{lgiz:i;(uﬁuz)p_u.um(a-l)) € R\ {Slﬁ)
1 —aur _ ] —oug _
Cr(ur,uz) = —;ln (1+(e e_“)(fl 1)>, a € R\O0.

The parameter « in above formulas for Crgar, Cp and Cr describes the
power and the direction of association between X and Y. The variables X
and Y are independent if and only if &« = 0, = 1,a = 0, respectively for
Cram,Cp,CF.

When Fy(z) and F5(y) are the univariate cumulative distribution functions
of the normal distribution, the marginal distributions of the FGM copula are
normal, but the structure of dependence is different than in the case of the
bivariate normal distribution. For example, when a € [-1,1], there exists a









































