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1 Introduction 

Statistical process control (SPC) is a collection of methods for achieving con­
tinuous improvement in quality. This objective is accomplished by continuous 
monitoring of the process under study in order to quickly detect the occur­
rence of assignable causes. The Shewhart control chart, and other control 
charts - like CUSUM, MAV, and EWMA- are the most popular SPC methods 
used to detect whether observed process is under control. Their classical, and 
widely known, versions are designed under the assumption that process mea­
surements are described by independent and identically distributed random 
variables. In the majority of practical cases these assumptions are fulfilled at 
least approximately. However, there exist production processes where consecu­
tive observations are correlated. This phenomenon can be frequently observed 
in chemical processes, and many other continuous production processes (see 
Wardell et al. (25] or Alwan and Roberts [2] for examples). The presence of 
correlations between consecutive measurements should be taken into account 
during the design of control charts. This need was noticed in the 1970s, see 
for example the papers by Johnson and Bagshaw [9] and by Vasilopoulos and 
Stamboulis [24], but the real outburst of papers related to this problem took 
place in the late 1980s and in the 1990s. 

There exist severa! approaches for dealing with serially correlated SPC 
data. First approach, historically the oldest one, consists in adjusting con­
trol limits of classical control charts. This approach was used, for example, in 
papers [11] ,[12],[13],[18] ,[19],(23],(24),[30). The second approach, which is rep­
resented by a seminal paper by Alwan and Roberts [l], profits from the knowl­
edge of the correlation structure of a measured process. Alwan and Roberts 
[l] propose to chart so called residuals, i.e. differences between actual obser­
vations and their predicted, in accordance with a prespecified mathematical 
model, values. This approach has its roots in the statistical analysis of time 
series used in automatic control, originated by the famous book of Box and 
Jenkins [3) . Among many papers on control charts for residuals we can men-



tion e.g. the following: [11),(12),(13),(16),[19]. Lu and Reynolds [11],[12),(13] 
compared control charts for original observations (with corrected limits) with 
control charts for residuals. They have shown that the best practical results 
may be obtained while using simultaneously EWMA (or CUSUM) modified 
charts for original observations and Shewhart charts for residuals. Accord­
ing to the third approach, introduced in the area of SPC by Yourstone and 
Montgomery (28],(29], a process is monitored by charting statistics, such as 
the coeffi.cient of serial correlation, that reflect the correlation structure of the 
monitored process. Another original approach of this type was proposed in the 
paper by Jiang et al. [8] who proposed a new type of a chart for monitoring 
of autocorrelated data an ARMA chart. 

SPC procedures for autocorrelated data have been usually proposed for 
charting individual observations that are typical for continuous production 
processes. Relatively few papers have been proposed for the analysis of SPC 
procedures in case of autocorrelation within the sample. A good overview of 
those papers together with interesting original results can be found in the pa­
per by Knoth et al. [10]. Another important problem which has attracted only 
few authors is related to the control of short-run processes. Some interesting 
results in this area can be found in papers [21),(27]. 

The number of papers devoted to the problem of charting autocorrelated 
processes is quite large. Therefore the readers are encouraged to look at those 
papers for further references. The review of first papers devoted to the problem 
of SPC with correlated data can be found, for example, in the aforementioned 
paper by Wardell et al. (25), and in a short overview paper by Woodall and 
Faltin (26]. A good overview of the papers published in 1990s can be found in 
[10],[12]. 

While discussing different SPC methods used for the analysis of correlated 
data we have to take into account their effi.ciency and as it was pointed out by 
Lucas [14] in the discussion of [25], simplicity. The results obtained by Wardell 
et al. (25] for the case of Auto Regressive Moving Average (ARMA) time se­
ries that describe correlated measurements have shown that Alwan Roberts 
type control charts for residuals in certain cases of positive correlation may 
be outperformed even by a classical Shewhart control chart with unmodified 
control limits. However, in other cases the application of these rather com­
plicated procedures (their usage requires the software for the analysis of time 
series) may be quite useful. Also the results obtained by Timmer et al. [22] 
show that in the case of Auto Regressive AR(l) processes the application of 
simple control charts based on the serial autocorrelation coeffi.cient as the only 
SPC tools may be not effective. 

While dealing with correlated data we cannot rely, even in the case of 
classical control charts, on the methods used for the estimation of their pa­
rameters in case independent observations. Some corrections are necessary, as 
it was mentioned e.g. in the paper by Maragah and Woodall [15]. Another 
problem with the application of the procedures designed to control autocorre­
lated data is the knowledge of the structure of correlation. In the majority of 



papers it is assumed that the type of the stochastic process that describes the 
process data is known. Moreover, it is also assumed that the parameters of this 
stochastic process are also known. However, Lu and Reynolds (12),(13] have 
shown that precise estimation of such parameters requires at least hundreds 
of observations. Taking into account that all computations required for de­
signing and running SPC procedures for autocorrelated data are not easy for 
an average practitioner, the problem arises then: how to verify the hypothesis 
of correlation in a simple way? The answer to this question is very important, 
as it indicates the amount of possible future difficulties with running SPC 
procedures. It is quite obvious that practitioners would like to avoid these 
problems as it can be only possible. The simplest solution to this problem is 
to use the serial autocorrelation control chart, as it was proposed in (28),[29]. 
However, the coefficient of serial autocorrelation performs well for processes 
with Gaussian random error components. For more generał processes special­
ists in time series analysis suggest to apply nonparametric statistical tests. 
An interesting review of such tests can be found in the paper by Hallin and 
Melard (7]. Unfortunately, the majority of those tests are either complicated 
or unsuitable for process control. However, one of the recent papers [5] on the 
application of Kendall's tau statistics for testing serial dependence seems to 
be promising in the context of SPC. We consider this possibility in this paper. 

In the second section of the paper we present some basie information on 
the Kendall's tau statistic when it is used for the analysis of autocorrelated 
data. Using basie properties of this statistic we propose a relatively simple 
control chart based on this statistic. Statistical properties of this control chart 
have been investigated using Monte Carlo simulations. In the third section 
of the paper we present the results of Monte Carlo experiments in the case 
w hen two consecutive observations are described by a two-dimensional norma! 
distribution, i.e. in the case of a simple autoregressive model. We compare 
the behavior of our chart with the behavior of a chart based on the serial 
autocorrelation coefficient. In the fourth section we analyze the results of 
simulations when the dependence structure is more complicated. We consider 
the case w hen two consecutive observations are described by a two-dimensional 
copula with different marginal probability distribution functions. In the last 
section of the paper we formulate some conclusions, and propose the directions 
for further investigations. 

2 Control chart based on Kendall's tau statistic for 
serially autocorrelated data 

Many of problems experienced when applying traditional SPC to monitoring 
processes are caused by the violation of the basie assumption of statistical in­
dependence of consecutive observations. However, in practice this condition is 
very often not fulfilled, and consecutive observations are correlated. It should 
be stressed that some small disturbances of independence conditions may be 



natura! and even desirable (e.g. in case of the existence of favourable trends 
of process parameters). However, in the majority of cases autocorrelation of 
process parameters should be considered either as an obstacle in monitoring 
the process or even as unwanted feature, when it increases process variation. 
In such situation special statistical methods for detecting dependencies (au­
tocorrelations) between consecutive process observations are strongly recom­
mended. For this purpose we propose to use the Kendall 's r statistic, which 
is a fundamental statistical measure of association. 

Let Z1 , Z2 , ... , Zn denote a random sample of n consecutive process ob­
servations and (Xi, l'i), where Xi= Zi and }"i= Zi+I for i= 1, 2, ... , n -1 is 
a bivariate random vector. Then, the Kendall's T sample statistic measuring 
the association between random variables X and Y is given by the following 
formula 

4 n-1 

T =-°"V:-1 n n - 1 L....,, , i 

i=l 

(1) 

where 

V: _ card{(X,, Y;): X,< X,, Y; < Y;} . _ 1 _ 1 
,- n-2 ,i- , ... ,n . (2) 

In terms of the original observations Kendall's tau can be represented as 
a function of the number of disconcordances M, i.e. the number of pairs 
(Z;, Z;+t) and (Z,, Zi+t) that satisfy either Z; < z, and Z;+1 > Zi+ 1 or 
Z; > z, and Z;+ 1 < z,+1 · In these terms we have 

4M 
Tn = 1 - ) ) , (n - 1 (n - 2 

(3) 

where 

n-ln-1 

M = L L I(Z, < z,, z,+1 > zJ+t), (4) 
i;;;l j=l 

and J(A) represents the indicator function of the set A. In case of mutually 
independent pairs of observations (X;, Y;), i= 1, 2, ... , n - 1 the probability 
distribution of (1) is well known. However, in case of time series, even in the 
case of mutual independence of Z1 , Z2 , •.. , Zn pairs of observations (X,, Y;) 
become dependent, and the probability distribution of Tn for small values of 
n has been obtained only recently [5]. Ferguson et al. [5] obtained precise 
probabilities Pn(M::; m) for n= 3, .. . , 10, and approximate probabilities for 
n > 10. In Table 1 we present the probabilities of Tn 2'. Tcrit for some selected 
small values of n. This type of presentation is more useful for the discussion 
of the applicability of Kendall's tau in SPC. First of all, from Table 1 it is 
clearly seen that except for the case n = 6 and Tcrit = 1 it is not possible to 



construct a one-sided statistical test of independence against the alternative 
of positive dependence with the same probability of false alarms as in the case 
of a Shewhart control chart. By the way, this exceptional case is equivalent to 
a well known supplementary pattern test signal on a classical control chart: 
"six observations in a row are either increasing or decreasing". Moreover, all 
critical values of rn that are equal to one correspond to sequential signals of 
the type "n observations in a row are either increasing or decreasing", and 
for the values rcrit that are close to one it is possible to formulate similar 
pattern rules. Thus, for small values of n it is in principle impossible to make 
precise comparisons of control charts based on Kendall's tau with classical 
three-sigma Shewhart control charts. Close investigation of the probability 
distribution of M presented in (5] shows that due to a discrete nature of the 
Kendall's tau this situation is the same in case of a two-sided test and also 
similar even for larger values of n. 

Table 1. Critical values for Kendall's tau statistic in presence of dependence be­
tween pairs of observations 

n=6 n=7 n=8 n=9 

1 0.00267 1 0.00042 1 0.00006 1 0.00001 
0.8 0.00834 0.866 0.00119 0.904 0.00014 0.857 0.00007 
0.6 0.03056 0.733 0.00477 0.809 0.00069 0.785 0.00021 

0.600 0.01356 0.714 0.00178 0.714 0.00071 
0.619 0.00565 0.642 0.00185 

0.571 0.00514 

Consecutive values of rn are dependent even for independent original ob­
servations. Therefore, it is rather difficult to obtain the values of ARLs. In 
Table 2 we present such values, each based on over 1 million simulations in case 
of small ARLs and over 10 OOO simulations for very large ARLs, obtained for 
the case of mutual independence of normally distributed observations, when 
the alarm signal is generated when rn ~ rcrit• The results presented in Table 2 
confirm our claim that the construction of a test having statistical properties 
similar to the properties of a Shewhart control chart is hardly possible. Due 
to a discrete character of rn ARLs in case of independence are either very 
large, and this suggests poor discrimination power of the test, or rather low, 
resulting in a high rate of false alarms. 

Bearing in mind the requirement of simplicity we can now propose a Shew­
hart type control chart based on rn with control limits of the following form: 

LCL = max (E(rn) - ka(rn), -1), (5) 



UCL = min (E(rn) + ka(rn), 1), (6) 

where LCL and UCL are the ]ower and upper limit, respectively. In the 
remaining part of this paper we will name it the Kendall control chart. To 
calculate the limits of the Kendall control chart we use the following formulae 
for the expected value and the variance of Tn given in [5]: 

(7) 

20n3 - 74n2 + 54n + 148 
V(rn) = 45(n - 1)2 (n - 2) 2 'n 2: 4· (8) 

It is worth noting that for small values of n the probability distribution of 
r n is not symmetric. Therefore, the properties of the proposed control chart 
for testing independence of consecutive observations from a process may be 
improved by using control lines that are asymmetric around the expected 
value of Tn- However, for sake of simplicity, in this paper we will not consider 
this possibility. The properties of the proposed control chart are investigated 
in the next section of the paper. 

Table 2. Values of ARL of Kendall's test for independent observations 

n=6 n=7 n=8 n=9 

Tcrit ARL/ Tcrit ARL/ Tcrit ARL/ 'Tcrit ARL 

1 422.0 1 2885.8 1 22586.0 1 > 150000.0 
0.8 151.4 0.866 1013.5 0.904 7799.0 0.857 
0.6 47.5 0.733 270.6 0.809 1891.2 0.785 

0.600 106.5 0.714 705.9 0.714 
0.619 246.0 0.642 

0.571 

3 Properties of the Kendall control chart in case of 
dependencies described by a multivariate norma! 
distribution 

15395.0 
5618.0 
1784.7 
724.9 
291.4 

In order to analyze basie properties of the proposed Kendall control chart 
let us consider the simplest case when two consecutive observations are de­
scribed by a bivariate norma! distribution. Let X, = Z; and Y; = Z;+ 1 , 

i = 1, 2, ... , n - 1 denote the random variables describing two consecutive 
observations in a sample of size n. We want to model the stochastic depen­
dence between them. In order to do it we assume that the join probability 



distribution of the random vector (X, Y) is the bivariate norma! distribution 
with the following probability distribution 

1 
f(x, y) = r,---::,- exp (-Q), 

2iraxay v 1 - p2 
(9) 

where 

Q=-1-{(x-mx)2 _ 2p(x-mx)(y-my) + (y-my) 2 }, (lO) 
1 - p2 a} axay a} 

and parameter p is the coefficient of correlation. If the variables X and Y are 
independent, then we have p = O. 

The conditional cumulative distribution function of Y given X = x is the 
norma! distribution with the mean my+ p(ax /ay )(x - mx) and the variance 
of ay~. In a particular case when mx = my = O and ax = ay = 1 

it is the norma! distribution with mean of xp and variance of ~- Thus, 
the proposed model is the well known autoregression model. 

The basie characteristic that describes the performance of control charts 
is the Average Run Length (ARL). ARL is calculated as the average number 
of samples (or individual observations) plotted on a control chart up to and 
including the point that gives rise to a decision that a special cause is present. 
In Table 3 we present the results of simulation (each entry of the table is 
calculated as the average from one million simulation runs) for different sample 
sizes (numbers of considered consecutive points) n, and different values of the 
correlation coefficient p . 

Table 3. Values of ARL of the Kendall control chart with k=3 for observations 
described by a bivariate normal distribution 

n 

p 6 7 8 9 10 20 50 

0.8 47.36 63.71 67.81 50.56 44.96 26.67 50.11 
0.5 90.94 165.44 221.86 165.35 154.87 66.41 59.94 
0.2 140.82 416.60 702.13 610.14 689.44 473.52 328.82 
0.1 146.23 520.36 1156.77 859.95 1593.03 1026.06 1058.76 
o 141.90 595.74 1623.15 1043.36 1497.27 1502.60 2597.57 

-0.1 129.64 607.00 2003.14 1020.18 1597.13 1011.92 1053.87 
-0.2 111.47 577.85 2286.24 796.90 1257.70 465.59 327.97 
-0.5 56.18 220.44 952.73 194.62 247.45 61.30 58.82 
-0.8 23.97 53.98 145.83 41.04 43.43 23.78 50.05 

The results presented in Table 3 reveal that a sim ple Kendall control chart 
with a simple to remember three-sigma decision rule, and a small sample size 



n, is not a good tool for finding dependencies between consecutive observa­
tions. Obviously, the common value k = 3 cannot be used for all values of 
n. Moreover, the discrimination ability of the Kendall control chart for the 
sample sizes n smaller than 10 seems to be insufficient, even if we decrease 
the value of k. For larger value of n the situation looks better, but the dis­
crimination power of this simple Kendall chart is stili insufficient. 

Now, let us analyze the behavior of a simple autocorrelation chart in sim­
ilar circumstances. To design this chart we assume that the expected value 
of the plotted statistic and its variance are equal to their asymptotic values. 
Hence, we set E(pn) = O, and for the calculation of the variance we use an 
approximate simple formula proposed by Maran [17] 

n-1 
V(pn) = n(n + 2) · (ll) 

Now, Jet us define control limits of this sim ple autocorrelation chart as 
±ka(pn), and set k = 3. The values of ARLs for different values of n and p 
are presented in Table 4. 

Table 4. Values of ARL of the autocorrelation control chart with k=3 for observa-
tions described by a bivariate normal distribution 

n 

p 6 7 8 9 10 20 50 

0.8 2713.4 88.7 39.0 30.0 26.5 24.0 50.0 
0.5 1539.3 251.7 115.8 87.6 75.7 51.7 57.0 
0.2 732.8 796.3 494.7 415.5 386.1 352.9 301.1 
O.I 400.4 991.1 793.0 720.3 693.6 822.7 1018.9 
o 400.6 1004.8 1183.0 1190.2 1143.7 1427.0 2797. 7 

-O.I 287.3 834.3 1454.2 1662.3 1485.7 1121. 7 1093.6 
-0.2 200.1 590.9 1326.9 1677.6 1253.8 499.2 319 6 
-0.5 61.3 133.9 266.9 297.2 185.3 57.8 56.8 
-0.8 19.5 28.3 38.0 37.6 29.3 22.8 50.0 

The results given in Table 4 look rather surprisingly. We would expect that 
for the assumed model of dependence the behaviour of the autocorrelation 
chart should be much better than the behaviour of the Kendall chart which 
is based on a nonparametric statistic. Surprisingly though, the behaviour of 
a simple autocorrelation chart does not seem much better. For small values 
of n the coefficient of autocorrelation is obviously biased, and the simple 
Maran 's approximation may influence the results in a negative way. The direct 
comparison of the both charts using the data given in Table 3 and Table 4 
is, of course, impossible. In order to make this comparison relevant we have 
compared both charts for n = 10 and n = 50. In case of n = 10 for the Kendall 



chart we set kto 2.7, and for the autocorrelation chart we set kto 2.65. In case 
of n = 50 for the Kendall chart we set k to 2.2, and for the autocorrelation 
chart we set k to 2.16. For these values of the parameters the ARLs in case of 
independence are nearly the same in both cases. The results of the comparison 
(each value based on 105 simulations) are presented in Table 5 and Figure 1. 

The results presented in Table 5 confirm aur previous finding that a sim­
ply designed autocorrelation chart (without a correction for bias) for small 
values of n does not perform better than the Kendall chart. For large value 
of n, such as n = 50, surprisingly though, for the assumed dependence model 
the autocorrelation chart does not perform better, as it is expected to do. The 
effect of bias is stili observed, and this results in bet ter discrimination of neg­
ative dependence, and visibly worse discrimination for positive dependence. It 
is also worth noticing that fast detection of small correlations requires samples 
even much larger than n = 50. 

Table 5. Values of ARL for equivalent Kendall and autocorrelation control chart 

n=IO n=50 

p Kendall autocorrelation Kendall autocorrelation 

0.8 30.9 19.8 50 50 
0.5 84.3 43.3 52.1 51.9 
0.3 189.1 97.9 73.9 75.8 
0.2 271.2 156.8 117.5 127.4 
0.1 344.6 249.4 226.6 259.1 
o 351.2 351.9 350.7 350.9 

-O.I 286.4 385.6 226.3 189.8 
-0.2 200.6 305.8 117.1 99.3 
-0.3 132.2 193.3 73.3 66 
-0.5 55.7 67.0 51.8 50.9 
-0.8 19.4 19.4 50 50 

4 Properties of the Kendall control chart in case of other 
models of dependence 

Let us consider naw the sensitivity of the proposed Kendall chart and the 
simple autocorrelation chart to the change of same basie assumptions. First, 
we check how changes the performance of these charts when we assume that 
the consecutive observations in a sample are not independent. To describe 
diffrent kinds of dependencies between them we need model different from 
autoregression. 

For the bivariate norma! distribution the correlation coefficient completely 
defines the dependence structure between random variables. However, it is 
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Fig. 1. ARL comparison for Kendall control chart (black line) and autocorrelation 
control chart (grey line) (a) n= 10, (b) n= 50 

worth to notice that the random vector (X, Y) can be described by any two­
dimensional probability distribution function. In such case, the information 
given by a correlation coefficient may be not sufficient to define the dependence 
structure between random variables. Therefore, to fully capture this structure 
one may consider another type of dependence described by a so called copula. 
The copula contains all of the information on the nature of the dependence be­
tween random variables. The joint cumulative distribution function F12(x, y) 
of any pair (X, Y) of continuous random variables may be written in the 
form F, 2(x,y) = C(F1(x),F2(y)), x,y ER, where F1(x) and F2(y) are the 
marginal density functions of X and Y, respectively, and C: [O, 1) 2 --t [O, 1) is 
a copula. In this paper, to model another type of dependence between random 
variables we use, as examples, the Farlie-Gumbel-Morgenstern (FGM) copula 
(CFaM), Plackett copula (Cp) and Frank copula (Cp). Using the probability 
integral transformations u 1 = F1 (x), u2 = F2(Y), where u1, u2 have a uniform 
distribution on the interval [O, 1), we can write the particular copulas as 

(12) 

{ u 1u 2 , ~-----~----- a= 1, 
(l+(o-l)(u,+u,)1- (l+(o- l)(u,+u,)l'-fo,u,o(o-1) R \ {~l3) 

2 o-1 , o E + }, 

1 ( (e-""' - l)(e-""' -1)) 
-;:; In 1 + e- " _ l , a E R \ O. 

The parameter a in above formulas for CFaM, Cp and Cp describes the 
power and the direction of association between X and Y. The variables X 
and Y are independent if and only if a = O, a = 1, a e. O, respectively for 
CFGM,CP,CF, 

When F1 (x) and F2 (y) are the univariate cumulative distribution functions 
of the normal distribution, the marginal distributions of the FGM copula are 
norma! , but the structure of dependence is different than in the case of the 
bivariate norma! distribution. For example, when a E [-1, 1), there exists a 

(14) 



limit on the coefficient of correlation, namely p :-;; c,./,r (see [20]). The similar 
fact is also true for Plackett and Frank copulas (see [4], [6] for more details). 

The Kendall control chart is based on a nonparametric statistic. Thus, 
its performance should not depend not only upon the type of a marginal 
distribution of observations, but upon the type of dependence as well. Us­
ing Monte Carlo simulations we investiagte the performance of the Kendall 
and autocorrelation charts. We assume that the dependence between pairs 
of observations z,, Z;+ 1 , i = 1, ... , n - l in a sample of size n is described 
by a copula and we generate the random numbers sample. If the Kendall r 
statistic calculated for this sample does not fali outside of the limits estab­
lished for the Kendall chart, we move to the next process observation, i.e. we 
genarate random number Zn+I and we calculate the Kendall r for the sample 
z; = Z2, ••. , Z~ = Zn+1· We repeat this step as long as the Kendall r falls 
outside the limits. The number of process observations Z; plotted on the con­
trol chart up to and including the last observation in a sample for which the 
Kendall r is outside the limits defines ARL. 

In Tables 6-7 and Figures 2-4 we present the average ARL values, each 
based on 105 simulations, obtained in case of normally distributed observa­
tions, where the dependence between consecutive observations is described by 
FGM, Plackett and Frank copula. 

In Table 6 there are given the ARL values for the Kendall chart in case of 
FGM copula. On the basis of these results we can observe that the Kendall 
chart for FGM copula with norma! marginal distributions behaves similarly 
as in case of bivariate norma] distributions (some slight differences may come 
from two different applied generators of random num bers). This fact arises 
from nonparametric character of Kendall's tau statistic. It confirms fact that 
the performance of the Kendall control chart based on a nonparametric statis­
tic should not be dependent on the type of dependence. Obviously, results for 
autocorrelation control chart for simple autoregressive model (see Table 4) 
and the same chart for FGM copula (see Table 7) do not confirm this fact and 
they are differ from each other in a meaningful way. 

Naw, we compare both control charts applied for FGM copula. In order to 
do it, in case of n = 10 for Kendall chart we set k to 2. 71 and for autocorrela­
tion chart we set k to 2. 73. In case of n = 50 we set k to 2.17 for both charts. 
The results of those experiments are presented in Figure 4. For n = 10 in case 
of positive dependence we obtain !ower ARL values for autocorrelation chart 
than for Kendall chart, while in case of negative dependence the situation is 
inverse. It is difficult to specify which of these two charts is better. For n = 50 
both control charts are symmetric and corresponding ARL values are nearly 
the same. 

We have repeated the analogical research for Plackett and Frank copulas 
and we have obtained similar results. It is worth to notice that in case of these 
two copulas for extreme or high values of parameter a, ARL are the minimum 
and equal to the sample size. In case of Plackett copula for n = 10 and a ~ O 
or a > 30 ARL attains the minimal value which is close to 10, while in case 



Table 6. ARL for the Kendall control chart with k = 3 for observations described 
by FGM copula with norma! marginal distributions 

n 

o p 6 7 8 9 10 20 50 

1 0.318 128.83 297.60 470.94 371.06 389.99 191.19 112.55 
0.942 0.3 129.50 315.19 510.86 395.31 420. 79 216.42 127.04 
0.628 0.2 136.43 402.49 729.07 578.95 651.87 443.14 288.60 
0.314 0.1 145.80 490.94 1049.37 808.29 1016.84 969.05 955.37 

o o 144.74 578.02 1506.35 1009.02 1475.79 1481.33 2593.94 
-0.314 -0.1 132.16 593.57 2101.18 994.87 1637.61 950.73 962.21 
-0.628 -0.2 115.96 553.11 2469.10 809.24 1327.59 444.13 287.80 
-0.942 -0.3 91.57 459.41 2325.11 566.49 875.34 213.47 124.05 

-1 -0.318 92.87 438.73 2238.41 538.43 816.31 188.24 110.40 

Table 7. ARL for the autocorrelation control chart with k = 3 for observations 
described by FGM copula with norma! marginal distributions 

n 

o p 6 7 8 9 10 20 50 

1 0.318 1048.79 561.54 287.43 225.15 202.95 153.47 115.72 
0.942 0.3 1021.87 592.45 311.75 246.39 222.83 170.98 129.73 
0.628 0.2 813.13 794.85 472.06 397.84 373.21 348.94 303.60 
0.314 0.1 566.77 961.89 750.39 670.50 657.14 793.17 999.54 

o o 392.76 998.18 1137.59 1155.81 1143.13 1459.37 2805.56 
-0 .314 -0.1 261.16 771.92 1443.81 1706.57 1512.51 1083.89 1079.53 
-0.628 -0.2 177.08 531.78 1263.12 1661.35 1233.48 493.23 321.80 
-0.942 -0.3 124.47 344.45 842.86 1102.55 736.39 226.63 133.82 

-1 -0.318 116.06 317.42 772.82 1003.40 661. 75 198.12 117.73 
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Fig. 2. ARL comparison for the Kendall chart {black line) and autocorrelation 
chart (grey line) for FGM copula with norma! marginal distributions (a) n = 10, 
{b)n=50 



of Frank copula ARL is minimal and equal to 10 for l<>I > 13. For sample size 
n = 50 in case of Plackett copula ARL=50 for a 2' O or a > 8. In case of Frank 
copula the ARL=50 for a > 4. Analysing results presented in Figures 2-4 we 
get the conclusion that the autocorrelation control chart does not perform 
better than the Kendall chart based on a nonparametric statistic. 
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Fig. 3. ARL comparison for the Kendall chart (black line) and autocorrelation chart 
(grey line) for Plackett copula with norma! marginal distributions (a) n= 10, (b) 
n= 50 
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Fig. 4. ARL comparison for Kendall control chart (black line) and autocorrelation 
control chart (grey line) for Frank copula with norma! marginal distributions (a) 
n= 10, (b) n= 50 

It seems to be interesting to make the comparison of the Kendall and 
autocorrelations control charts in case of non-norma! distributions. To verify 
the influence of character of distribution on the performance of the consid­
ered charts we make the analogical research under assumption that marginal 
distribution function is not norma!. We consider two cases, first - we do not 
know the distribution of our data is not norma!, and second - we know the 



character of non-norma! distribution function of our data. In the last case we 
modify the width of the autocorrelation control chart and set a proper value of 
parameter k to get nearly the same ARLs for this chart and the Kendall chart 
in case of independence. The results obtained for FGM, Plackett and Frank 
copulas with exponential and uniform marginal distributions are presented in 
Figures 5-10. 
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Fig. 5. ARL comparison for Kendall control chart (black line), autocorrelation 
control chart (grey line) and modilied autocorrelation chart (grey dotted line) for 
FGM copula with exponential distributions (a) n= 10, (b) n= 50 
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Fig. 6. ARL comparison for Kendall control chart (black line), autocorrelation 
control chart (grey line) and modilied autocorrelation chart (grey dotted line) for 
Plackett copula with exponential marginal distributions (a) n= 10, (b) n= 50 

Let's assume that we do not know the type of marginal distribution and we 
use the autocorrelation chart with determined for norma! distribution value 
of k = 2. 73. Then, if the marginal distributions are really non-norma!, we see 
that ARL values are different from ARL values obtained in case of norma! 
marginal distri-butions. So, in such case we have to set a suitable value of 
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Fig. 7. ARL comparison for Kendall control chart (black line), autocorrelation 
control chart (grey line) and modified autocorrelation chart (grey dotted line) for 
Frank copula with exponential marginal distributions (a) n= IO, (b) n= 50 
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Fig. 8. ARL comparison for Kendall control chart (black line), autocorrelation 
control chart (grey line) and modified autocorrelation chart (grey dotted line) for 
FGM copula with uniform marginal distributions (a) n= IO, (b) n= 50 
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Fig. 9. ARL comparison for Kendall control chart (black line), autocorrelation 
control chart (grey line) and modified autocorrelation chart (grey dotted line) for 
Plackett copula with uniform marginal distributions (a) n= IO, (b) n= 50 
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Fig. 10. ARL comparison for Kendall control chart (black line), autocorrelation 
control chart (grey line) and modified autocorrelation chart (grey dotted line) for 
Frank copula with uniform marginal distributions (a) n= 10, {b) n= 50 

k, but for that purpose we need the information about aur distribution. For 
n = 10, in case of positive dependence the ARL values are !ower or nearly the 
same and in case of negative dependence they are greater than ARL values 
for Kendall chart. Whereas for n = 50 the Kendall control chart is not worse 
than autocorrelation control chart. In case of uni-form marginals it works 
almost like the autocorrelation chart, but in case of expo-nential marginal 
distributions it works better. 

So, naw let's assume that we know the type of aur marginal distributions. 
Then we can set a proper value of k. In aur research we set k = 2.68 and 
k = 2.85, respectively, for exponential and uniform distributions. Let's notice 
that even if we profit from this knowledge the autocorrelation chart does not 
perform better then the Kendall chart. 

The results given in Figures 5-10 show, how sensitive is the autocorrela­
tion chart to the assumption of the underlying distribution. The compared 
distributions have been chosen deliberately so different in order to magnify 
the differences. For small sample sizes n, in both cases of a heavy-tailed dis­
tribution (uniform) and a skewed distribution (exponential), the rate of false 
alarms is unacceptable high. Therefore, the autocorrelation chart should be 
specially tailored in case of different probability distribution of the plotted 
observations. This conclusion is hardly unexpected, but the observed differ­
ences in the behavior of the autocorrelation control chart in case of different 
distributions are very significant from a practical point of view. So, we should 
apply the autocorrelation chart very carefully if we do not know that aur dis­
tribution is really the norma! distribution. On the other hand, if we know the 
type of our distribution and can set a proper value of k, we do not obtain the 
control chart with better performance than Kendall control chart . 



5 Conclusions 

Mutual dependencies (correlations) between consecutive observations of pro­
cesses may influence properties of SPC procedures in a dramatic way. This 
phenomenon has attracted the attention of many researchers for the last over 
twenty years. Many new or modified SPC tools have been pro-posed for dealing 
with this problem. However, their usage requires addi-tional skills, specialized 
software and is usually much more complicated than in the case of classi­
cal tools used for mutually independent observa-tions. Thus, from a practical 
point of view, it is very important to identify situations when an additional 
treatment of data is really necessary. In other words, there is a need to have a 
sim ple SPC tool, like a Shewhart control chart, which could be used for the de­
tection of dependencies (autocorrela-tions) between observations of processes. 

In this paper we have proposed such a tool based on a nonparametric 
Kendall's tau statistic. This tool is similar to a Shewhart control chart with 
plotted values of the Kendall's tau. We compared this new tool to a known 
autocorrelation chart. The results of the comparison show that in the case 
of dependencies described by autoregressive processes with a norma! error 
component the new tool performs nearly as well as the autocorrelation chart. 
However, when the assumption of multivariate normality of consecu-tive ob­
servations is not fulfilled, the newly proposed Kendall control chart performs 
much better due to its distribution-free character. 

The Kendall chart, in its simplest "three-sigma" form, does not perform 
well for small and moderate sample sizes. It has unnecessarily high values of 
ARL in case of independence, and hence, a very low rate of false alarms. Un­
wanted consequences of this feature are the high values of ARL in case of the 
existence of weak dependencies between observations. This situation can be 
improved by changing the limits of a control chart, but such im-provements 
may not be sufficient for the effective detection of weak de-pendencies. For 
such cases large sample sizes are required, and this un-pleasant from a prac­
tical point of view situation does not depend upon a statistical tool used for 
the detection of autocorrelation. 

As it was mentioned above, it seems to be impossible to propose a very 
simple design (like e.g. using a "three-sigma" rule) of the Kendall control 
chart. Additional research is required in order to work-out guidance how to 
design an effective chart for different practical situations. Special attention 
should be paid to situations, when the type of dependence differs from a 
simple autoregressive process. There is also a need to investigate properties 
of the Kendall chart in case of shifts in a process mean value, and for other 
types of process deterioration. Preliminary investigations, not reported in this 
paper, suggest, however, that the Kendall control chart is not a good tool for 
the detection of such deteriorations. 
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