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Abstrnct: Defining a good measure of proximity or si miłarity (or remoteness or dissimilarity) be
tween objects is cruciał impo1tance in theories ofknowłedge. Usuałły each object is represented as 
a point in same coordinate space so the metric distance between points reflects similarities be
tween the respective objects. In generał, the space is assumed to be Euclidean. A metric distance is 
a function which assigns a nonnegative number, called their distance to every pair of objects. The 
assumption of symmetry underłies essentially all theoreticał treatments of simiłarity. Tversky 
(1977) provides empiricał evidence of asymmetric simiłarities and argues thai s imiłarity shoułd not 
be treated as a symmetric rełation. Tversky considered objects as sets of features instead of geo
metrie points in a metric space. In this paper we propose the measure of remoteness between sets 
of nominał vałues based on Tversky's simiłarity measures. lnstead ofconsidering distance between 
two sets, we introduce a definition of measure of perturbation of one set by another set, the con
sideration is based on set-theoretic operations. The measure describes changes of the first set after 
adding the second set. The measure ofsets' perturbation returns a vałue from [O, I] , where I is in
terpreted as highest łeveł of pe1turbation, whiłe O denotes the łowest łeveł of perturbation. li is in
teresting that this measure is not symmetric. 

Keywords: Sets of nominał va łues, Tversky index, Symbol ie data anałysis, Measure of proximity. 

1. Introduction 

Similarity plays a fundamental role in theories of knowledge and behavior, learning and perception. 
Defining a good distance measure between objects is of crucial importance, for example, in many clas
sification and grouping algorithms. From the mathematical point of view, distance is defined as 
a quantitative degree of how far apa1t two objects are. Synonyms for distance include dissimilarity. 
They are used to express the degree in which two objects are found to be similar, usually on a [O, ł] 

sca le. Usually each object is represented as a point in some coordinate space so the metric distance be
tween points reflects similarities between the respective objects. In generał, the space is assumed to be 
Euclidean. A metric distance is a function JL(.) which assigns to every pair of objects a nonnegative 

number, called their distance, and satisfies the following axioms: 

Minimality: p(A,B) ~ p(A,A) = O 

Symmetry: µ(A,B) = µ(B,A) 

The triangle inequality: p(A,B)+ p(B,C) ~ µ(A,C). 

( ł) 

Whiłe a lot ofwork has been perfonned on continuous attributes, nominał attributes are more diffi
cult to handle. Nominał data contains data with nominał attributes whose values have neither a natura! 
ordering nor an inherent order. The variables of nominał data are measured by nominał scales. 
An attribute is nominał if it can take one of a finite number of possible values and, unlike ordinal at
tributes; these values bear no internal structure. An example is the attribute taste, which may take the 
value of salty, sweet, som-, bitter or tasteless. When a nominał attribute can only take one of two pos
s ible values, it is usually called binary or dichotomous. 

When the attributes are nominał , definitions of the similarity (or dissimilarity) measures become 
less trivial. Finding similarities between nominał objects by using common distance measures, which 
are used for processing numerical data, is not applicable here. When nominał variables are employed, 
the comparison of one object with another can be considered in terms whether the objects have the 
same or different the values. In this case two main approaches may be used: 



• Simple matching. For two possible values the dissimilarity is defined as zero when there are iden
tical and one otherwise. This compares values and calculates the ratio of the number ofunmatched 
and the total number of attributes. Obviously, this approach disregards the similarity embedded 
between nominał values. 

• Einary encoding. Creating a binary attribute for each state of each nominał attribute and compu
ting their similarity or dissimilarity. Some sort of conventional matching methods can be em
ployed to compare the newly generated binary attributes, e.g. the simple matching coefficient, Jac
card coefficient. However, the transformed bi nary attributes do not preserve semantics of the orig
inal attribute. The feature dimensionality may thus increase dramatically and the curse of dimen
sionality will become an important issue. 

Note that in the two approaches described above, nominał attributes handled by binary encoding 
will have greater influence compared to those handled by simple matching. 

One of the oldest and best known occurrence measures is the Jaccard measure, also known as the 
Coefficient of Community (Jaccard I 90 I; Shi I 993). The measure has been of extensive use, largely 
due to its simplicity and intuitiveness (Shi 1993; Magurran 2004). A similar measure also in common 
use is the Sorenson measure (also known as Dice, Czekanowski or Coincidence Index), which places 
more emphasis on the shared species present rather than the unshared, as can be seen in the difference 
in values for the example data set. The calculation is relatively simple and intuitive, and both indices 
have been shown to provide useful results (Wo Ida 1981 ; Hubalek I 982). Two other sim i lar indices 
that are occasionally used are the Ochiai and Kulczynski measures. While Huba lek ( 1982) lists the 
Ochiai and Kulczynski indices as providing good results, the Jaccard or Sorenson are typically more 
recommended and they are more commonly used. A very popular approach for distance of nominał 
attributes is the Value Difference Metric (VDM), which takes into account the probability of a given 
value in classes. Approach was introduced by Stanfill and Waltz ( 1986) to provide an appropriate dis
tance function for nominał attributes. Using the VDM the distance measure between two values is 
considered to be closer if they have more similar classifications (i.e., more similar correlations with 
the output classes), regardless ofwhat order the values may be given in . For example, if an attribute 
color has three values "red", "green" and "blue", and the objective is to identify whether or not an ob
ject is an apple, "red" and "green" would be considered closer than "red" and "blue" because the for
mer two both have sim i lar correlations with the output class apple. One problem is that they do not de
fine what should be done when a value appears in a new input vector that never appeared in the train
ing set. Note that VDM is actually not a metric as the weighting factor is not symmetric. Moreover, 
another problem is that it implicitly assumes attribute independence. 

The assumption of symmetry underlies essentially the majority theoretical treatments of similarity. 
Tversky ( 1977) considered objects represented by a sets of features or attributes, instead of geometrie 
points in a metric space. He provides empirical evidence of asymmetric similarities and argues that 
similarity should not be treated as a symmetric relation. There is no uniform concept of similarity thai 
is applicable to all different experimental procedures used to comparison of objects. So, his model 
does not define a single similarity scale, but rather a family of scales characterized by different values 
of paramerers. 

For example, a toy train is quite similar to a real train, because most features of the toy train are in
cluded in the real train. On the other hand, a real train is not as similar to a toy train, because many of 
the features of a real tra in are not included in the toy tra in. 

Similarity of geometrie figures can also be asymmetrical. For each pair of figures, two statements: 
"the first figure is similar to the second figure" or "the second figure is sim i lar to the first figure" must 
not be equally true. The one figure may be more similar to other figure than vice versa. For instance, 
an ellipse is more similar to a circle than the circle to the ellipse. The variant is more similar to the 
prototype than vice versa. 

The ser-theoretical representation of qualitative and quantitative dimensions has been investigated 
by Restle (1959). 
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In this paper we propose the measure of remoteness between sets of nominał values based on set
theoretic operations. lnstead of considering distance between two sets, we introduce a definition of 
measure of perturbation of one set by another set, which corresponds to Tversky's similarity 
measures . The measure describes changes of the first set after adding the second set. The measure 
of sets' pe1turbation returns a value from [O, I], where 1 is interpreted as highest level of perturbation, 
while O denotes the iowest ievei of pe1turbation. lt is interesting thai this measure is not symmetric, 
it means thai a vaiue of the measure of pe1turbation of the first set by the second set can be different 
then a value of the measure of pe1turbation of the second set by the first set. There are pa1ticuiar cases 
when the pe1turbation measures are symmetric, therefore it shouid not be considered as the distance 
between the sets . 

N ext, we define a description of a group of objects as a K-tuple of sets (an ordered collection of 
sets). lnstead of considering distance between two groups, we introduced a definition of measure of 
perturbation of one group by another group. The idea of the measure of group's perturbation is based 
on a reiation between two attributes' vaiues sets, where each set beiongs to different group's pair. This 
concept is extended to all sets within the considered groups description; and as a result, we define 
a measure ofpe1turbation one group by another. The measure describes changes description of the first 
group after adding the second group. The measure of groups' pe1turbation returns a value from [O, I], 
where I is interpreted as highest levei of perturbation, while O denotes the iowest levei of pe1turbation. 
It is interesting that this measure is not symmetric, it means that a vaiue of the measure ofpe1turbation 
of the first group by the second group can be different then a value of the measure of pe1turbation of 
the second group by the first group. There are pa1ticular cases in where the perturbation measure 
is symmetric, therefore it should not be considered as the distance between the groups. 

2. Matching of sets - Tversky approach 

Assume thai we have a collection ofobjects {o1,o2 ,o3, ... } as the set offeatures {A,B,C, ... } asso

ciated with them, respectively. The observed similarity of object o1 to object o2 , denoted 

by S(o,, o2 ), shouid be determined using sets of features of these objects, i.e. , sets A and B, denoted 

by Tversky(A,B). This simiiarity is expressed as a function of their common and distinctive features. 
The observed similarity of two sets is expressed as a same reai-vaiue function F(.) of three argu

ments: A n B - the features shared by first and second set; A\ B - the features of first set that are not 
shared by second set; B \ A - the features of second set that are not shared by first set, 
i.e., S(o1,o1 )=F(AnB, A\B, B\A). 

' This function should satisfy assumption of monotonicity: S(o1 ,o2 );;: S(o1 ,o3 ) , whenever 

A n B :::, A n C, A \ B c A\ C and B \ A c C \ A . 
Any function F(.) satisfying assumption of monotonicity is called a matchingfunction. lt measures 

the degree to which two objects (viewed as sets of features) match each other. The matching between 
objects is expressed as a linear combination of the measures of the common and the distinctive fea
tures, i.e., as a weighted difference of the measures for their common and distinctive features. The 
matching value is normaiized to a vaiue range of O and I. The formula of the ratio model of similarity 
used for this purpose is: 

S(o o ) - Tvers AB = f(AnB) 
1' 2 ky( ' ) f(A nB)+ a· f(A \ B)+ /3· f(B\A) 

(2) 

for same parameters a,/3;;: O. 

The matching between objects o1 and o2 is interpreted as the degree to which object o1 is sim ilar 

to object o2 , then o, is the subject of the campari son and o2 is the referent. 



The function f(.) satisfies feature additivity, i.e., is a function satisfying /(A u B) =/(A)+ f(B) 
for disjoint sets A and B. Note that the model does not define a single sim i lari ty scale, but rather a fam
iły ofscales characterized by different values ofparameters a and /3. 

Due to the inherent asymmetry, the Tversky index does not meet the criteria for a similarity metric. 
Specifying the similarity of sets is based on a function called the measure of sets. For finite sets are 
measured by the number of elements, i.e., the cardinality of a set. The formula u sed for this purpose is: 

IAnBf 
Tversky(A B) = ~--~-~---

' [AnBf+a-fA\B[+/3·[B\Af 
(3) 

for some parameters a, /3 ~ O . 

lf we consider o1 to be the prototype and o2 to be the variant, then a corresponds to the weight of 

the prototype and /3 corresponds to the weight of the variant. 

Setting the weighting of prototype features to 100% (a= 1) and variant features to 0% (/J = O) 
means that only the prototype features are important. In this case, a Tversky similarity value of I .O 
means that all prototype features are represented in the variant, O.O that none are. 

Tversky measures where the two weightings add up to I 00% (I.O) are of special interest. 

Tt has been generally assumed thatjudgments ofsimilarity and difference are complementaiy. 

Note that the set in Tversky's model is a crisp set while Santini et al. (1996) extend it to cope with 
fuzzy sets. 

The ratio model generalizes severa! set-theoretical models of similarity proposed in the literature. 
The Tversky index can be seen as a generał ization of Dice's coefficient of similarity ( a = /3 = 112) 

and Tanimoto coefficient (a= /3= 1 ). The Tanimoto and Jaccard indexes are the same. Various forms 

of functions described as Tanimoto Similarity and Tanimoto Distance occur in the literature. Most of 
these are synonyms of Jaccard Similarity and Jaccard Distance, but some are mathematically different. 
The similarity ratio is equivalent to Jaccard similarity, but the distance function is not the same as Jac
card Distance. 

Let us consider the following measures. 

Jaccard's coefficient (measure similarity) and Jaccard's distance (measure dissimilarity) are meas
urement of asymmetric information on binary (and non-bina1y) variables. The Jaccard coefficient is 

determined using the modified version of Tversky's index for a= /3 = I • The Jaccard coefficient 

measures similarity between sample sets, and is defined as the size of the intersection divided by the 
size of the union of the sample sets: 

[An BI [An BI 
J(A,B) = fAuBf = fAnBf +[A IB[ +fBIAf (4) 

The Jaccard's index is zero ifthe two sets are disjoint, i.e., they have no common members, and is 
one ifthey are identical. The Jaccard's distance, which measures dissimilarity between sample sets, is 
complementa1y to the Jaccard's coefficient and is obtained by subtracting the Jaccard' s coefficient 
from I . 

Extended Jaccard's coefficient can be shown bellow 

, [AnBf +IA' nB'I 
J(A,B)=--~-----, 

fAuBf+IA' nB'I 

[AnBf +IAc nB'I 
fvl 

(5) 
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where A",B" are the complement of set A and set B. lmpo11ance of J is as follows: the similari-

ty sets affect not only the elements belonging to both of these sets, but also the elements while not be
longing to these sets. In other words, the similarity of objects affect not only the common prope11y, but 
also the common sho11comings. 

Dice 's similarity coefjicient can be shown below. Dice's index is determined using the modified 
version of Tversky's index for a= /3 = I /2. This coefficient normalizes intersection A n B with the 

average of its constituents. 

. 2·[AnB[ 2[AnB[ 
D,ce(A,B) = [A[+[B[ = ([AnB[ +[A I B[) + ([A nB[ +[BIA[) 

[AnB[ 
I I 

[A n B[ + -[A\ B[ +-[B \ A[ 
2 2 

(6) 

The function ranges between zero and one, like Jaccard 's. Unlike Jaccard's, the corresponding dif
ference function 1-Dice(A,B) is not a proper distance metric as it does not possess the prope11y 

of triangle inequaiity. In facts J = __!!__ and D = 3.:..!_ for any input, so they are monotonie in one 
2-D l+J 

another. 

Over/ap coefjicient can be described below. This coefficient nonnalizes the intersection A n B 
with the minimum cardinality of its arguments. 

IAnB[ 
Ovl(A,B)=~-~. 

min{[A[,[B[} 

The next section develops an approach to pe1turbation sets, based on feature matching. 

3. Measure of perturbation of sets 

Let us consider a finite set V of nominał values. We consider the nominał set as typical set 

V={vi, v 2 , ... ,v 1,), l';+, *";, \iiE{l,2, ... ,L-1)} 

(7) 

(8) 

If consecutive vaiues are labeled by letters of the alphabet, we can describe an exemplary set as 
V= {a,b,c,d,e,f,g) ; or when are labeled by the words, we can describe exempla1y set as 

V= {"salty", "sweet", "sour", "bitter", "tasteless"}. 

Let us consider a finite set V which is called alphabet, V= {a,b,c,d,e,f,g). Exemplaty subsets, 

A,B,C c;;; V, can be described in the following manner: A= {b,c), B = {a,c,e,f) and C = {a,b,d). 
The concept of specificity provides a measure of the amount of information contained in a subset. 

Specificity measures for a fuzzy set were introduced by Yager ( 1982, 1990). The specificity is one 
(maximum value) only for crisp sets with just one element (singletons). The specificity measure of a 
set decreases when the number of its elements increases. Here, we propose the following way to 
measure a level of set's specificity. 

Assume that we have the non-empty set of nominał values A, Ac;;; V, i.e., IS [A[ SL . Measure 

of quasi specificity of the set A, normalized to the range 0-1, is defined in the following manner 

jVIAj 
MS(A) = jvj-1 . (9) 



Note, that measure of quasi specificity of set A is one (maximum value) only for set with just one 
element. Such sets may of course be much . The quasi specificity measure decreases when the number 
of its elements increases. Note that set A cannot be empty, by assumption. It is easy to notice that 
measure of quasi specificity of set satisfies the condition O~ MS(A) ~ 1. Note, that 

!) MS(A) = 1 ifand only if jAj = I , 

2) if A,;; B, then MS(A) ~ MS(B). 

A few measures of quasi specificity of the exemplary set A, A,;; {a,b,c}, are shown below. 

MS( {a})=!, MS( {a,b}) = 1/2, MS( {a,b,c}) = O. 

(IO) 

(! I) 

The perturbation result of set B by set A, denoted by (A HB), is a set A \ B . Attaching the first 

set to the second set can be considered that the second set is pe11urbed by the first set, in other words 
the set A pe11urbs the set B with some degree. 

Exemplary set A={e} pe11urbs the set B={a,b,c,d,e} with the zero degree because a following 

condition is satisfied: (A HB) = A\ B = 0. On the other hand , set B = {a,b,c,d,e} pe11urbs the set 

A ={e} with the greater than zero degree because (BH A) = B \A= {a,b,c,d}. 

Here we propose the following way to measure a level of set's pe11urbation. 

Definition 1. The measure of perturbation of set B by set A is defined in the following man ner: 

a·IA \ BI 
Per(AHB·a /J) =~-~~-'----c-''----~~ 

'' IAnBl+a•IA\Bl+.B·IB\AI 
( 12) 

for same parameters a, ,8 E (O,!] . 

ąi4 AnB 
B\A J 

Fig. I. A graphical illustration of the relation between sets 

and the extended measure of perturbation of set B by set A can be written in the following man ner 

0 a-lA\BI 
Per(A H B;a,/J) = ---~--.,-'--~-----

IA n BI+ IA' nB'l+a ·IA \BI+ .B·IB \Al 
( I 3) 

for same parameters a,,B E (O,!], where A' ,B' are the comp/ement of set A,B in the set V, Fig. 2. 

q:J~A_n_B ___ s_,A_~J 

V 

Fig. 2. A graphical illustration of the relation between sets 
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Let us assume that a, /3 = I . The measure of petiurbation of set B by set A, denoted by 

Per(A HB; I, I), is denoted for simplicity form by Per(A HB). 

The measure of pe,turbation of set B by set A, for a, /3 = I , is defined in the following manner: 

JA\BJ 
Per(A HB) = ~--,--'~-'c~-~ 

JA n BJ+ JA\ BJ+ JE\ AJ 
(14) 

and the extended measure of pe1turbation of set B by set A can be written in the following man ner 

. ~\~ 
Per(A HB)=----~-~-~-~ 

JAnBJ+JA\BJ+JB\AJ+IA' nB'I ( I 5) 

where A' ,B" are the complement of setA,B in the set V. 

Note that measure of pe1turbation of sets is zero (minimum value) only for containing sets; is one 
(maximum value) for set and empty subset. For disjoint subsets measure ofpetturbation are ranged be
tween O and I . 

We can prove that a measure of the pe1turbation of set B by set A is equal zero if and only if the 
set A is a subset of the set B, as shown in the Corollary I. 

Corollary 1. Per(A HB)= O if and only if A<;;; B 

Proof. 
I) We begin by the implication: Per(A HB)= O • A<;;; B. 

We assume that Per(A HB)= O. By Definition, function Per(A HB) is non negative, and reaches 

a minimum when there is a condition JA\ BJ = O. lf JA\ BJ = O then condition A<;;; B is satisfied. 

2) Consider now the impl ication: A <;;; B • Per(A HB) = O. 

Let us assume that A <;;; B . Thus, A\ B =0, and JA\ BJ= O . Thus, we obtain Per(A H B) =O. 
The equality Per(A HB)= O is always verified when A<;;; B. 

Additionally we can prove that a measure of the set's pe1turbation is always positive and less 
than I, as shown in the Corollary 2. 

Corollary 2. The measure of perturbation of set B by set A satisfies !he following inequalily 
0 :0: Per(AHB) :O:!. 

Proof. 
I) We first prove the first inequality Per(A HB) ;:: O. 

lt should be noticed that the inequality JA\ BJ ;:: O is satisfied. We thus obtain Per(A HB) ;:: O. 
2) Let us prove now the second inequality, Per(A H B) :,; I . 

We consider two sets A,B <;;; V lt should be noticed that the inequalities 

JA\ BJ+ JE\ AJ+ JA n BJ= JA u BJ is satisfied, so JA\ BJ:,; JA u BJ is satisfied. We obtain the following 

inequality 
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Corollary 3. The measure of perturbation of sets satisfies the following properties: 

Per(A HB) 2 Per(B HA) whenever the condition IA \ BI 2 IB \ A I is satisfied. The direction 

of asymmetry is determined by the relative cardinality of sets. 
Proof. 
Suppose that condition IA \ BI 2 IBI A I is satisfied. By Definition I we obtain the following inequal ity 

IAIBI IBIAI 
Per(AHB) =~-.,--'-o-~~~>~-~-~-- Per(BHA) 

IAnBl+IAIBl+IBIAI IAnBl+IA\Bl+IB\AI · 

Corollary 4. The measure of perturbation of sets satisfies the following properties: 
Per(A HB) 2 Per(A H C) whenever the following conditions A n B ~An C , A\ C ~ A\ B and 

B \A~ C \ A are satisfied. 

Proof. 
Suppose that conditions A n B ~An C , A\ C ~ A\ B and B \A~ C \ A are satisfied. 

By Definition 1 we obtain the following inequality 

IAIBI IAICI 
Per(A HB) = --~-~--- > --~-~--- Per(A H C) 

IAnBl+IAIBl+IBIAI - IAncj+IAlcj+IC\AI 

Corollary 5. The measure of perturbation of se/s salisfies the following properties: 
Per(A HB)+ Per(B H C) 2 Per(A H C) whenever the conditions A n B ~An C , A\ C ~ A\ B 

and B \A~ C \ A are satisfied. 

Proof. 
Suppose that conditions A n B ~ A nC , A\ C ~ A\ B and B \A~ C \ A are satisfied. Due to Cor

ollary 4 it can be noticed that Per(A HB) 2 Per(A H C). By Corollary 2 is satisfied inequality 

Per(B H C) 2 O, so we obtain the following inequality: Per(A HB)+ Per(B H C) 2 Per(A H C). 

C l 
Fig. 3. A graphical illustration of the inequality Per(A HB)+ Per(BH C) 2 Per(A H C) 

We can prove that a sum of the measures of the set's pe1turbation and index Tversky(A,B) for 

a = /3 = 1 always constitute one, as shown in the Coro li ary 6. 

Corollary 6. Measure of perlltrbation of set A and se/ B satisfies the following condition. 

Per(AHB) + Per(BHA) + Tversky(A,B;l,I) = I 
Per(A HB) + Per(B HA) + J(A,B) = I (I 6) 

The Tversky index, denoted by Tversky(A,B; I, I), with a= /3 = I becomes the Jaccard index, de

noted by J(A,B). 

Proof. By Definition I the left side of equations can be written as 

~\~ ~\~ Per(A HB) + Per(B H A) ~-~~--'7--,---, + --~-~---
IA n BI+ IA \ BI +IB I Al IA n BI+ IB\ Al +IA I BI 



I> 

IA \BI+ IB \ Al IA u BI-IA n BJ IA n BI+ JA\ BI+ IB \ AI-IA n BI 
IAnBl+IA\Bl+IB\AJ IAnBl+IA\BJ+IB\AI = IAnBl+IA\Bl+IB\AI = 

IAnBl+IA\Bl+IB\AI IAnBI IAnBI 
-~~-'-,--------'-~~ I ~~~~-~ 1-J(AB) 

IAnBJ+JA\BJ+JB\AJ JAnBJ+JA\BJ+JB\AJ JA nBJ+ JA \ BJ+JE\AJ ' 

For disjoint sets A and E, Tversky index is equals O, so dissimilarity of disjoint sets is I . 

Corollary 7. The sum of the measures of perturbation of disjoint sets A and B satisfies the following 
equality 

Per(A HB)+ Per(B HA) = I. (17) 

Proof. 
For disjoint sets A and E satisfies the following equality: JA n BJ= O and JE\AJ = B, JA\BJ =A. The 

left side of equation can be written as 

JA\BJ JE\AJ Per(AHB) + Per(BHA) -~~-~--+--~-~--
JA n BJ+ JA\ BJ+ JE\ AJ JA n BJ+ JE\ AJ+ JA \ BI 

= _M_ + J!L JAJ+ JBI = I 

IAJ + JEJ JEJ+ JAJ JAJ+ JEJ . 

Corollary 8. The sum of the measures ofperturbation ofsets A and B satisfies thefollowing equa!ity 

Per(A HB)+ Per(E HA) :,; I (18) 

Proof. 
By Definition I the left side of equation can be written as 

JA\BJ JE\AJ 
Per(AHB)+Per(BHA) = --~-~--+--~~---

JA n BJ+ JA \BJ+ JB \ AJ JA n BJ+ JB \ AJ+ JA \ BJ 
JA\BJ+JB\AI JAuBJ-JBnAJ < JAuEJ = 1 

JAnEj+JA\BJ+JB\AJ jAnBJ+JA\BJ+JE\AJ - JAnBJ+JA\Bj+JE\AJ 

Corollary 9. The sum of the extended measures ofperturbation ofsets A and B satisfies thefollowing 
equality 

A A A 

Per(AHB)+Per(BHA) = I- J(A,B) 

Proof. 
By Definition I the left side of equations can be written as 

A A 

Per(A HE)+ Per(E HA)= 

----~JA_\_B~J---+---~JB_\_A~J--~ 
- IA n BI +IA \BI+ IB \ Al +IA' nB'I IAnBI +JA\ BJ+JE\ AJ+IE' n A'I 

JA\ BJ +JB \ AJ +IA' nB'I-IA' n B'I JA u BJ-JE n Al+ IA' nB'I-IA' nB'I 
= jA n BJ+ jA \ BJ+ JB \ Aj +IA' nB'I = JA n BJ +JA\ BJ+JB \AJ+ JA' nB'I 

(19) 
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_ IA n BI+ IA \BI+ IB \Al+ !Ac n B'HA' n Bcl-lB n Al 
- IAnBl+!AIBl+!B\AHA' nB'I 

IAnBHA' nB'I IAnBHA' nB'I = I - ------~--~-~ I - ----,-~-~ 
IAnBl+!AIBl+!BIAHA' nB'I IVI 

A 

I - J(A,B) 

Corollary 10. Measure of perturbation of set A and set B satisfies the fo/lowing condition. 

Per(A HB; a,(J) + Per(BH A; /J,a) = I - Tversky(A,B; a,/3). 

for same parameters a, /3 E (O, I]. 
Proof. 
By Definition I the left side of equation can be written as 

a-lAIBI /3-IBIAI ----~-~--- + ,----,----,-'----c~.......,.-......, 

IA n BI+ a · IA \ BI+ /3 · IB \ Al IA n BI+ a · IA \BI+ /3 · IB \ Al 
a ·IA IBI+ /3-IBIAI a-lAIBI+ /3-IBIAl+IAnBI-IAnBI 

IAnBl+a·IAIBI+ /3-IBIAI IAnBl+a •IAIBI+ /J·IBIAI 
=I - IAnBI I T ky(A B /3) - vers , ; a, 

IAnBl+a·IAIBI+ /3-IBIAI 

4. Measure of perturbation of groups of object 

(20) 

At the beginning we will introduce severa! descriptions. Here, we consider a finite set of objects 
U= {e,,}, n= l,2, . .. ,N. The objects are described in the form of conditions associated with the finite 

set of K attributes A= {a,. ... ,aK}. The set V„1 = {vj.t• vj_2, ... , vj_,) represents the domain of the attrib

ute aj EA, for j = l, ... ,K, where Lj denotes the number of nominał values of the j-th attribute. 

Thereby, each object e„ EU is represented by K singletons (i.e., K ordered values) as follows 

(2 I) 

where vj,i(J,,,> E V,,1 and j =I, ... , K. Equ. (21) can be treated as a generalization of norma! representa

tion ofobject described by K attributes. The index t(j, e,,), j E {I, 2, ... , K} and n E {I, 2, ... , N} , denotes 

thai the attribute aj takes the value vj.,(J.,.> for the object e,,. 

At the beginning we will use a term group of objects. Namely, every non empty subset of a finite 
set of objects U is called a group. Each group g, g s:;; U , can be represented by a description of group 

as an ordered collection of K sets ofvalues of the attributes describing objects, i.e., 

Gg =< Al,1(1,g)' A2,f(2,g)' ... ,AK,l(K,g) >, (22) 

where A1,,u.,> s:;; V,,1 , fAj.,u .• Ji>: I for j E {l, ... ,K}. 

Meai1ing of (22) can be illustrated by a simple example. Let us consider seven objects 
U= {e,,e,,e,,e,,e5 ,e6 ,e7 } described by two symbolic attributes {a„a2 }, and each attribute has the 

following domains V,,, = {a,b,c,d,e} and V., = {f,g,h} . Exemplary, the group g, s:;; U, where 

g, = {e„e2 ,e3 ,e,}, can be represented (described) by an ordered collection of two sets of values of 

IO 



attributes a, and a,, in the following way Gg, =<A1,1(1,g,)' A,.,<,.•,>>=< {a,b,c}, {g,h} >; white the 

other group g, <;;;: U, where g, = {e5 ,e6 ,e7 } can be represented as follows 

Gg, =< Au<,.,,)' A,.,<i.,,> > =< {c,d,e}, {f} >, see Fig. 4. The objects are represented according to 

eąuation (18) as follows: e, =< {a},{h} >, e2 =< {a},{g} >, e, = < {b},{g) >, e4 =< {c),{g) >, 

e,=<{c},{f}>, e6 =<{d),{f)>, and e7 =<{e},{f)>. 

h e, 
g e, e, e, 

f e, e, e, 

a b C d e 

Fig.4. Thegroups g, ={e1,e2 ,e3 ,e4 ) and g 2 ={e5 ,e6 ,e7 ) representedby G,, and G,,,respectively. 

Let us consider two non-empty groups g, <;;;:U, g 2 <;;;: U and eve1y group can be represented by an 

ordered collection of K sets of attributes va lues describing objects ( 19), i.e., G,, and G,, . Now, let us 

consider an attribute aj and the subsets of attributes values for this attribute in both groups of objects: 

Aj.,(J.g,> and Aj.,u .• ,>' where Aj,i(.i.g,) <;;;; v01 , A_;,,u .• ,> <;;;; v01 , for jA1.,u.,,,I ~ I, IA.1.,u .• ,, I ~ I. The index 

l(j,g), where g E {g"g2}, denotes that the attribute aj takes the values Aj,,u .• i for objects which 

belong to group g . 

The idea of perturbation of one set by another is as follows, if we attach the first set to the second 

set, then we say that the second set is perturbed by the first set - in other words the set A1.,<u,> per-

turbs the set A.1.,u .• ,>. Proposed in the Definition I the extended measure of pe,turbation one non

empty set A_;,,u.g,J by another non-empty set Aj,,(J.,,i (normalized to the range 0-1), concerns a sepa

rate attribute a1 , j = l, ... ,K, can be written as 

A 

Per ( An<J,g,) H A1,,u,g,J) = 

= jA1„u .• ,i n A_;,,u .• ,,ł + jA1„u .• ,> \ A1.,u,,,I + IA.1„u .• ,> \ A1,,<1,g,>I + IA1,,u .• ,," n A1„u .• ,,"1 

IAj,l(j,g,) \ Aj,l<J,g, )I 

1v"}1 

(23) 

Notice that such measure of pe,turbation of sets is zero (minimum value) only ifthe first set consti
tutes a subset of the second set. For disjoint subsets the measure of peiturbation is ranged between O 
and I. 

Now, let us consider two non-empty groups of objects g, <;;;:U, g, <;;;; U and each group can be 

represented by an ordered collection of sets of values of the attributes describing objects, i.e., 

G,, and G,,. 

Now we will introduce another definition ofmeasure ofpe1turbation for two groups: 

li 



A 

Definition 2. The measure of per/urbation of Gg, by G"', denoted Per ( Gg, H Gg, ), is dejined 

in lhefo/lowing 111a1111er: 

/\ } K /\ 

Per ( Gg, H G"') = -K 'I,Per(A1„IJ,g,> H A1 ,,1J,g,>). 
/=1 

Equ. (24) according to the formula (20) can be rewritten as follows 

(24) 

(25) 

The measure of perturbation of groups is assumed to return a value from [O, I], and value I 
is interpreted as highest level of pe1turbation, while value O is the lowest level of perturbation. lt is the 
most interesting thai this measure is in generał asymmetrical, and therefore cannot be considered as 
a distance between two groups. 

Now we will consider the dominance of groups which can be detennined on the ground of the set 
theory. We say, thai the group g,, described by G,,, domina/es the group g 2 , described by Gg,, if 

the following clauses: A1.,u.g,> -;;;;iA1.,u.g,>, VJ,J= l, ... ,K, are satisfied (denoted by G"' ::: G"' ). 

lt should be noticed thai dominance is a transitive relation, and the following conditions are satisfied: 

if G"' :::G"' and G"' :::G"' then G"' :::a.,. 

For instance, an exemplary group Gg, =< {a,b,c}, {b}, {b,c} > dominates group 

Gg, =< {b,c} ), {b }, {c} > and does not dominates group described by G"' =< {b,c), {a}, {c} >. 

Measure of perturbation of G,, by G,, is zero if and only if G,, dominates G,,, which can be stat

ed as a following corollary. 

Corollary 11. Per ( Gg, H Gg, ) = O if and 011/y if Gg, l:: G"' 

Additionally, we can prove that a measure of the group's pe1turbation is always positive and less 
than I, as is stated in the Corollary 12. 

Corollary 12. Measure ofperturbation of Gg, by Gg, salisfies thefollowing inequa/ity 
A 

0$ Per (Gg, H Gg,) $ ). (26) 

Now lei us consider a pair of non-empty groups g, and g 2 described in the following way: 

Gg, = < A1,1(l,g1)' ... ,AK,t(K,g,) > ' and Ggl ;:::: < A1,1(l,g2)' ... ,AK,1(K,g1) > ' for A j ,l(J,1:1>'A},f(J,K?) ~ v(/ j ' 

j E (1,2, ... ,K}. The group g1 contains the objects {e,,: n EJ., c;;; {l, ... ,N}}, and group g2 contains 

the objects {e,,: 11 E J g, c;;; {l, ... ,N}}, where J., n Jg, = 0. 

The join between these groups is described as follows: 

(27) 

This way a new group g3 , Gg, := Gg, EB Gg,, contains the following objects {e,,: n EJ,, v J g, }. 
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The measure of groups' pe1iurbation and the join between groups can be applied for clustering 
problem (Krawczak and Szkatuła, 20 l 3a,b, 2014). 

5. Conclusions 

In this paper we propose the measure of remoteness between sets of nominał values. The concep
tion is based on set-theoretic operations. Instead of considering distance between two sets, A and B, 
we introduced an idea of perturbation one set by another, and next we define a measure of perturba
tion of one set by another set. 

In result we obtain an extended idea of similarities of two sets, namely our new eąuations 

Per(AHB; a,/J)+Per(BHA; f],a) + Tversky(A,B;a,/J) = l. 

says that pe11urbation of first set by second set and pe11urbation of second set by first one and the 
Tversky' s measure of sets similarity for a,/3 E (O, I] always give the number one. In other words, the 

pe1iurbation of first set by second set and pe11urbation of second set by first one describe dissimilarity 
of two sets in Tversky's sense. 
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