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Pricing forward contracts 
on the Polish Power Exchange 

Michal Pawlowski, Piotr Nowak 

Abstract 

The aim of this paper is to demonstrate a model of the Polish Power Exchange (POLPX) 
energy spot prices. The model is a result of a profound analysis dedicated to the Polish 
market's characteristics. 

The proposed dynamics of the spot prices is driven by a mean-reverting jump-diffusion 
stochastic process with mixed-exponentially distributed jumps. The suggested approach 
contains several tailor-made ideas which have not been considered in the literature yet. 

In the calibration of the model to the forward curve the exact, analytical formula for 
a forward price is derived and the notions of the market price of jump and diffusion risks are 
deployed. As a result, practitioners may avoid approximation or simulation methods while 
valuing over-the-counter forward contracts. 

1 Introduction 

The liberalization of the Polish energy market was a consequence of an implementation of the 
Directive 96/92/EC by the European Union, concerning common rules for the internal market 
in electricity. On this basis, an act on energy law was legislated in April 1997. The basic 
principles guiding the reforms were to separate electricity from its transmission services and 
to treat electric energy not like a common good, but as a commodity which may be traded 
in a similar way to equities or currency. To create and administer a market for: electricity 
generators, companies involved in energy trading, energy suppliers and industry clients, which 
could face up to all privatization programmes, the POLPX was established (started to operate 
in December 1999). 

The spot prices time series on the POLPX exhibits all the distinctive ( compared to other 
purpose markets prices trajectories, for example share markets) attributes: daily, weekly, yearly 
seasonality, mean-reversion to the marginal cost of production level and sudden spikes (negative 
or positive jumps of prices with almost immediate returns to the seasonal level) caused e.g. by 
a failure of a transmission network, outage of power plants or a sudden decrease (or increase) in 
temperature, in conjunction with inelasticity of demand and supply. In the context of pricing 
derivatives, there is no possibility to build a replicating strategy for any payoff - storage of the 
underlying is infeasible on a large scale, production and consumption have to be balanced all 
the time. 

In the paper the stochastic process S of electrical energy spot prices on the Warsaw exchange 
is proposed. The aforementioned unique attributes of the electricity spot prices, which are 
typical also for the POLPX, are taken into account. Simultaneously, the possibility of pricing 
forward contracts with the underlying asset is taken into consideration. 

The contribution of the paper to the theory of one-factor electricity spot prices models is 
manifold: 

• we propose to model jump size by the mixed-exponential distribution with the separated 
from zero support (Section 4); 

• each holiday ( resulting in a "deterministic downward spike" in price) is treated separately 
as a part of the seasonality (Subsection 6.1); 



• the procedure of spikes filtering is aimed at maximizing the p-value of the deseasonalised, 
and with deleted jumps, log-returns (Section 7); 

• for the derived analytical formula for the forward curve, the mathematically elegant 
method of the calibration of the model to the quoted forward contracts, deploying the 
notions of the market prices of diffusion and jump risks, is introduced (Section 10). 

In 1973 Fischer Black and Myron Scholes obtained the European option pricing formula, 
applying a geometric Brownian motion to model the dynamics of the underlying asset. An 
analytically closed form of the arbitrage-free option price is one of the main advantages of the 
Black-Scholes model. However, it is widely known that the Black-Scholes approach suffers from 
two main drawbacks. Firstly, contrary to the theoretical assumptions, distribution of the log­
returns of the underlying process S in the real market is leptokurtic and skewed to the left. 
Secondly, the implied volatility as a function of the strike price forms a "U-shape" whereas its 
constancy is assumed in the model. Such an empirical phenomenon is well documented and is 
called the volatility smile. 

Many alternatives to the model introduced by Black and Scholes have been proposed since 
the authors published their seminal paper. Among them Levy processes, i.e. stochastic pro­
cesses with independent and stationary increments, have been adopted to describe log-prices 
of underlying assets. Two main categories of Levy processes commonly used in mathematical 
finance are: jump-diffusion and infinite activity models. 

Merton in (24] was the first to use a jump-diffusion model to option valuation. He assumed 
that jump risk is not systematic and the log-price process of the underlying asset is a sum of 
a Brownian motion with drift and a compound Poisson process with normally distributed jump 
size. Kou in (19] and Kou and Wang in (20] proposed a jump-diffusion model similar to Merton 's, 
assuming the asymmetric double exponential distribution of jump sizes. For more general 
ideas we refer the reader to (1, 8, 9, 11, 16], where the phase-type (PHM), hyperexponential 
(HEM) and mixed-exponential jump-diffusion (MEM) models of underlying assets were applied. 
Since the mixed-exponential distribution can approximate any distribution in the sense of weak 
convergence, MEM was an inspiration for our electricity spot prices model. In (26, 28, 29] Levy 
jump-diffusions with discrete distributions of jump sizes were adhibited and various sources 
of uncertainty on the financial market were considered. In these approaches semimartingale 
characteristics were also used, see e.g. (25, 32]. 

The second category of Levy processes consists of models with infinite number of jumps in 
every finite interval. Two important processes from this category used in finance are the Normal 
Inverse Gaussian model and the Variance Gamma model, see e.g. (23] and [3]. 

Our model is preceded by the selective overview of concepts arising in stochastic analysis. 
This is in Section 2. The next paragraph includes a presentation of four representative one­
factor models of spot prices which are currently widely studied and used by both researchers 
and practitioners. The rest of the paper is organized as follows. In Section 4 the dynamics of 
the custom-made model for the Polish market is enunciated. Section 5 familiarizes the reader 
with historical data chosen for analysis. In Section 6 the method of adjusting seasonality to the 
historical time series is written up in details. Having read Section 7, one becomes acquainted 
with the algorithm of detection of spikes in prices. The course of a process of the parameters 
estimation is comprised in Section 8. In Section 9 the discretization of the continuous-time 
dynamics, as well as the comparison of the simulated this way trajectories with the historical 
series (tests for a goodness of fit) are performed. Section 10 demonstrates the method of 
calibration of the model to the quoted forward contracts using the analytical forward price and 
the notion of a market price of risk. The last section concludes. 
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2 Stochastic pre liminaries 

Let T = [O, T*], T* > 0 be a finite time interval. Let (n, F, (Ft)tET, IP') be a filtered probability 
space. 

Definition 1. We call a random variable T : n --+ TU { oo} a stopping time, if for each t E T 
{w En: T (w) :St} E Ft, 

D e finition 2. We call a stochastic process X = (Xt)tET a martingale, if random variables Xt 
are Ft-measurable, IEJXd < oo fort E T and 

IE (Xt[Fs) = Xs 

for s :S t . If additionally the family (Xt)tET is uniformly integrable, the process X is called 
a uniformly integrable martingale. 

D e finition 3. We call a stochastic process X = (Xi)iET a local martingale, if one can find 
a nondecreasing family of stopping times { rk} ~ 1 such that Tk t T* (1P'-a.s.) and the stopped 
processes X[" = X 7 • 11 tll( 7 •>0} are uniformly integrable martingales for each k. 

D efi n ition 4. We call a stochastic process X = (Xt)tET a semimartingale, if it is representable 
as a sum 

Xt = Xo + At + Mt, t E T, 

where A is a process of bounded variation (over each finite interval [O, t]), M is a local martin­
gale, both defined on a filtered probability space (D, F, (Fi)tET, IP') satisfying the usual conditions, 
i.e. the Cl -algebra Fis IP'-complete, Ft, t ET, contain all the sets in F of IP'-probability zero and 
is right continuous (Ft= Ft+= n s>t,sETFs, t ET) . 

Definition 5 . For two semimartingales X and Y the quadratic covariance process is the process 
[X, Y] defined on the same filtered probability space, such that 

[X, Y]t = XtYi - l Xs-d'Ys - l Y,_dXs - XoYo, (1) 

t E T, where fd X 8 _dY8 and fd Y8 _dX8 are stochastic integrals with respect to Y and X, 
respectively. 

D e fi nit ion 6. A point process 

where Un are nonnegative random variables, represents the appearances over time of some event. 
Equivalent representation of the point process involves the notion of an associated counting 
process defined by 

Nt = L ll{u,,:,;t), t ET. 
n~l 

(2) 

R emark 1. A special case of the counting (point) process is a Poisson process, when in (2) 

(3) 

where (r;);2:1 is a sequence of independent exponential random variables with intensity parameter 
>.. 

D efinition 7 . We call a pair (Un, Zn)n2:o a marked point process, if Un is a point process and 
Zn is a sequence of 'lf.-valued random variables. 
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Definition 8. An integer-valued random measure N(dt, dz) corresponding to the marked point 
process (Un, Zn)n2'.0 is defined by 

N(t,A) = L ]_{Un:<,t)]_{ZnEA), t E /. 
n2:l 

If the point process Un is in the form (3), then we deal with a Poisson random measure. 

D efinition 9. May N(dt, dz) denote the Poisson random measure. May v(dz) be the density 
junction of Z;, i 2". 1, under IP'. We define a compensated Poisson random measure by 

N(dt,dz) = N(dt,dz) - >.v(dz)dt. 

Definition 10. A compound Poisson process with intensity >. is a stochastic process defined as 

N, 

Jt = L Z;, t E T, 
i=l 

where Z; are i. i. d. jump sizes and Nt is a Poisson process with intensity >. independent from 
(Z;)i2'.l· 

Let W = (WtltET be a (F, IP') Wiener process. 

Theorem 1. Girsanov theorem. Let 0? and q?(z) 2". 0 be predictable processes such that the 
process 

Zt = exp ( - } 0?dW5 - ~} (0?)2 ds + j j ln (q?(z))N(ds,dz)+ 
0 0 0 R 

} j(1-q?(z))>.v(dz)ds) 
0 R 

exists for O :<::: t :'::: T*. Suppose that 
lE [Zr•]= 1. 

Define the equivalent probability measure IQ on F by 

and define the process 

as well as the random measure 

diQ)(w) = Zr,d!P'(w), w E !1 

t 

w/l = Wt+ j 0?ds, 
0 

(4) 

(5) 

fiG(dt, dz) = (1 - q?(z))>.v(dz)dt + N(dt, dz), 

where N(dt, dz) is a (F, IP') compensated Poisson random measure. 
Then, WtQ is a (F, IQ) Wiener process and NQ(dt, dz) a (F, IQ) compensated Poisson random 
measure of NG(dt, dz), while NQ(dt, dz) is the (F, IQ) Poisson random measure with a pre­
dictable intensity of the compound Poisson process under IQ) 

>,Q = >. j q?(z)v(dz) (6) 
R 

4 



and a new density function under IQ of Z;, i 2". 1, 

where q~(z) binds 6 and 7 

i8(dz) = q~(z)v(dz) , 
J q~(z)v(dz) 
IR 

(7) 

(8) 

In terms of NQ(dt, dz), 

fJIJ(dt, dz) = NQ(dt, dz) - >.q~(z)v(dz)dt. 

Proof. We refer the reader to Theorem 1.33 in [30], to Theorem 11.6.9 in [33] and to Lemma 
11.6.8 especially for a proof of 8, also in [33]. • 
Theorem 2. Novikov criterion. May Zt be defined as in 4. If either 

or 

(10) 

then (5) holds, i.e. 

IE[Zr•) = 1 

and thus (Zt)tE[D,r-J is a martingale and the measure IQ defined by 

dlQ(w) = Zy,d!P'(w), w E fl 

on F is a probability measure. 

Proof. We refer the reader to Theorem 1.36 in [30). • 

3 An overview of existing one-factor models of spot prices 

Alongside the discrete-time econometric models such as ARMA, ARIMA or GARCH, one of 
the most obvious choices in class of continuous-time models, when modelling electrical energy 
spot prices, are one-factor models. This is because of their good adaptivity to data, existence, 
not infrequently, of analytical solutions to numerous provided issues (e .g. formulas for forward 
prices), as well as multiple approximation methods (for pricing options, etc.). 

We focus our attention on four representative, currently widely studied one-factor, energy 
spot prices models. 

3.1 A mean reverting diffusion model with sesonality 

A prototype one-factor model for electricity prices, which became a milestone in commodity 
pricing, was introduced in [31) and developed in [22]. However, the model is lumbered with one 
serious drawback - it does not handle jumps in spot prices. Anyway, it reflects another two 
fundamental features: mean-reversion and deterministic seasonality. 
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Let us denote by St a spot price at a moment t (time is measured in years, single time step 
on the modelled markets is one day). The dynamics in a continuous setting is described by 

St= exp(g(t) + X i), (11) 

where g( t) is a deterministic seasonality function and Xt is a mean reverting ( to the mean equal 
0) process whose dynamics is driven by 

u is a speed of mean reversion, a is a constant volatility. It implies 

where 

p(t) = ¾ ( d~~t) + ~a2) + g(t) 

under suitable conditions for g(t). An explicit solution for In Si might be derived: 

t 

In St= g(t) + Xoe-at + a j e"(s-t)dW8 , 

0 

thus St for fixed t has a log-normal distribution. 
Two different forms of seasonality functions are analysed. The first is 

where 

12 

g(t) =a+ bDt + L, c;Mf, 
i=2 

{ 
1 if the moment t is a holiday or a weekend 

Di= 0 otherwise, 

. {l Mf = O 
if the moment t is during the i-th month 

otherwise, 

for i E {2, ... , 12} and a, b, c; constant parameters. 
Another proposal looks more adequate, as it is not a piecewise constant function: 

g(t) = a+ bDt + ccos ((t + d)J;), 
where Dt is defined as above, a, b, c and d are constant parameters. The cosine function is 
responsible for the annual seasonality in a continuous form. 

3.2 A mean-reverting jump diffusion model with seasonality 

A natural enhancement to t he previous model is to add the possibility of jumps to the driving 
process. 

St= exp(g(t) + Xi), (12) 

where g(t) is a deterministic seasonality function and X 1 is a mean-reverting (to the mean equal 
to 0) process, the increases of which are assumed to follow 

(13) 
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N, 
where o-(t) is a deterministic, time dependent volatility, lt = L Z; is a compound Poisson 

i=l 
process with some constant intensity (see Definition (10)), Z; are i.i.d. jump magnitudes of 

2 

a normal N(-;i,o-J) distribution, Wt is a Brownian motion. May Z be a random variable of 
2 

N(-;i, o-J) distribution as well. An implementation of the above model was conducted in [17]. 
The authors in [10] recommend using the seasonality function g which fits the observed 

monthly averages with the Fourier series of order 5. Another proposal comes from [5], where 

g(t) =a+ (3t + -ycos(c + 2,rt) + J cos(TJ + 41rt). (14) 

The role of the parameters is as follows: a stands for fixed costs of the production of electricity, 
(3 denotes the long run linear trend in the costs. The periodicity is contained in both cosines 
reflecting the market with two prices maxima per year. Such an approach is adequate for many 
representative markets, e.g. Nord Pool, German EEX. 

One of the results of investigations performed in [5] states also that the usage of the Noma! 
distribution of spikes has the effect of overestimation of skewness and kurtosis. Nonetheless , 
the overall grade of the Normal distribution, in the application of the jump size modelling, is 
quite satisfactory, even though the normality Kolmogorov-Smirnov test at 5% significance level 
indicates to reject the Ho for the tested jumps (the same situation repeats for tests for other 
distributions, e.g. truncated exponential or Pareto). 

Another type of the jump-size distribution, which may turn out to better match the empirical 
data, is an asymmetric double-exponential distribution with density 

where p, q > 0 are the probabilities of upward and downward jumps, respectively. The restric­
tions 7'/J > 1, 7'/2 > 0 and p + q = l are imposed. A very detailed description of the model with 
jumps sampled from this distribution may be found in [6]. 

3.3 The threshold model 

The originators of the model [14) proposed to decompose St as in (12), with 

N, 
where lt = L Z;, but this time Nt is a time-inhomogeneous Poisson process with time­

i:;::;l 
dependent jump intensity in the form 

or in the extended form 

>.(t) = 01s(t) ( 1 + max{0, ln(S;-) - S(t)}). 

01 has an interpretation of the expected number of spikes per time unit. S(t) is a specified 
threshold from which the spikes activity grows. s(t) is a normalized periodic jump intensity 
shape proposed in the form 

where k is the multiple of the peaking levels beginning at time T, d adjusts the dispersion of 
jumps around the peaking times (how short spikes last). It is important to mention, that the 
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jump sizes Zi, i 2'. 1, in this model possess a truncated exponential distribution with density 
function 

f(z) __ 02 exp(-02z) 
0 $ z $ ,j;. 

1 - exp(-02,f;)' 

,jJ denotes the maximal possible jump size whereas 02 is the average jump size. The function h 
assures the correct direction of the jumps and is defined as 

h(Yi) = { l 
-1 

if Yi < if>(t) 
if Yi 2'. if>(t) , 

where ¢( t) is a threshold that for instance may be set as a constant spread D. > 0 over the 
seasonality g(t), i.e. 

¢(t) = g(t) + t, > S(t), 

where the seasonality is introduced as in (14). 
The authors in [5] critisize the choice of the truncated exponential distrbution due to the fact, 

that it disallows for big jumps exceeding the fixed threshold ,jJ (determined by historical data). 
As a remedy, they propose another jump size distributions like something between Pareto and 
truncated exponential (in the sense of kurtosis), for instance gamma. The authors also claim, 
that the h function is responsible only for preventing two consecutive price values being above 
the threshold, whereas the parameter a is responsible for mean reversion. Hopelessly, the 
estimate of a is higher than expected for a base signal and smaller than required to dampen a 
spike. They generally call the usage of any thresholds appearing in this model into question -
for example the influence of the stochastic spike intensity they find trifling. 

However, the model gained popularity as it is very interesting from the theoretical point of 
view and at the time (2006) it represented the novel idea. Both the threshold and mean-reverting 
jump diffusion models belong to the canon of energy spot price modelling. 

3.4 A supply/demand Barlow's model 

In this approach we assume that 

(l+aXt)¾, l+aXt>Eo 

c61°', 1 + aXt $ co 

dXt = A(a - Xt)dt + adWt, 

for a c/ 0 and St = exp(Xt) for a = 0. c61°' is a known constant representing a minimum price 
for a > 0 and a maximum price for a < 0, characteristic to the particular market. 
The reason the model (often called a nonlinear Ornstein-Uhlenbeck model) has such a structure 
lies in some assumptions of the demand and supply game, as well as the predefined forms of 
demand and supply functions which have to be equated in order to assign a correct price to the 
energy unit. 

3.5 Huisman and de Jong 2-regime switching model 

Nowadays, the class of regime switching models is a fast developing and popular family of 
models for electricity prices' repatterning due to the popularity of Markov models and because 
the energy spot price at every moment may be assigned one out of several, unique in the context 
of price behaviour, states. 
[12] present the model in a discrete-time setting, inasmuch as the number of transitions must 
be countable. In this model the decomposition (12) does not make the X process mean revert 
to zero, but to constants µM and µs: 
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cM,t ~ N(0,uM) 

is an evolution of S in a mean-reverting regime, whereas 

Xs,t+l = µs + E:S,t, 

cs,t ~ N(0, us) 

is an equation for Sin a spike regime. a, UM, us> 0. The probabilities of switching from one 
regime to another, or remaining in the given regime, are contained in a 2 x 2 Markov transition 
matrix. 

3.6 De Jong 3-regime switching model with Poisson jumps 

After the decomposition (12), the mean-reverting regime is modelled in the form 

XM,t+l = XM,t + a(µ - XM,t) + UE:t, 

whilst the spike regimes Xu,t and Xd,t are for i E { u, d} 

nt+l 

xi,t+1 = xi,t + a(µ - xi,t) + L zi,t, 
i=l 

where ni ~ Poiss(>,) and jump-up regime 

Zu,t ~ N(µu, uu), 

jump-down regime 
Zd,t ~ N(µd, ud), 

E:t ~ N(0, 1) , a, u, uu, ud > 0, µ, µu, µd E R . From the base regime it is only possible to stay 
there or to move upwards, whereas from the up-jump regime the chain with probability 1 moves 
to the down-jump regime and afterwards surely moves to the base regime. 

3.7 Janczura and Weron 3-regime switching model 

Nowadays, the class of regime switching models is a fast developing and popular family of 
models for electricity prices repatterning due to the popularity of Markov models and because 
the energy spot price at every moment may be assigned one out of several, unique in the context 
of price behaviour, states. 

The latest ideas in the regime switching modelling of energy were shown in [15]. There are 
three different regimes for a spot price - for each there is a specific dynamics introduced. The 
two are spikes regimes (for increase and decrease in price, respectively). The latter is a base 
regime when the price moves in a noisy way and the amplitudes are small. 

May Yi = Si - g(t), where g(t) is a deterministic seasonality fitted to the price index values. 

ln(Yi,u - Y(0.5)) ~ N(µu, u~), Yi,u > Y(0.5), 

ln(-Yi,d + Y(0.5)) ~ N(µd, uJ), Yi,d < Y(0.5), 

dYi,b = (a - /3Yi,b)dt + ubYe;bdWi, 

where Y(q) denotes the q-quantile in the given deseasonalised prices (our dataset), 1 and other 
parameters in the formulas are constants. A Markov transition matrix 3 x 3 contains probabilities 
of moves between the regimes. Instead of a log-normal law, one may use arbitrary distribution 
for Y (such an extension is proposed in [21]), e.g. Pareto: 

Yi~ FPareto(Y; a,>,)= 1 - (~ r, Yi>>, :::0: Y(0.5). 
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3.8 The Markov-switching linear regression model 

The spot price is modelled as 
Si= X[/3w, +ct, 

ct ~ N(O, o-fv,) , W = {l, 2, ... , n} is a set of n states (regimes), Iii, j E W lP(WtlWt-1 = j) = 
Pij. Xi is a vector of exogenous variables at time t , fJw, is a vector of regression coefficients in a 
state Wt, o-fv, is an error's variance in the given regime, Pij are transition probabilities between 
states i and j. 

3.9 The potential Levy jump-diffusion model with jumps 

In this model the deseasonalised logarithms of spot prices undergo the equations 

dXi = -U'(Xt)dt + o-dWt + dLt, 

where er> 0, Lis a pure jump a-stable non-Gaussian Levy process, U(x) is a specially selected 
potential function with restriction U: R --t R is twice continuously differentiable , U(x) -+ oo 
as lxl-+ oo, 

00 

j exp(-2U(x)/o-2)dx < oo. 
-oo 

Without the Levy component, Xt has the Gibbs distribution with density 

7ra(x) = oo exp(-2U(x)/o-2) 

J exp(-2U(y)/o-2)dy 
-00 

The potential function can be sufficiently estimated from the historical data. It may be for 
instance assumed, that U is a polynomial of some even, higher than 2, degree. Then the model's 
parameters may be estimated simultaneously from the observed deseasonalised logarithms of 
prices using the maximum likelihood method or the generalized method of moments. 
The authors in [7] propose the following form of derivative of U : 

{ 
A(x - m)s-l + Co, 

U'(x) = "f(X - m) + Co, 
-A(x - m)s-l - Co, 

x-m > c 

Ix - ml 2'. c 
x-m < - c 

The parameter A is determined explicitly from the continuity of U', mis so called global mean 
level parameter. 

3.10 The model with a normal inversed Gaussian Levy driving process 

The choice of infinite activity processes to model the electricity spot price is very advantageous 
because the single Levy component may be responsible for small, typical daily movements (the 
Levy jumps are so frequent that they can supersede the motion of the Wiener process), as well 
as for big jumps in prices (substitution for the Poisson process). 

In a model introduced in [4] the deseasonalised logarithms of the spot prices undergo the 
equation 

dXt = a(m - Xt)dt + dLt , 

for a, m 2'. 0. Lt is a Levy process 

Li=vt+o-Wt+ j zN((O , t],dz)+ j zN((O,t],dz), 

lzl<l lzl2'.l 
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where a > 0, v E JR, N is a homogeneous Poisson random measure with a compensator l(dz)dt. 
The a-finite measure l(dz) on the Borel sets of JR is a Levy measure which satisfies 1(0) = 0 and 
J min(l, z 2)l(dz) < oo. Using the Ito lemma one obtains 
JR 

t 

Xt = xae-at + ~(1 - e-at) + J e-a(t-s)dLs. 

0 

L 1 is assumed to have the normal inverse Gaussian (NIG) distribution belonging to the class of 
generalized hyperbolic distributions. The density function of the NIG is in the form 

ao ( ,--- ) K 1 ( aJP + (x - µ) 2) 
f(x;µ,a,{3,o) = -;:;-exp oJ(a2 -/J2) +/J(x-µ) Jo2 + (x _ µ)2 

with µ E JR the location of the density, /3 E JR the skewness parameter, a :::: 1/31 measures the 
heaviness of the tai ls and o > 0 is the scale parameter. The function K 1 is the modified Bessel 
function of the second kind and order l. 

4 The model for the Polish Power Exchange spot prices 

In this section a model of the spot prices suited to the Polish market data is presented. The 
idea of the mixed-exponential distribution of jumps is drawn from (9] (where the authors model 
the assets prices), but connection of such jump distribution with mean-reverting process and 
exploitation of it to the -electricity spot prices modelling has not been explored yet. The pro­
pounded distribution has a distinguishing property that it can approximate any distribution 
with respect to weak convergence as closely as possible. In the light of problems with matching 
a distribution to a dataset of jumps, such property seems to be a countermeasure. Nonetheless, 
the price to pay is plenty of parameters to be estimated, appearing in the formulation of the 
jump-size distribution (16) (however, in practice, taking n = m = 2 suffices to ensure very good 
accuracy). 

One of the biggest merit of simplicity of the model formulation (15) is that it enables to 
derive a closed-form forward price, which is described in Section (10). This fact cannot be 
overstated - with such a tool a very precise calibration to quoted contracts on the market is 
feasible. Moreover, having tuned the model's parameters to market data, one may use the 
analytical formula for the forward price to calculate the risk-neutral price of any tailor-made 
forward contract with no necessity to apply any simulation or approximation method. 

We start with the decomposition of the spot price process Si: 

St = exp(g(t) + Xt) , 

(15) 

where a and a are constants, (Wt)tET is a Wiener process, (Jt)tET is a compound Poisson 
process of the form 

Nt 

Jt = L zi, t E T, 
i= l 

with constant intensity >., Z; are i.i.d. jump magnit udes of trans lated mixed-exponential distri­
bution, i.e . with density 

m n 

f(z) = qd L q;(;e(,(z-md) ].{z<md) + Pu L PJT/je-'l;(z-mu) ].{z>mu}, (16) 
i::::l j=l 

11 



where qd, Pu 2 0, qd + Pu = 1, 

qi,Pj E (-00,00), f qi= -§:Pi= 1, ~i > 0,77j > 1. qd and Pu are the probabilities of negative 
i=l j=l 

and positive jumps, respectively. md < 0 is a minimal (with respect to the absolute value) value 
of negative jumps, mu > 0 is a minimal value of positive jumps. A necessary condition for f(z) 
to be a density function is 

m n 

%Pl> 0, Lqi~i 2 0, LPi1Jj 2 0. 
i=l j=I 

One of possible sufficient conditions is 

k l 

Lqi~i 2 0, LPi1Jj 2 0 
i= l j=l 

for all k E {l, ... ,m}, IE {l, ... ,n} . 
A special case of the mixed-exponential distribution is a hyperexponential distribution, when 
all parameters qi and Pi are nonnegative. 

The separation from zero of the support of the density function is caused by the fact that 
either positive or negative jumps are extreme events, therefore highly greater than zero with 
respect to the absolute value. 

All the introduced above processes and random variables are defined on a filtered probability 
space (!1, F, (Ft)tET, 11"), where the filtration (Ft)tET is generated by Wand J and augmented to 
encompass 11"-null sets from F = Fr• . The filtered probability space (!1, F, (Ft)tET, 11") satisfies 
usual assumptions: a-algebra F is 11"-complete, the fi ltration (Ft)tET is right continuous and 
each Ft contains all the 11"-null sets from F. 

Using the Ito lemma, one obtains that St follows the stochastic differential equation 

dSt = a(p(t) - In St)Stdt + aStdWt + St(e2 - l)dNt, (17) 

where 

p(t) = ¾ (d~~t) + ~a2) + g(t). 

5 Data description 

The data selected for estimation comes from the POLPX's IRDN index with the time range of 
September 2011 - January 2014 (844 quotations) with an exception for a jump-size distribution's 
estimation due to the scarcity of jumps (much more data is required for the stable estimation) -
from September 2005 to September 2013 (2924 quotations) . However, in the longer series there 
is a substantial quantitative change in the prices behaviour, therefore the shortened series is 
used for the estimation of t he remaining parameters. 

It is important to note here that by a spot price we mean a weighted (by volume) average 
price of daily transactions - a standard day-ahead reference index for contracts with delivery 
of energy during the whole upcoming day. 

Without any deep analysis one can state the fact that prices undergo some yearly seasonal 
fluctuations, negative trend, but the most conspicuous are: weakly seasonality - indices values 
on Sundays are unequivocally smaller than on other days, and presence of jumps. Jumps may 
be categorized into two groups: there are only a few rises or falls that are apparently higher 
than others. The second group consists of a big number of smaller jumps which absolute values 
slightly exceed or are at the level of the Sundays drops. Both groups will be detected during 
estimation. All kinds of movements have their mirror images - the prices come back to the long 
run mean which is a seasonality. 

12 
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Figure 1: Spot prices in PLN /MWh 

6 Seasonality fitting 

From the specification of our model we know, that subtracting the seasonality function from 
the series of prices we are left with a kind of residue which is modelled by the zero-mean­
reverting jump-diffusion process (15). In other words, after filtering spikes from this residue, 
the returns of the remaining noise must have normal distribution. Therefore, the relevant, 
objective criterion for measuring the goodness of seasonality combined with removal of spikes 
should be a p-value of the appropriate statistical test for normality of the mentioned returns. 
The stage of constructing the seasonality is divided into several steps. 

6.1 Deterministic downward spikes 

The Polish market has a distinctive feature that the prices substantially come down for a one­
day period, if this day is a national holiday. Thus, these deterministic downward spikes should 
be extracted from the time series in the first instance as a first component of the seasonality. 
An estimator of the value of the jump is a mean of decreases of prices (from a day preceding the 
holiday, if it is not Sunday or another holiday, to the holiday) during years which are chosen to 
estimation. There are 12 such deterministic downward jumps each year. 

In the process of deseasonalisation the estimators of jumps are added to the holidays prices, 
but only in case the holiday is not on Sunday. If so, the difference of the estimator of the 
jump and the average Sunday drop is added - if this difference is positive, or nothing is added 
otherwise (because then the typical Sunday fall occurs). 

6.2 Detrending, fitting of weekly and yearly oscillations 

The next step of the deseasonalisation is a removal of a linear trend. The fitted linear model is 
in the form y = -0.0004t + 5.3, where t is time in days - the negative trend is observed. 

Thereafter, to eliminate the weekly seasonality, the means of logarithms of prices of all days 
within a week are subtracted from the log-series (all of them in range 5.28 - 5.35 apart from 
Sunday's which is 5.15). 

Yearly seasonality is matched the other way. The Fourier series of order 12 is fitted to 
the monthly averages of log-prices and then subtracted from the prices series. The reason the 
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magnitude of the order is 12, is the best properties of matching the seasonality in further steps 
(i.a. the p-value of the deseasonalised log-returns without jumps). To make the series fluctuate 
around zero, the average index value is added to the whole range of the deseasonalised prices. 

6.3 Annual sinusoidal function 

In order to detect any remaining annual movements , other than described above, the periodic 
(one year period) sinusoidal function of the form 

3 (2brt) (2brt) a + bt + _!; Ck sin 365 + dk cos 365 

is estimated by the nonlinear least-squares method and subtracted from the series (Figure 2). 
The estimated values of parameters are shown in Table l. 

a b C1 d1 

6.76. 10-3 -1.67 · 10- 5 1.83. 10- 2 3.34. 10-2 

c2 d2 C3 d3 
-5.49 · 10-;J 6.06 · 10-;J -3.31 · 10-s -1.04 · 10-s 

Table 1: Estimated parameters by the nonlinear least-squares method 

0.4 

0.2 

0.0 

-0 .2 

-0.4 

2012 2013 2014 

Figure 2: Annual sinusoidal function fitted to the partially deseasonalised log-price series 

6.4 The comprehensive form of the seasonality 

Applying consecutively the previous steps, one obtains the complete form of the seasonality, 
which is shown on Figure 3. It is also interesting to observe the seasonality in some magnifica­
tion, for instance around Christmas (Figure 4). 
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Figure 3: The overall seasonality function in logarithmic scale in PLN/MWh 

7 Filtering of spikes (jumps with mean-reversions) 

Filtering of spikes is performed by the iterative procedure: in the first step all jumps which 
absolute value exceeds some predefined threshold, for instance three times the standard devia­
tion of the deseasonalised log-returns, are removed from the series. In the next step the same 
action is made, but this t ime the standard deviation is calculated basing on the thinned series 
of returns. New jumps are filtered and deleted and the process continues until in some iteration 
no jumps are found . 

The most important aspect of this method is to fix the threshold so as to maximize the 
p-value of the Shapiro-Wilk normality test for the deseasonalised, and with deleted jumps, log­
returns - t he assumptions of the model must be fulfilled. For our data the threshold turned 
out to be 2.59s, where s is the standard deviation of the series obtained in each step of the 
described procedure. The maximized p-value is equal to 0.053, whereas some other normality 
tests indicate even better results of p-values for the chosen threshold: Anderson-Darling - 0.38, 
Kolmogorov-Smirnov - 0.74, Jarque-Bera - 0.69, Shapriro-Francia - 0.14. There is no evidence 
to reject the null hypothesis of the log-returns normality at the 5% significance level. 

8 Estimation of the jump-diffusion's parameters 

8.1 Base signal parameters assessment 

Having deseasonalised the log-price series and removed jumps with mean-reversions ( which 
happen immediately after the jumps), one may estimate the parameter r, appearing in equation 
(15). This volatility is estimated as a mean of the rolling standard deviation of the time-scaled 
increments ~\~!'/,-_1

1 (see [13], formula 3.10): 

_l_ L P; -P;-1 _ L Pj - Pj - l , k ( k ) 2 

m - l i=k-m+l ✓ti - ti-! j=k-m+l ~ 
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5.1 

5.0 SUNDAY EPIPHANY 

SUNDAY NEW •YEAR SUNDAY SUNDAY 

CHRISTMAS EVE 
4.9 

4.8 

CHRISTMAS . 

Figure 4: Seasonality function around Christmas 2014 

M 
~ CT(tk) 

k=m 
CT = -M---m-+-1' 

Pis the deseasonalised and devoid of spikes log-price index, m = 30, M = 791, k E { m, ... , M} 
(after removing of jumps and mean-reversions there are 791 log-returns). For all i E {l, ... , 791} 
t; - t;-1 = 3~5 . The estimated value CT= 0.91. 

Determination of the mean-reversion's velocity a is based on the deseasonalised log-prices, 
but in the presence of spikes. One has to regress the deseasonalised log-prices series bereft of 
its first element versus the deseasonalised log-prices series without its last element, which is 
a direct cause of the discretized form (see details in Subsection 9.1) of the equation (15): 

where Ptk is the sum of integrals of the Wiener process and the compound Poisson process 
between times tk - l and tk. The value of the regression coefficient e-of).t is significantly different 
from zero - the speed of mean-reversion achieved this way equals a = 0.25. 

The results of the augmented Dickey-Fuller test applied for the deseasonalised log-prices 
indicate that there is no unit root in our time series data - the mean-reversion is indeed present. 

8.2 Evaluation of the jump-size distribution's parameters 

As mentioned in Section 5, much longer time series is used for the estimation of the jump 
magnitude's distribution to assure that there is enough data for a stable assessment of this kind 
of a rare event. The algorithm describing how it is done was explained in Section 7, nevertheless 
a salient modification is prerequisite at this moment. In fact, when using the iterative method 
written up earlier, numerous unnecessary (for this application) returns, which are simply the 
mean-reversions of the process, are filtered. It means that the consecutive decreases (increases) 
after the jumps (of the opposite sign to the jump's sign), which exceed the threshold, cannot be 
taken into account if one wants to obtain the actual estimators of the jump-size distribution. 

In the density function specification (16) m = n = 2 is taken. 242 returns are classified 
as jumps by the filtering algorithm on the series of 2924 observations. Out of these jumps, 
56 are the mean-reversions and thus are not considered in the estimation. Accordingly, the 

16 



yearly frequency of the Poisson process A is equal to (242 - 56)/2924 • 365 = 23 .22. Counting 
upward and downward jumps yields qd = 0.65, Pu = 0.35. Extreme values of filtered jumps give 
md = -0.12, mu= 0.12. 

The remaining parameters are estimated by the maximum likelihood method - see Table 
2. The parameters q1, q2, Pl, p2 are all positive, so t hat the jump distribution turns out to be 

6 Pl P2 T/1 T/2 
0.6 0.4 8.41 38 .72 0.13 0.87 3.72 29.71 

Table 2: The estimated parameters of the mixed-exponential jump-size distribution 

the hyperexponential distribution, a special case of the mixed-exponential distribution. Figure 
5 illustrates the adjustment of the density to the histogram of filtered jumps. 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 

Figure 5: Mixed-exponential distribution fitted to the empirical distribution of jumps 

9 Simulation of the spot prices and tests for the trajectories 

9.1 Discretization of the process 

Lemma 1. Let X 1 follow the equation (15) and may O :5 s :5 t, t E T. Then 

Moreover, 

Xt = e-<>(t- s)xs + lt ae-<>(t- u)dw,, + L e- <>(t-u) c,.J,,. 
5 s<u:-s; t, 6.Nu=f:.O 

1 _ e - 2<>(t - s) 

2a 

(18) 

(19) 

Proof. Let s, t E 7 and Z1 = X 1Y1 fo r Yi = e<>(t - s). Clearly, Yi is a continuous, increasing 
process and therefore (see [32]) [X, Y) = 0. From the differential form of (1), 

dZt = aZ1dt + e"(t-s)dXt = nZt_ dt + e"(t-s) (-aX1dt + adWt + dJ1) = 

aZ1dt + e"(t- s) (-aX1dt + adWt + dlt) = e"(t- s) (adWt + dlt). (20) 
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For s ~ t one obtains 

Zi =Zs+ ll o-e"(u-s)dw,, + L e"(u-s) t:,J,,, 
s s<u$_t, 6Nuf0 

which gives the equation (18) . Since, for each continuous function <p , 

and 
<T2e-2a(t- u)du _ 0"2 ____ _ l t 1 _ e-2a(t-s) 

s - 2a ' 

one obtains (19). • 
Hence, the discretized dependency between the consecutive "daily" values of the process Xi is 
of the form 

1 - exp ( :ilf) N1/J65 

--~~N(o, 1) + I: zi, 
2a i=l 

(21) 

where N(O, 1) is a standard normally distributed variable, N1; 365 is a Poisson random variable 

with the intensity parameter 3~5 , Zi are mixed-exponentially distributed random variables. 
A sample trajectory with added seasonality and trend is shown on Figure 6 on a background of 
the historical path. 
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Figure 6: Simulated sample path in PLN/MWh 

9.2 Goodness of fit of the sample paths 

The comparison of the two moments and 5%, 95% quantiles of the historical spot prices (in 
PLN/MWh) which are used for estimation and an average of 5000 simulated trajectories is 
shown in Table 3. 
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mean st. dev. 5% quantile 95% quantile 
real data 171.44 29.82 129.55 215.36 

simulations 168.52 30.65 122.67 218.96 

Table 3: Moments and quantiles of the historical spot prices and 5000 simulated paths 

mean st. dev. 5% quantile 95% quantile 
real data -0.00059 0.106 -0.164 0.187 

simulations -0.00074 0. 118 -0.176 0.199 

Table 4: Moments and quantiles of the historical and 5000 simulated log-returns (average) 

The comparison of the two moments and 5%, 95% quantiles of the historical log-returns and 
an average of the log-returns of 5000 simulated trajectories is shown in Table 4. 

It must be stated clearly that the deviations of the presented above simulat ion summaries 
from the real ones are caused only by the fact, that the jump-size distribution's parameters are 
estimated on the much more longer time series, and as a result t heir values diverge from those 
which may be obtained on the main, shorter series. But this series is too short to allow for 
a stable est imation of all jump-size distribution's parameters. However, changing merely the 
probability of the upward jump to the value esitmated on the shorter series ( equal to 0.45), one 
receives much more accurate mean of the simulated trajectories. 

Notwithstanding, these differences are not really significant. The Kolmogorov-Smirnov test 
for the equality of distributions of the real log-increases and the log-increases of the simulated 
data gives no evidence to reject the null hypothesis of the equali ty of the mentioned distributions 
- the averaged p-value (over 5000 samples) is equal to 0.47. 

Finally, the reestimation procedure was conducted, i.e. for each simulated path all the 
parameters were est imated and then were averaged over samples - the resulting parameters' 
values were very similar to those computed during the estimation described in Section 8. 

10 Calibration of the model to the quoted forward contracts 

10.1 Market price of risk - introduction 

Once the model is entirely composed out of historical data, the application of it to the actual 
market situation requires calibration to the quoted forward curve because the actual market 
part icipants' expectation may not reflect the historical features like the prices trend or the 
absolute level of the prices. In order to accommodate this necessity, we put into the model 
some degrees of freedom which allow for calibration, and from the economical point of view 
illustrate how much the market pays for investing in the risky, tradable asset (electricity spot 
price in our case). The magnitudes of the changes in parameters are called market prices of 
risk. As in the model there are two sources of randomness, both market price of diffusion risk 
as well as jump risk are introduced. 

10.2 Derivation of the analytical formula for the forward price 

One of advantages of t he model is that it enables derivation of the analytical formula 

(22) 

for the forward prices F(t,T), 0 < t :c:; T, TE T An equivalent risk-neutral measure IQ appears 
in this expression. This is a tool which enables to make t he model suited to the actual prices. 
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From mathematical point of view, there are uncountably many equivalent, potentially risk­
neutral measures. From financial point of view, the market is incomplete, as there are more 
sources of randomness (hence risk) than risky assets, thus not every payoff may be replicated 
(hedged) with this underlying asset and not risky one, for instance a bank account or a bond. 
The form of dynamics under any equivalent measure allows us to pin down the form of the 
market prices of risk. Ascribing the concrete numerical values to the parameters which denote 
the market prices of risk uniquely determines the choice of the appropriate risk-neutral measure. 

Suppose now, that we change our physical measure IP' to the equivalent, potentially risk­
neutral measure IQ}. 

Definition 11. We call the parameters appearing in the Radon-Nikodym density (4), 0? and 
q~(z), the market price of diffusion risk and the market price of jump risk, respectively. 

Having defined the notions of the market prices of risk, we may return to the problem 
of calculating the forward price (22). From now onwards, we will consider only the class of 
equivalent measures IQ}, where the market price of diffusion risk is time-independent, i.e. 0? = 
0Q , and under which the jump-size distribution's density does not change (which reflects the 
market realities), i.e. vQ(dz) = v(dz), ZQ = Z . From (8), these assumptions imply that 

qt(z) = ~ and thus it is a constant. As both market prices of risk are constant, the Novikov 
criterion (Theorem (2)) holds and the condition (5) is satisfied - the Girsanov theorem (Theorem 
(1)) may be applied. 

One may observe from the Girsanov theorem that after the change of the measure there is 
a transformation of a drift in the asset's dynamics and a modification of the intensity, as well as 
the jump-size distribution of the compound Poisson process. As a result, the SDE (15) under 
the equivalent measures IQ may be written as 

because the new terms appearing in the drift might be appended to the seasonality function, 
see [18], Chapter 4.2. 

Theorem 3. The analytical formula for the forward price within the model defined in Section 
4 by (15} and (16} is equal to 

F(t, T) = lEQ[SrlFt] = G(T) ( i:)) e-o(T- t ) exp ( J CTe-c,(T-s) ( ~CTe - c,(T- s) - 0Q) ds) • 

t 

(24) 

Proof. Let us revise the equation (17). Using the Ito lemma for the process Yi = ln(St) and 
changing the physical measure IP' to the equivalent risk-neutral measure IQ, one obtains 

dYi = c,(?fl(t) - Yi)dt + CTdW? + ZdN?, (25) 

where 
"f{J(t) = 2_ dg(t) + g(t) _ CT0Q. 

c, dt c, 

After multiplying both sides of (25) by e- c,(T-t) and integrating from t to T, the equation 
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converts to 

r r r r 
j e-a(r-s)dY5 = j e-a(r-s)dg(s) + j ae-a(r-s)g(s)ds - j ae-a(r-s)y5 ds-

t t t t 
r r r 
j u0Qe-a(r-s)ds + j ue-a(r-s)dW8Q + j e-a(r-s) ZdN~. (26) 

t t t 

Because 

r r -J ae-a(r-s)ysds = e-a(r-t)Yi - Yr+ J e-a(r-s)dYs (27) 
t t 

and 

r r J ae-a(r-s)g(s)ds = g(T) - e-a(r-t)g(t) - J e-a(r-s)dg(s), (28) 
t t 

we may write 

r r r 
Yr= g(T) + (Yi - g(t))e-a(r-t) - j u0Q e-a(r-s)ds + j ue-a(r-s) dW~ + j e-a(r-s) ZdNt 

t t t 
(29) 

Applying the Dynkin lemma and a technique similar as in [27], we obtain the following equality 

EQ [exp (l ue-a(r-s) dW5Q + l e-a(r-s) ZdN!l) 'Ft] = 

EQ [exp (l ue-a(r-s)dw?) 'Ft] EQ [exp(! e-a(r-s)zdN!l) 'Ft]. (30) 

Using (29), (30), the fact that Sr= eYr and denoting G(t) = eg(t), 

F(t, T) = EQ[SrlFd = G(T) ( :r~)) e-o(T-<) exp (-l u0Q e-a(r-s)ds) . 

EQ [exp (l ue-a(r-s)dw!l) 'Ft] EQ [exp (l e-a(r-s)zdN~) 'Ft] = G(T) (:r:)r-o(T-<) 

exp (l ue-a(r-s) Gue- a(r-s) - 0Q) ds) EQ [exp (l e-a(r-s) ZdN!l) 'Ft] , (31) 

inasmuch as 

Following the considerations in [10] (part A of Appendix), we may write 
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The latter exponent may be explicitly calculated. For this purpose, first of all we calculate 

IEQ [e•-a(T- ,)zl, 

where Z has a translated mixed-exponential distribution with density (16). The straightforward 
calculation yields 

Q [ e-a(T-,)z] - md ~ . ~ie<>(T- s) mu ~ . 1/jea(T-s) 
IE e -e qd0q•~- a(T-s)+l +e Pu0P1. a(T- s)_1· 

i=l ,e j=I 1/1 8 
(34) 

Thus, 

(35) 

• 

10.3 Results of the calibration to the real data 

The period chosen for calibration starts at the beginning of the 2014 year. Since the first quoted 
on the POLPX week of 2014 begins on 30th December 2013, tin formula for F(t , T) is Friday, 
27th December 2013. The electricity spot price on this day (last known value of the index) 
was equal to St = 121.6 PLN/MWh. In order to calibrate our already estimated model to the 
market participants' expectations, we choose the quoted on 27th December 2013 liquid forward 
contracts, i.e. only those with some open positions. There are 9 such contracts, forward prices 
of which are given in Table 5 (supply of the electrical energy during the period indicated in the 
contracts' names): 

Ml 14 M2_ 14 M3_ 14 Ql_ 14 Q2_ 14 Q3_14 Q4_ 14 Y_ 14 Y_ 15 
152 154.50 148 151.25 148.65 158.26 150.25 152.86 158.30 

Table 5: Forward prices of liquid contracts quoted on 27th December 2013 

The process of calibration begins with evaluating the analytical forward prices (24) for t 
equal to 27th December 2013 and T equal to all dates within the periods of supply of the 
energy for all selected forward contracts, where the values of 0Q and )._fl remain unspecified. 
Afterwards, the results, as the functions of these parameters, are averaged within the respective 
contracts delivery periods. Thereafter, the mean square error is calculated for the obtained 
analytical forward prices and the quoted ones so as to minimize the error with respect to 0Q 
and )8. The outcomes of this procedure, which uniquely determine the choice of the equivalent 
risk-neutral measure, are presented in Table 6. Let us note that the calibrated value of the 
intensity parameter achieves the minimum, boundary value equal to 0. The possible reason 
justifying this conjuncture is a small volatility of the quoted liquid forward contracts (flat term 
structure). 

The calibrated forward prices, preceded by the series of spot prices, are shown on Figure 7. 

11 Conclusions 

In the article the authors introduce the new model for the electricity spot prices, which are 
quoted on the Polish Power Exchange, taking into account all the specificity of the Warsaw 
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0Q )._Q qt (z) = )/l/>. 
19.93 0 0 

Table 6: Results of calibration 
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Figure 7: Historical spot prices and calibrated to market forward prices in PLN/MWh, time 
horizon: 31st December 2015 

market, as well as the electrical energy prices specificity in general. Several novel ideas concern­
ing seasonality matching, spikes filtering, jump-size distribution, etc. are put into practice. The 
parameters are estimated basing on the historical data. The model is validated by performing 
simulations and tests for the goodness of fit, which legitimize the proposed approach. Finally, 
the analytical formula for the forward prices is derived allowing for the convenient calibration 
of the model to the forward contracts quoted on the exchange, making use of the notions of the 
market prices of diffusion and jump risks. 

The future work will concern valuing of options within the model. 
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