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ON A NEW WAY TO GRADIENT LEARNING ALGORITHMS 

FOR NEURAL NETWORKS 

1. lntroduction 

In this paper we will recall the concept of adjoint neural networks that was described by 

Krawczak (2002, 2003) as a method for evolution the formulae of the backpropagation learn­

ing algorithm for multilayer neural networks. The methodology is based on the assumption 

that multilayer neural networks can be treated as flow graplzs. The analysis leads to the proper 

equations of the backpropagation algorithm but in a much simpler manner. The graph meth­

odology incorporates the reciprocal graphs in which signals flow in opposite directions. 

These kind of neural networks are called the adjoi11t 11eural 11etworks. Construction of the 

adjoint neural networks yields directly the f01mulae of the considered learning algorithm, as 

well as to any gradient descent based algorithms. 

Using the methodology for modelling complex systems, called the Generalized Net the­

ory, developed by Atanassov (1991), we will construct such a model of the adjoint neural 

networks. In a paper by Krawczak and Aladjov (2002) we developed the Generalized Net 

model of the backpropagation alg01ithm as well as the first approach to development of the 

Generalized Net model of the adjoint neural networks. 

2. Transformation of a Neural Network into a Graph 

Since the pioneering work of McCulloch and Pitts (1943) a model of an aitificial neuron 

is a very simple processing unit, Figure 1, which has a number of inputs x, , say N, each input 

being weighted with an appropriate weight E" =.!.1> (dic l >p -xi,L>,,)', i= 1,2, ... , N . 
2 j(l)al 
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Figure l: An elementary model of a neuron 
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The sum of the weighted inputs and the bias (included in the inputs) forms at the summation 

point EB the proper input 

N N 

net1 = Iwu x, = LYii (1) 
i:ol /:I 

to the acti vation function J, (net;) . In the model considered an additional element co1Tespond-

ing to a junction point, which is depicted by O, is included. Figure 1 shows an extended nota­

tion of indices, namely we indicate the position of each neuron in the whole network. For ex­

ample the weight w,o-•>Jm indicates the connection between the neuron i belonging to the 

(I - 1)-st layer and the neuron j from the 1-th layer. 

Lei us rearrange the neuron's elements in the following way: 

• remove the activation function to the outside of the neuron, 

• the removed activation functions are shifted to each of the connections between the 

considered neuron and all neurons of the next layer, becoming thereby the transmit-

tances between neurons, 

• the connection between neurons are stili weighted, 

• the summation point and the junction point make up a node, 

• the neural network with the rearranged neurons becomes a flow graph. 

The above rearrangement is pictured in Figure 2. 
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Figure 2: The rearranged neuron as a segment of a flow graph 

Now, description of any separate edge takes the following form: 

.Yi(l-1)/(/J = W;o-1> /(I) x,u-11 = W;(l-ll /(f) ho-])(nel;u-1)). (2) 

The neural network with the new models of neurons becomes a flow graph. Comparing 

the neural network as a flow graph to the respective adjoint neural network we can notice that 

the architeclures exactly the same (Krawczak, 2002). 

Using the graph theory notation a feedforward network topology can be specified by 

considering the values of nodes, i.e. net;(I), for I= I. 2 .... ,l, j(/) = 1, 2, ... , N(/) 

/lelJ(I) = 

llet;<oi = .X;to> , for l = O 

~ L W;co,1c 1, X;eo, , for I = l 
i(O)=I 

N(/-[) 

L w,u-11;(11 J(11el1u-1J). for I< I < l 
i(/-1),.1 

N(L) 

net j(m1/) = L wi(L- 1/(L) J(nef;cL-1)) 1 for l = L 
itLJ=I 

(3) 

Using the formula for 11el;c1J we can illustrate flows of signals in a neural network 

treated as a flow graph in Figure 3. 

Figure 3: A schematic exemplary two-layer neural network as a flow graph 
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The generalized delta rule for updating the weights has the following form 

(4) 

for j(I) = I, 2, ... , N (I), i(! - I) = I, 2, .... N (1-1), I= I, 2, ... , L, where the fac tor delta is ex-

pressed bellow 

where 

N(Ll 

Lf'(net1(L))ó1cew) ,if I =L 
j(l)~I 

N(I) 

ó;,1-1, = J'(11er,"_") Lw<Cl-,>Jcl) ,5JCI> ,if2$/$L-l 
j(/}=I 

N(OJ 

ó;,., = ó;((,) = L"lcO)j(l) Ój(I) ,if I= I 
j(O)'"I 

(5) 

aE a11u1(:i= w,(1-))J(I) x,u-))) 
j' - '"' (6) 

,(I) - - anetj(/) a11etj(/) 

It can be easily noticed that equations describing the signals net and ,5 have the same 

structure, and directions of these signals are opposite. In Figure 4 we have presented a coun­

terpart to the example shown in Figure 3. 

Figure 4: An exemplary two-layer neural network as an adjoint NN 

The adjoint neural network was found by application of the same network architecture, 

reversal of the direction of signal flows, replacement of activation functions by their deriva­

tives, and switching of the positions of summing points with junction points within each node. 

It was shown that the transformation of the original network into the adjoint network is gov-

emed by very simple rules desctibed in Krawczak (2002). 
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3. Generalized Net Modelling 

The basie difference between Generalized Nets and the ordinary Petri nets is the place - tran­

sition relation (Atanassov, 1991), in the theory of Generalized Nets the transitions are objects 

of a very complex nature. The places are marked by O, and the transitions by 1. Generalized 

Nets contain tokens, which are transferred from place to place. Every token bears some in­

formation, which is described by token's c/zaracleristic, and any token enters the net with an 

initial characteristic. After passing a transition the tokens' characte1istics are modified. 

The transition has input and output places, as shown in Figure 5. 

Formally, every transition is described by a seven-tuple 

Z =(L', L',1,,12 , r,M ,• ) 

where; 

• L' = {1;, 1;, ... , I;,} is a finite , non empty set of the transition's input places, 

• L' = {I~. 1;, ... , 1,:} is a finite, non empty set of the transition's output places, 

• 11 is the cu1Tent time of the transition's firing, 

• 12 is the current duration of the transition active state, 

(7) 

• r is the transition's condition determining which tokens will pass (or transfer) from the 

transition 's inputs to its outputs; il has the form of an index matrix described in (Atanassov, 

1987), 

[' 
I 

[' 
2 

i' I 

L' 
2 

t,; 

Figure 5; A Generalized Net transition 
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• M is an index matrix of the capacities of transition's arcs, 

O is an object of a form similar to a Boolean expression, it may contain as variables the 

symbols that serve as labels for transition's input places, and O is an expression built up from 

variables and the Boolean connectives /\ and v, The following ordered four-tuple 

E=( (A,,r,,,rt,c.f,8,,82), (K , ,r„ Bx), (T,1°,t"), (X,<P,b)) (8) 

is called Ge11eralized Net if the elernents are described as follows: 

• A is a set of transitions, 

• ,rA is a function yielding the priorities of the transitions, i.e. n,: A ---4 N, where 

N= {O, I, 2, .. . }u {oo}, 

• ,rL is a function specifying the pri01ities of the places, i.e. J'lL: L---4 N, where 

L = pr,A u pr,A , and pr;X is the i -th projection of the n-dimensional set, where II E N, 

11 ~ 1 and Is is 11 (obviously, L is the set of all Generalized Net places), 

• c is a function providing the capacities of the places, i.e. c: L---4 N, 

• f is a function that calculates the truth values of the predicates of the transition's condi­

tions (for the Generalized Net described here !et the function f have the value fa/se or 

tnte, i.e. a value from the set {o, t} ), 

• e, is a function specifying the next time-moment when a given transition Z can be acti­

vated, i.e. e, (r) = t', where pr:,Z = t, t' E [T, T + ( J and t s 1'; the value of this function is 

calculated at the moment when the transition terminates its functioning, 

• e, is a function yielding the duration of the active state of a given transition z, i.e. 

e, (1) = 1' , where pr,Z = t E [T, T + t') and 1' ~O; the value of this function is calculated at 

the moment when the transition starts its functioning, 

• K is the set of the Generalized Net's tokens, 
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• nK is a function specifying the priorities of the tokens , i.e. n K : K ~N, 

• eK is a function producing the time-moment when a given token can enter the net, i.e. 

eK(a)=t, where aE Kand tE [T, T+t'l, 

• T is the time-moment when the Generalized Net starts functioning; this moment is deter-

mined with respect to a fixed (global) time-scale, 

• 1° is an elementary time-step, related to the fixed (global) time-scale, 

• r' is the duration of the Generalized Net functioning, 

• X is the set of all initial characteristics the tokens can receive on entering the net, 

• </J is a characte1istic function that assigns new characteristics to every token when it 

makes the transfer from an input to an output place of a given transition, 

• b is a function specifying the maximum number of characteristics a given token can re­

ceive, i.e. b: K ~N; for example, if b(a)= I for some token a, then this token will enter 

the net with some initial characteristic and subsequently it will keep only its cunent char­

acteristic; w hen b(a) = 00 the token a will keep all its characteristics; w hen b(a) = k <"" 

the token a will keep its last k characteristics (the characteristics older than the last k 

will be forgo tlen); in the generał case every token a has b(a) + I characteristics on leaving 

the net. 

A given Generalized Net may lack some of the above components. In these cases, any 

missing component will be omitted. The Generalized Nets of this kind form a special class of 

Generalized Nets called reduced Ge11eralized Nets. 

4. Modelling of the Adjoint Neural Networks 

In this part we will determine the Generalized Net model of the adjoint neural network 

for the backpropagation algolithm, partially following Krawczak, Aladjov (2002). 
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The Generalized Net model of the adjoint neural networks contains four transitions, see 

Figure 6. Each transition of the model represents a separate stage of the adjoint neural net­

work functioning. These stages are as fellows: 

• construction of the adjoint neural network 
• initialisation of connection weights 
• propagation of signals 
• back propagation of the error. 

Here we will constrain our consideration to some elements of the reduced Generalized 

Net form, in order to show how this methodology can be used to construct the model. 

1n the considered multilayer neural network each neuron is represented by a single neu­

ron of a -type, and the token has the following initial characteristic 

y(a, )=(NN!,/,/, f,,x,, im W, d), for I= 0,1, ... ,L (9) 

where NN!- the neural network identifier, 

10 

I - the layer number, 

I - the number of the token (neuron), 

J, - an activation function of the / -th neuron, 

x, - the current value of neuron output, 

im W - the index matrix of the weights, which contains the connection, having the fol­

lowing forrn 

in Oli/ 

w,., w,,, 

imW= 2 w,.2 

N w/,N 

where 



N - the number of all neurons in the considered neural network, 

W,,,_,, - the weight connecting the 111 -th neuron with the 11-th neuron, 

d - description, which can be defined as follows 

!
"in" if (ViE (1,2, .. . ,N)) (imW,1 =O) & (3iE (1,2, ... ,N) (im W, ,; >'0)) 

d = "out" if (1tiE (1,2, ... ,N)) (im W, ,; =0) & (3iE (1,2, ... ,N)(imW,,, >'0)) 

::'.Il/',: _if (3iE (1,2, ... ,N)) (imtt1i; >'0) & (3i.E (1,2, ... ,N) (im W,, >'0)) 

1so 1f (1t1E (1,2, ... ,N))(,mW,,; =0) & (V1E (1,2, ... ,N) (,mW,., =0)) 

(IO) 

where " ill" , "out", "int", "iso" denote the input, output, interna! and isolated neurons, 

respectively. In Figure 6 the considered places are denoted by x';, i= 1, .... 8, 

m;, J=ł, ... ,7, n„ k =1, ... ,7 . 

It is worth noticing that the characteristic (9) includes all inf01mation required to esti­

mate the whole neural network, namely the connectivity and characteristics. 

The process of the adjoint neural network construction is based on changes of the neu­

rons features , that is - the neurons must be able to propagate the signals in the forward direc­

tion as well as to propagate the en-or in the back direction, and to possess all the information 

required for the connection weights evaluation. These changes of the new neuron features are 

represented by generation of the new characteristics of the tokens in the place k', , which are 

as follows 

y(a,) = ( NNl,/, I,f,,f;,x,,o,,imW ,imW,,d,d,) 

where the new components of the characteristics have the following meaning 

/,'(net,)= iJ/, (net,) 
iJnet1 

where Hel, is related to Equation 3, and 

o - _ _!!!,_ 
1 

- Ollel
1 

which is related to Equation 5, 

(11) 

(12) 

(13) 
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im W, has the same components as im W but the weights of inputs are replaced by the 

weights of outputs and vice versa, that is 

in out 

w,., w,., 

imW, = 2 w,., W2.1 

N Wf .N 

d, describes the connectivity of the neurons within the adjoint neural network, and can 

be obtained from d in the following way 

r· if d =''out" 

'
1 out" if d ="in" 

d -
I - "inf" if d ="int" 

uiso" if d ="iso". 

(14) 

Z, 

x, 
z, 

z, x, x, 
Z, 

x, x, x, x, x, 

1111 JIJ2 1113 1115 

1124 1116 

Figure 6: The Generalized Net model of the adjoint neural network 
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From the Generalized Net point of view, the process of the adjoint neural network 

model can be represented by the following transition z, 

f, 

true ). (15) 

The next transition z, describes the first stage of the training process, namely the ini­

tialisation of weights 

x, 1112 

Z2 = ( { X 2, /111 } , { X J, /112 }, x, true fa/se ) ' 
(16) 

111, Ja/se true 

In the place 1111 a token associated with the performance index enters the Generalized 

Net with the following initial characteristic 

(17) 

where NNI - the neural network idenlifier, 

E - the petformance index of the neural network learning, 

E,,,., - the threshold value of the performance index, which must be reached. 

In the place 1112 this token does not change this characteristic. 

The transition Z3 associated with the paltem recognition process has the form 

(18) 

13 



x', x', m, 1114 11 , 

x', V, fa/se fa/se fa/se fa/se 

x', fa/se v, false fa/se fa/se 

j{, V, false false false false 

1112 fa/se fa/se Vi -,V, false 

1114 false false v, ,V, fa/se 

m6 fa/se false v, .V, fa/se 

11, false fa/se fa/se false v, 

where 

v, = "the neuron has assigned the input signal", 

v, = "the neuron has assigned the output signal", 

v, = "all neurons of the network have assigned the output signals". 

The tokens r, , p = 1,2 ... , P, where p is the number of the training pattem enter the 

place 111 with the initial characteristic 

.v(r,)=(X,(O), D,,p ) (19) 

where X, (o) - is the inputs vector of the neural network, and o, - is the vector of desired 

network outputs. 

The tokens of a -type enter the place x', for the purpose of calculation of the neuron 

outputs, and next the tokens are transfetTed to the place x',, where the tokens a form the 

output layer (for d ="out"), and obtain the new characteristics in the following fotm 

y(a, )= (NNl,l,!,p,f, ,f/,x,,J,,imW,i111W,,d,d, ) (20) 
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related to the nominał values of connection weights and the patiem p. The factor J, can be 

viewed as representing the inputs for the adjoint neural network. 

In the place 1113 the token /J obtains the new characteristic 

y(/3) = (NN l, E', E.,~,). (21) 

The next transition Z, is responsible for the error propagation via the adjoint neural 

network, and the weights correction process, and has the form 

Z,= ( { x',, X\, l113,IZ2,lll1 ).( X\, x',, .~\,m,,111,,111, , n 3)) (22) 

x'. x', x's 1115 1116 m, /!3 

j(, V, fals fals fals false fals fals 

e e e e e 

14 = x,.. fals v, -,V, fals false fals fals 

e e e e 

11l3 fals fals fals -,V, V5 &-,V6 v. fals 

e e e e 

11l7 fals fals fals -,V, V, & -,V6 v, fals 

e e e e 

11, fals fals fals fals false fals true 

e e e e e 

where 

V,= "the adjoint neuron has assigned the input signal", 

V,= "the new paltem for learning musi be applied", 

V6 = "there exist adjoint neurons with unassigned outputs". 
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In the place X, the new values of the parameters J, are assigned to the adjoint neuron 

outputs, and the weights can be cotTected, in details according to the following rule 

Llw,(/-l)j(/) = 17 oj(/) x,(1-1) • 

Other details of the transitions, places and tokens are very similar to those considered in 

the previous sections and we will not repeat them. 

5. Conclusions 

The process of the backpropagation learning algorithm of the multilayer neural net­

works can be simplified by introducing the adjoint neurons. Such neurons enrich the ordinary 

neuron capabilities with some mechanism for error backpropagation and self-modification of 

the connection weight changes. It seems that the new structure of the neurons (the neuron 

combined with the adjoint neuron) gives the possibilities for hardware implementation of the 

neural network including the mechanism of the backpropagation learning algorithm or other 

learning algorithms based on gradient descent. 
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