





A new clustering method for nominal attributes

Maciej Krawczak and Grazyna Szkatula

In this paper is presented a new method for clustering of objects described by nominal
attributes. The method is based on the set theory. The similarities measures and distance
measures between objects are attuned for nominal attributes and are based on the conditions’
dominance for each attribute. There are introduced a definition of conditions’ perturbation for
cach attribute and a measure of clusters’ perturbations. They allow us to describe in some
sense clusters’ similarities and are used for coupling of clusters by twos. A pair of clusters
described by the lowest value of clusters’ perturbation measure is coupled creating a new
cluster, and after removing this pair the number of clusters is decreased by one. Next, there is
defined a measure of clusters’ concentration as well as a measure of cluster’s distance. These
two measures resorted to compute an evaluation of clusters’ set. This evaluation allows us to
compare different sets of clusters which are obtained during clustering process. In the paper
the new definitions are elucidated by examples, and there is considered a case of data series

clustering problem as an illustrative example.
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1. Introduction

There are collected lots of data characterized by huge number of objects and each object
is characterized by a large number of attributes. The attributes in a data set can be numerical
or categorical; the categorical attributes can be either ordinal or nominal. In acase of the
ordinal attributes some order relationship between elements of the set of its values have to be
distinguished, otherwise we can say about the nominal nature of the attributes. Often nominal
attributes are considered in a symbolic way.

Clustering is one of approaches for revealing structure of data sets. There are specialized
algorithms for clustering long chains of symbols (Berkhin, 2006). The algorithms found
applications e.g. in text analysis or in bioinformatics (Apostolico er al., 2002; Gionis and
Mannila, 2003, Lin er al., 2007).

Most of algorithms dealing with nominal data are based on application of some distance
measures between objects, e.g. Wang (2010), Domingo-Ferrer and Solanas (2008), where
generaly nominal attributes’ values are changed into digital and clustering problems are
treated as numerical ones. However, there are attemptes to operate directly on categorical
attributes, e.g. a very intersting approach was proposed by Hu, Yu, Liu and Wu (2008) who
used rough sets to evaluate categorical features, it means to reduce numerical and categorical
features.

In this paper our aim is to group a data set described by nominal attributes on subsets. The
proposed method is based on the theory of sets. However, we introduced several new
definitions supporting the new clustering method. Proofs of corollaries are contained in
Appendix 1. First, we defined a cluster as a conjunction of attributes’ conditions, next we
gave a definition of a dominance of conditions. The dominance of conditions is considered for
each pair of clusters and for each attribute separately. Next, instead of considering similarities
between clusters, we introduced a measure of perturbation of one condition by another
condition. The idea of the measure of condition’s perturbation is based on a relation between
two attributes’ values sets, where each set belongs to different cluster’s pair. This concept was
extended on all conditions within describing the considered clusters, as a result we defined
a measure of perturbation one cluster by another clusrer. It is interesting that this measure is

not symmetric, it means a value of the measure of perturbation of cluster C; by cluster C, can
be different then a value of the measure of perturbation of cluster C; by cluster C,. A pair

of clusters characterized by minimal value of the measure of clusters’ perturbation can
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be merged as a new joined new cluster. In this way the measure of clusters’ perturbations
is used for coupling the most similar clusters by twos, and by replacing this pair by the new
joined cluster the total number of the considered data set clusters is reduced consecutively.

The results of clustering algorithms can give different results of grouping the same data
set, therefore evaluation of clustering seems to be very important. It is difficult to state when
a clustering result is acceptable, thus some formal validity techniques and indices have been
developed. Two main measurement criteria have been proposed for selecting an optimal
clustering scheme: the objects of each cluster should be as close to each other as possible and
the clusters themselves should be widely separated. If a data set contains well-separated
clusters, the distances among the clusters are usually large and the dispersions of the clusters
are expected to be small.

Often the process of clustering, it means the process of reducing the number of clusters for
the considered data set is kept on until the prescribed number of clusters is reached. For
numerical data it is quite easy to define a measure of clustering quality (Manning, Raghavan
and Schiitze, 2008), but in the case of nominal data a clustering quality assessment seems to
be less precise and mostly based on evaluation of clustering methods for benchmark data sets.

One of the main goals of clustering is to assure that all objects collected within each
cluster must be in some sense close, and it is possible to compute objects’ concentration
within each cluster. We introduced a new measure of clusters’ concentration calculated for
each cluster. Our measure of clusters’ concentration relies on comparison cardinality numbers
of proper sets. In this case there are considered sets representing the domains of the attributes
and representing the actual descriptions of clusters’ attributes.

The second main goal of clustering is to assure the clusters should be in some sense
remote one from another. In this paper we introduced a new measure of distance berween
clusters, the measure is based on the idea of the sets’ perturbations or clusters” perturbations
and relations between the sets of the attributes’ domains as well as the sets representing
descriptions of clusters’ attributes.

In our paper we introduced a new definition of clusters’ validity, which is meant in the
following way. There is a set of clusters, each cluster is characterized by its measure
of concentration, and any pair of clusters is characterized by two measures of the distance
between clusters within the pair. The measure of distance between clusters is not symmetrical

— it means that the distance from cluster C, to cluster C; may be different then the distance

from cluster C, to cluster C,. For each pair of clusters the lower distance is chosen and the



average measure of concentration is calculated, and then a product of these two values is
obtained. The sum of such products done over all pairs of the considered clusters constitutes
the new measure of clusters’ validity. In the following sections it is proved that this measure
of clustering quality is ranged between zero and one. The proposed measure of validity of
clusters’ set are intended for nominal attributes. In the paper many deductions are illustrated
by simple example in order to clarify the new definitions.

At the end there is an illustrative example, which shows the efficiency of the proposed
method.

The developed algorithm has several features common with standard ones, namely our
algorithm is hierarchical and agglomerative (“bottom-up”). Hierarchical clustering (defined
by Johnson in 1967) is starting with N clusters (each containing one object). This kind
of algorithms can find the closest (most similar) pair of clusters and merge them into a single
cluster. The main weaknesses of agglomerative clustering methods are that they can never
undo what was done previously.

Due to the introduced idea of perturbation of one cluster by another, and introducing the
measure of clusters’ perturbations, it seems to be rational to call the proposed method

as Clustering Perturbation Method (CPM), which can be applied directly to clustering

of symbolic data sets.

2. Problem statement
Given is a finite set of objects U = { ¢, }, indexed by nn, » =12,...,N . The objects are described

by K nominal attributes A ={a,,..,a,} indexed by j. The set Vo, =00y, is the
domain of the attribute a;e A, L, denotes the number of nominal values of the attribute a,,

L;z2, j=L..,K. Each object ¢,eU isrepresented by K elementary conditions in the

following manner:

e, = (@ €y g Droalag€{ve, o, (1)

where v eV, and j=1..K. This notation states that the attribute a; takes the value
)

g

for the object e, . The index t(j,n) for je{1,2,..,K} and n€{1,2,..,N} specifies which

Y
\j.l(j‘n)

value of the attribute 4, is used in the n-th object.




For instance, for the attribute @, and L= 4, the set V, using letters of the alphabet can
have the following nominal form V, ={a, b, c,d}. Anexemplary data object for a given

ne{l,..,N} and K = 4 can be written as follows:
e, =({l] € {b))/\(nZ € {tl})/\(a_, € {a))/\(nJ € (c)) .

We consider the problem of clustering a set U into C disjoints sets (i.e. clusters)

C
c,.C,,..C, ,where UC, =U and C, nC, =@, for u=w. It is required that the objects in
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each cluster arc in some sense ‘similar’, and the objects from different clusters should
be ‘dissimilar’. In the proposed CPM method we introduced a measure of clusters’
perturbations which describes in some sense clusters’ similarities and clusters’ dissimilarity.
The proposed algorithm belongs to a family of hierarchical clustering algorithms. We start
with N objects as individual clusters and proceed to find the whole set U as one cluster. A pair
of clusters described by the lowest value of clusters’ perturbation measure is coupled creating
a new cluster, and in this way the number of clusters is decreased by one. For a fixed number
of clusters C,C <N, we stop the clustering when exactly C clusters are found. The set

of clusters on U is denoted by C(U).

3. Clusters similarities
3.1 Preliminaries

Let us consider the attributea, € 4, j€{l,..,K}, where V., is the domain of the attribute

a; and the k-th set A cV, , card(A,,,)21. The condition described by (a;€ 4, )

Jutiky = a, ’
means that atiribute a; accepts values from the set A, . For instance, the condition
(a,€{a.b, f}) means that clause (a, € {a})v(a,€{b})v(a,e(f}) is satisfied.
For a pair of conditions as well as for a pair of clusters there is introduced the definitions
describing mutual relations, respectively.

We say, that the condition (a, € &, ,,,,) dominates another condition (a,€ A, ) if the

clause A; 24 is satisfied, denoted by (a,€ A ;) =(a,€ A, .).

Jatik) S

For instance, the condition (a,€{ab,f}) dominates the condition (a;€ {a,f}),

ie. (a;e{ab,f}) = (a;€la, f}), and does not dominate the condition €.g. (a, € {a,c}).




It should be noticed that dominance is a transitive relation, and following conditions
are satisfied: if  (a;€ A, ) =(a,€ A,;,,,) and (a,€ A Vr(a;€A,,,,) then
(@, €A, i) =@, €A ;).

Using the term a condition, every cluster C, can be described by a conjunction
of conditions associated with the set of values of the attributes describing objects,

C,= (4, €A u )~ Alag€E Acika)s
)21 for je{l.. K}.

where A cV, , card(A
J

sty = FRIVA

For instance, for the attributes A ={a,,a,,4,} and V, ={a, b, c}, V, ={d, e}, V, ={f g ],
i}, we can describe an exemplary cluster C, as (a, € {a,c}) A{a, € {d)) A (a, € {g.i}).

We say, that an object ¢, e C, if the following relations of conditions’ dominance are
satisfied:

(a; € Aj.,(j‘ﬂ) = (a,€ {"/.:u.n)}) , Vjell..,K}.

The exemplary object ¢, =(aq,€{c))A(a,€{d})r(a,€li}) belongs to the cluster
C,=(q €{a,c})rla,ef{d}) nla,€{g,li})) because the following relations are satisfied:
(a,efa,c}) = (a € {c)), (a,€{d}) » (a, e {d}), (a;€{g.h.i}) = (ay € {i}).

Let us consider a pair of clusters: c,, containing the objects {e,: ne J, Sl NI}, and
C,, containing the objects{e,: ne J,, L., N}, where J, nJ, =@. The join between

these clusters is defined as:

X
C,@C, =nla,eA
1 £ j=1

J=

PRIV D] e Aj.l(i._u;)) ‘
A mnew cluster C, contains objects from the pair of clusters{e,: neJ, wJ }. For

instance, the procedure of merging a pair of cluster in order to create a new one is shown

in Table 1.
Table 1
Cluster \ Attribute G | G 4 a 45 | Qg | G5 | Gy | & | Oy
C,ile, e} e | elghl ed dl gl egifel Fi f
Cpile e e) fle|lsg| fe | e|e|s]|se|sf ¢
C=C,®C e,y ene et lef|l elah|l edfldel g g|fglfelfe

The term of dominance of conditions can be extended on a clusters’ dominance. Let us

consider a pair of clusters described as follows C, =(aq,€ A, ) A n(ag € Ag k) and



C,,=(a, € A ) A Alag € Ag i) - The dominance of clusters can be determined on the
ground of the dominance of conditions. We say, that cluster C, dominates cluster C,
(denoted by C, > C, )if the clause (¢, € A\, ) )=(a, € A ,,,), Y/, j=1...K, is satisfied.

For instance, an exemplary cluster (a,€{a,b,c})A(a,e{b})A(a,& {b,c}) dominates

cluster (a, € {(b,c})n(a, € (bY)A(as € {c}) and does not dominate

(a, € {chHhnla,ela}) nlas € (c}).
In the next section measure of clusters’ perturbation is define for nominal attributes,

which describes in some sense clusters’ similarities.

3.2 Measure of perturbation

Let us consider two clusters:  C, (€A, ) onlae€Ag,,,) and

C, {8 € Ay ) A A Gy € Ag i) - Altaching the j-th condition in cluster €, to the j-th
condition in cluster C, can be considered that the second condition is perturbed by the first
condition, in other words the condition («; €4, ,) perturbs the condition(a,€ 4, ),
je{l,..K}. Here we propose the following way tomeasure a level of condition’s

perturbation.

Definition 1. Measure of perturbation of condition (a, € Ayen) bY condition (a; e A )

je L. K}, is defined in the following manner:

card(A;, o N isren) . @

P A ; =
er((a; e etan)) card(V, -1

jatia) (@G EA

For instance, for V, ={a.b,c,d,e}, card(¥,)=5, a few exemplary measures of

1

perturbation of conditions are shown below.

el b

, Per((a,e{b,c}) = (a,e{a,c})) =

Bl

Per((a, € {a,c}) = (q,€{b,c})) = i



a,b,c,d

Per((a, € {a,b,c.d,e}) — (a, € {e}))=%=l, Per({a,efe}) = (a € {a,b,c.d,e}))= 0,

a,b,c

I

Per((a,€ {a,b,c}) = (aq, € {a,b,c})))= 0.

Definition 1 can be applied for all conditions of clusters, and in this case we consider

attaching a cluster C, to a cluster C, , or in other words a perturbation of the cluster C, by
the cluster C, . In this way we can introduce a definition of the measure of perturbation of

one cluster by another.

Definition 2. Measure of perturbation of cluster C by cluster C, (denoted Per(C, + C, ))

is defined in the following manner:

1 &
Per(C, = C, )= _EZ Per((a, € A,,, ) (@, €A, ). 3)
=

It is easy to notice that (3) can be rewritten as follows

L &eard(A; ;0 VA ) . Y

?Z card(V, ) -1

Ja

Per( C,mC, )=

Let us consider two clusters €, and C, . Measure of perturbation of cluster C, by
cluster C, iszero if and only if cluster C, dominates cluster C,, which can be stated as

a following corollary.

Corollary 1. Per(C, > C, ) =0 ifand onlyif €, »C, .




Additionally we can prove that a measure of the cluster’s perturbation is always positive

and less than 1, as shown in the Corollary 2.

Corollary 2. Measure of perturbation cluster C, by cluster C satisfies the following

inequality

OSPer(CKI ~ C, )<l

For instance, let us consider two clusters: C, :(a, €{a,b,c}) Aa;, e {d})A(a; €{g.1}) and
C,, Ha e lbeNala, eld)) ala;e{gh, where K =3, V, ={a,b,c}, V, =ld.e.f}, ={g.h}.

Measures  of cluster’s  perturbation  are calculated as  follows: Per(CKIHCKl)

%(} 9,1 )_~ and Per(C,, > C, )__(°+°+°) 0.
In the next section we describe the proposed algorithm CPM based on measure of

clusters’ perturbation. The algorithm is iflustrated by a simple example.

4. Clustering algorithm
4.1. Algorithm description

We proposed a hierarchical agglomerative approach to cluster nominal data sets. The
bottom level of the structure of clustering has singular clusters (objects) while the top level
contains one cluster with all objects. During the iterative process the pair of closest clusters is
heuristically selected. The selected pair of clusters is then merged to form a new cluster. The
basic elements of the proposed CPM method are introduced below.

Suppose we have a finite set of objects U ={e,}, n=12,...,N . The objects are described

in the form of conditions associated with the finite set of K attributes. We intend to split the
C
set of objects U into nom-empty, disjoint clustersC(/)={c,.C, ...C,.}, UC, =U,
! : ¢ st
C, nC, =, for u#w, C - assumed number of clusters. It is assumed that each object must

belong to only one cluster. The algorithm is formulated as follows.

Step 1. We assume that each object creates one-element cluster in the initial set of clusters
CU), card(CW) =N, ie CU)=1{C,.C, ...C, }, where ¥n=12,.,N
C,.=(aq &y, gD nlage (Vexm ) = (g € Ao A~ (ag € Ag ieny) -

Step 2. We create a matrix of cluster’s perturbations MP: card(C(U)) x card(C(U}), where




MP[nm] = Per(C, = C, ), n=12,.,card(CU)), m=12,....card(CU)), n#m.
Next, we find two clusters CL and Ct that minimize the following criterion:

Per(C, ,C, )= min Per(C, = C, )

Vel 1ed (C(U )y}
Vo (L2 eard{C(U))
nem

Step 3. We create a new cluster in the set of clusters C(U),
C,. = Co ®C, =(a € Aoy VA A A E Ag iy Y Ag i)
where C,  containing the objects {e: e€ U, e€ C, UC, }.

Step 4. The clusters C, and C, are removed from the set C(U). Thus,
card(C(U)) = card(C(U)) - 1.

Step 5. If the required number card(C(U))=C is reached go to Step 6; otherwise modify the

matrix MP within Step 2. The modification of MP[n,] relies on removing of the n-th and
m-th rows as well as the n-th and m-th columns and at the end adding a new row and

column. The new row and column are related to the new cluster C, . The perturbations
Per( C,.. —C, ) for j=1...card(C(U))—1 and Per( C,mC, .,.) for i=1,..,card(CU))-1

are counted.

Step 6. STOP. We have obtained non-empty and disjoint a set of clusters C(U) = {C,, ...,

}, where card(C(U)) - states required number of clusters,

Beunitiity
C‘M:(aI € A““I”I))/\.../\ (a, € AK‘”N.M)), s CA,‘. =(a, € Al_,“..‘,l)) AnA(a, € A'\'~'(Klk‘4))
where A, gV, . je{l... K}, ie{l..C}.

4.2, Hustrating example
Let us consider data shown in Table 6. The objects ¢', ¢, e*, e*, ¢* and ¢° are described

in the form of conditions associated with the set of attributes { a,,..., a5 .

Table 6
L Object \ Attribute | @ | @ | & | a, | as
e’ clbiyalalb
e’ blalblalc
I d|biclaib
e’ dlalal|b]a
& blalblbla
e® diblclalbd




The set V, is the domain of attribute a,, j=1..5; that is V, ={b,cd}, V, ={ab},
v, =labc}, v, ={ab}, V, ={abc}. Our aim is to group the objects into prescribed number
of C'=2 clusters. At the beginning we assume that each object creates one-element cluster in
the initial set of clusters C(U): {C,,-Cy s Cy by card(CU)) =6 in the following way:

C, g efchala,ebhnnlaselbhy, ..., C, g e{d)IAla, € B A...Ala € (b)),

see Table 7.
Table 7

Cluster \ Attribute | @) [ 4; | a5 | @, { a5
T
Cy: {‘ } clblajalb

.{,1
' &

3

»«.—T—\—
a
S
[}

Ewmianicw
RSt Nl Nl
2

A |a
SRS
= o |a
8

:ﬁ
Sl

d|blclalb

We count values of measure of perturbations of cluster C, by C, (the matrix MP), where
) :

MP[i,j] = Per( C, - Cv, ), i#j, i=12,..,6, j=12,..06,sec Table 8.

Table 8. Matrix MP

Cluster \ Cluster Co | Co| Co | Cu | G, Cxo
¢, - L2 | s |35 | mio] 210
€ 12 - ||z |yio| 12
€ us |12l - {35 )10] 0
Cy, s b |s] - L5 35
C, 7/10{3/10{7/10} ¥/5| - | 7/10
Ca ol 2] o [s 0] - |

The minimal values in Table 8 appear for two clusters €, and C, , then from a pair
of clusters C, and C,, anew cluster C, is created, while clusters C, and C, are removed
from the set C(U). Thus, card(C(U)):=card(C(U))-) =5, see Table 9. The newly formed

cluster is shaded in the table.

1



Table 9

Cluster\ Attribute | @, | 4, | 43 | 4, | as
Cy, 7;]} c b a a b
ij{zzr bl ald a c
G {eq dla|albla
c,: '} blalb | bla

Gy, {63’66} dlbicjlaibd

Because the number card(C(U)) =5 > 2, we modify a table of cluster’s perturbations, see

Table 10. The newly calculated values are shaded in the table.

Table 10
Cluster \ Cluster Cx. Cx: Cm Cu;TCm
C, - 12|35 17101 15
Cy, 12| - |12]310{ 12
C, 35| 12| - s |35
C,, 7/10(3/10] 1751 - 17/10
Co s | 12 |35 tano) -

The new cluster C, is created on the base of clusters C, and C,, see Table 11.

The newly formed cluster is shaded in the table.

Table 11
Cluster \ Attribute | 4} @, | &, | a, | 4,
Cut P} bial|blajc
C., :T‘?T} diala|bla
¥l 1 ulalsls]a
Cx;:P’eJ’EG} cdlblac|a

Because card(C(U)) =4 > 2, we modify a table of cluster’s perturbations in the following

way, see Table 12. The newly calculated values are shaded in the table.



Table 12
c |C |C,1C

Cluster © £ 0 I
C, - 2 |30l 10
Co 12| - |2n10] 102
Co  |3n0]2710] - [7110
C.  |m0]710]9n0] -

From a pair of clusters C,, and C, is created a new cluster G, , see Table 13. The newly

formed cluster is shaded in the table.

Table 13

Cluster \ Attribute | & | 4, | 43 | a4 | 45
CA’: ‘{62}7 b b

. 3 6
C,: {e',e e }

ng:{g‘,gs} bdlalablb]a

cd|blaclalb

Because card(C(U))=3 > 2, again we modify a table of cluster’s perturbations, see Table

14. The newly calculated values are shaded in the table.

Table 14
Cluster C.Uz Cn Cg.,
C,, - 12 3/10
Co  |7010 - 7/10
c, 121 110 .

A pair of clusters C, and C, creates a new cluster C, , see Table 15. The newly formed

cluster is shaded in the table.

Table 15
Cluster \ Attribute a a, | a4y | 4, | 44
C,: {el’ej’e;} ed |blacl alb
R
C.v.o' {e €€ } b, d a|a bla bla, c

The required number of clusters has been already reached, card(C(U/)) =2. We obtained

the following set of clusters C(U)= {CA,_ Ch } where

C,, (a e {c.d)) ala, € (D)) A (a, € {ac)) ala, € {a)) Alag € {b}) and C, ={e,.e,.¢,},



C,, (a,€{b.d))n(a, € {a) A (ay € {a,b}) Ala, € {a,b}) Ala; € (a,c}) and C, ={e,.e, e}
In this way, two clusters were formed. The hierarchical clustering dendrogram

representing the entire process of clustering starting from individual objects and ending with

two clusters G, and G is shown below.

X k7

£

Figure 1. Dendrogram

5. Cluster validity

Measure of goodness of a clustering obtained by different algorithms is very important issue
in clustering analysis. Determining the correct number of clusters in a data set has been, by
far, the most common application of cluster validity. There is no universally “best” measure.
Many different indices of cluster validity have been proposed and tested, such as the Dunn’s
validity index (1974), Davies-Bouldin’s index (1979), the Xie-Beni’s validity index, and the
Gath-Geva’s index, etc.

In this section a new measure of validity of clusters’ set are introduced. The proposed
cluster validity index is based on the degree of concentration of clusters as well as the
distances between them. The proposed measure of validity of clusters’ set are intended for

nominal attributes.

14



5.1. Cluster concentration

Let us consider cluster C =(q,€ A ) A n(ag € Ag ), Where A, CV,
card(A; ,; )21, jell..K}. The set V, ={v,,v,,,...v;, } isthe domain of the attribute

a;e A, j=1..,K. Conditions’ concentration measure can be introduced by the following

way.

Definition 3. Measure of concentration of condition (a,€ A, . ), for card(A;,; )21,
is defined in the following manner
cardV, y—card(A, .. .,))
MOl € Ay, ) == S ©)
h card(V, )-1

For instance, for attribute a; and V, ={a,b,c},a few exemplary measures of concentration
’

, MC(a, e {n,b,c})=§;—3=0.

SRR

- )
are shown, MC(a; € {a}) =¥=l, MC(a; € {a,b}) =—37:=

For the set B,, where B, gV,,/ and card(B,;)20, a measure of concentration condition

(a; € B) is defined in the modified form

('ar(l(V"/ )—card(8;) o

MC'(a, e B)=
(a,€ 5;) card(V, )

It is easy to notice that measure MC‘(aj € 8,) satisfies the conditions OSMC'(n].e B)<L.
Next, we introduce a definition of clusters’ concentration as an extension of the

conditions’ concentration.

Definition 4. Measure of concentration of cluster C, (denoted by MC(C,)) is defined in the
following manner:

"
MC( Cx) = % ZMC((IJ € Ai-l(]-.U)) : (8)
=l

cnrd(Vn/ )—card(A;,, )
card(V, ) -1 ’

P
It is easy to notice that MC(C,) = % >
=1



Corollary 3. Measure of concentration of cluster C, satisfies the following condition

0SMC(C,) <.

For instance, we assume that V, ={a,b,c}, V, ={d.e,f}, V, ={g.h}. A few exemplary

measures of concentration of clusters are shown below
1,3-1 2-1
L2 Zy=1,
3 ( 2 )

MC((a,€ (a}) a(a, € Lf)) A (ay & (g))) = #2214

MC((a, € (a,b,cyna, e{d,e. f)A(a,€{g,h})) = é-(g—;—3+37+2—}2)

I
=

5.2. Distance of clusters
Let us consider two clusters C, and C,_, where C, :(a,€ A, ,,)A-A(ax € A ,.)) and

Ch:(a,e AL A A (@ € A gn) s AJ,”“)CV A/,U“)QV{, where card(A,,, )21,

card(A y21 for je{l..,K}. The set v, =tlv /..,,v]._z,...,vj.L‘} is the domain of the attribute

Jaieg)

a;€ A. We proposc measures of distance between two clusters in the following way.

Definition 5. Measure of distance from clusterC, 1o C, (denoted by MD(C, = C, )}

is defined in the following manner:

MD(C, - C,) = ——ZP(’I((n €A @€ A, D MC e A, NAL ). )

=l
Using (2) and (7) it is easy to rewrite (9) in the new form

5 card(A

MD(C, > C,,) = %Z 70 M i) CAVe, N A0 O Ay (10)

card(V, )-1 card(V, )

Corollary 4. Measure of distance from cluster C,, to C,_ satisfies the following condition

0<MD(C, > C,)<1 .

For instance, let us assume that K=2 and V, =V, =(a,b,c,d,e}. A few exemplary cases of

the measures of distance from cluster G, to cluster C,, are shown below:



C :(a e{al)rla,ef{c)), CH: (a, € {b}) Ala, € {e}),

L

MD(C, s € =33+

C,:(a elach)nla,elech, C, :(aqc {b.c}) r{a,eld,c}),

+

(VRN

1
24

MD(C, > C, )=~

C :(a,ele)nlu,e{byc)y, Ch (a, € {a,be})~(a e {b,),

Ll

03
+—-=)=0,
( n 5)

R | —
o
[N

MD(C, — C, )=

C(aefabenlaelbe), C, :(aqefe))rla,elbel}),
124 03 1
MD(C, = €I =357 a9

Now let us assume that K= 3, V, ={ab,c}, V, ={d,e,f},V, ={g,h}. The distances

between the following clusters
C,(a,elab,c) ala, e{d})ala, €{g.h}) and C,:(a € (e n(a, ef{dP ala,e{g))

are calculated below

1 0 3- 2- 2
MD(C, — C, )= ! (i-— + 0231 +l ——l) ==,
@ “ 323 2 3 1 2 9
10l 03-1_,02-1 _
MD(C i C =y Gty ) =0 =

5.3. Validiry of clusters’ set

Let us consider clustering results, i.e. the set of clusters on U, denoted
by cy={c,.C,, .,...C,.}, card(C(U))=C. Wepropose the new quantitative validity
of clusters’ set C({/) which is a sum of a product of two terms. The first term determines

aminimum measurc of distance between two clusters C, and C, , V(u,w), lSu<w<C.The

second term determines an arithmetic average of measures of concentration of this pair of




clusters. When we consider C clusters then the number of possible connections between these
. C-(C-1
clusters is equal —(;—l

Definition 6. Validity of clusters’ set C(U) (denoted by P(C(U)) ) is defined in the following
manner:

MC(C, )+ MC(C
CD(C(U)):—Z— > min{MD (C, + C, ),MD(C, + C, )}——(—ii*—) (1)
C(C_l) 1gn<wsC o o ) ’ 2

Corollary 5. Validity of clusters’ set C{U), denoted by ®(CWU)), fulfils the following
condition 0 P(CU/ )<L,

The proposed measure of validity of clusters’ set is illustrated on example. For instance,

let us consider three objects shown in Table 16, U ={e',¢’.e’}. We assume, that

v, =l{ab.cd}, vV, =le f,8.h}, card(V, ) =card(V, ) =4, K=2.

Table 16
Attribute \ Object a, a,
¢ < f
o2 b ¢
I d f

Let us consider three sets of clusters C'(U)=1{C,.C, }, C'U)={C;.C;} and

C*'W)y={C,,C; .C, } shown in Table 17, 18 and 9.

Table 17. c'w) Table 18. c*(U) Table 19. C*@w)

Attribute Attribute Attribute
Cluster da, a, Cluster aQ a; Cluster qQ a,
C,:{e') ¢ ya C;‘:(ez} b e C;I:{e'} c i+ f
C e ey | pa e f Ci:{elJJ} od| f chie} b | e
Cliet) d

Our goal is to compare the validity of clusters’ set ¢'(v), ¢*(U)and C’() using @

function. The higher value of the validity function means the better clusters

configuration. First, we obtain the measure of concentration of these clusters:



mMc(c, =1, meey=1, MC(C;)=1,
MC(C, )= 4/6, MC(C; )= 516, mec)y=1.

The clusters’ distances are shown in Table 19, 20 and 21.

Table 19. MD(CL > C}) Table 20. MD(C] - cj‘) Table 21. MD(C; le)
Cluster C.:‘, CL Cluster C;»'. Ci Cluster C:». C:,l Ci.
c - s c R NVE c - (e
c 1724 - c: 2 - . 73] - 13
C; 1/6 | 1/3 —J

From Table 19, 20 and 21 we calculate @ function as the validity of clusters’ sets

11,5 5
SC(U)) =1 -min{—,—}->=—,
(©wn m'n{e 24} 6 36
2 I I T RN )
OC*WU)N =1-minf=,~} —=—,
(C°wn mm{3 2} 2" %
(D(CJ(U)):%-(min{é—,%)-l+min{é,é)-l+min[%,—;—}-l)=%.

The value of the function &(C*(U)) is highest compare to the values ®(C'(U)) and
O(C*(UY), so the division C*(U) is better than ¢'(/) and C*(). It is consistent with intuition,

because the set C*(¢/) is disjoint and in each set C'(U) and C*(U) there is a common part.
] p

6. Conclusions

In this paper we introduced a new Clustering Perturbation Method which is suitable to
cluster nominal data set. New definitions related to dominance of conditions, measure
of perturbation of one condirion by another condition, measure of perturbation one cluster by
another cluster, as well as the introduced new measure of clusters’ concentration and new
measure of distance between clusters give a basement for the new method of clustering.
Additionally, we introduced a new definition of clusters’ validity, which allows debugging the
clustering process quality.

In the text there are lots explanations of the new terms and definitions onboard in order to

make the paper more readable.



It seems that this method is not sensitive on arrangement of objects at the beginning and
the costs of computations are reasonable — in Section 4 we described the new algorithm and in
respective tables the shadowed fields point out the extra costs within each iteration of the
algorithm. Additionally the method avoids the effect of attraction small clusters or even
objects by much more large clusters (numerous clusters), it means that in the final stage of
clustering we can obtain even a separate object as a cluster.

At the end we performed an illustrative example to support the efficiency of the
Clustering Perturbation Method. The example was run for the data prepared according to the
procedure described in Appendix 2, and the data treat a problem of dimension reduction
without losing crucial information of data series. The result of clustering was perfect what
allows us to presume that the CPM provides good quality and stable clustering for nominal
data for nominal data.

It seems that this methodology can be extended to more general clustering algorithms
applicable to methods. Due to the introduced idea of perturbation of one cluster by another,
and introducing the measure of clusters’ perturbations, it seems to be rational to call the

proposed method as (CPM), which can be applied directly to clustering of symbolic data sets.
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Appendix 1

Corollary 1. Per(C, = C, ) =0 ifand only if C, »=C,.
Progf. The “if and only if” statement is proved by showing that the causal relationship is met

in both directions.

1) We begin by the lelt to right implication: Per(C, = C, )=0 = C, =C,.

We assume that Per(C, CA';) = 0. By Definition 5, function Per(C, > C, ) is non
negative, and reaches a minimum when there is a condition card(A,,,, \\A,,;.,) =0,
Vi je{l..K}. If card(A;, VA ,.,) = 0 then conditionA,,,  C A, . is satisfied.
So, by Definition I, C, = C, is satisfied.

2) Consider now the right to left implication: C, » C, = Per(C, — C, }=0.

Let us assume that cluster C, dominates cluster ¢, C,~C,. By Definition 3, the

clause (¢ € A D@ € ALy L)y Vi j=1., K, s satisfied. Next, by Definition 1, conditions

bl g,

Vi j=l..K, are satisfied.  Thus, A, VA, =0, and

A CA,

Jaelhg) Jaie?

\ A }=0, Vje{L..,K}. Thus, we obtain Per(C, C,)=0.

card(A,;

Jatr) gD

The equality Per(C, = C, )= 0is always verified when C,, = C, .

Corollary 2. Measure of perturbation cluster C, by cluster C satisfies the following
inequality

0<Per(C, > C,)SI.
Progf. 1) We first prove the first inequality Per(C, +— C, ) 20.

By Definition 5 it should be noticed that the inequalitycard(A,,, ,\A q,,) 20,
Vj€{l...K}, is satisfied. We thus obtain Per(C, = C, )2 0.

2) Let us prove now the second inequality, Per(C, = C, Y <1,

For each je(L...K) we consider the sets A, ., cV, and A, . cV, . It should be
noticed that the inequalities |<card(4,,,,)Scard(V,) and [<card(4, ) Scard(V,) are
satisfied. We thus obtain the inequality card(A,;, A, ,.,,,) Scard(V, )~1. So, we obtain the

following inequality
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s

Per(C, - C, )< ! Zcmd(v )_l

K S eard(v, )1

Corollary 3. Measure of concentration of cluster C, satisfies the following conditions
0<MC(C,)<

Proof. 1) We first prove the first inequality MC(C,)=20

We consider sets A, cv. .

vje {l,..,K}, so lScar{l(Al'“m))Scar{l(Vﬂ’). It should be
noticed that card(V, )= card(4, ,,,,) 2

)20. Thus, we get the inequality MC( C)z0
2) Let us prove the second inequality MC(C,) <1

We consider sets 4, o <;V,, , card(A;,; D21, Vi€ (L. ,K}. It should be noticed that
the inequality cardV, ) —card(4, ;) Scard(V, ) -1, Vje{l,..K} is satisfied. We thus obtain

1 &eard(V, ) =1
MC(C))s-~) ———+——=
(€ IS ;,mr(/(vnl )-1

Corollary 4. Measure of distance from cluster C, to C,, satisfies the following conditions
0<MD(C, - C,)<I

Proof. 1) We first prove the first inequality MD(C, — C, )20

We consider sets Al <;V and A, an © n , Vje{l,..,K}. It should be noticed that
the inequalities Vj€ {I...K}, card(A,,; VA, ;)20 and card(V, \(A

11(“) u(/m))>0
carrl(V”I)—l >0 are satisfied. Thus we obtain MD(C, — C, )>0

2) Let us prove now the second inequality MD(C, +— C, ) <1

It should be noticed  that card(A; oy N\ Ay ) Seard(V, )-1

K}. Thus

and
card(V, \(A//(/ e

A SeardV, ), Vjefl,.,

we obtain the estimate
£ card(V, )~1 d(V,
MD(C,,C, )< szf”_’(_)_w= 1.

R K5 card(V, ) =1 card(V, )

Corollary 5. Validity of clusters’ set C(U)

, denoted by ®CWU)Y)
condition 0 SD(C(U/ )<,

, fulfils the following

23



Proof. 1) We first prove the first inequality ®(C(U))<1. The conditions MD (€, m»C, =],
MD(C, »C, )<l (Corollary 4) are fulfilled. It should be noticed that

MCC)+MCC)

5 (Corollary 3). So we obtain

2 AC -
L= —2 .Sy

.
OCW)) € ——— D —
CO <z 2 ce 2

2) Let us prove the second inequality O(C({/)20. Because the conditions

MD(C, = C, )20, MD(C, »C, )20 (Corollary 4) and conditions MC(C, )20,

MC(C, )20 (Corollary 3) are fulfill, we obtain &(C(U/)) S Z(O'QLO) =0.
" C- (C - 1) 1€newsC 2
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