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A new clustering method for nominał attributes 

Maciej Krawczak and Grażyna Szkatuła 

In this paper is presented a new method for cłustering of objects described by nominał 

attributes. The method is based on the set theory. The simiłarities measures and distance 

measures between objects are attuned for nominał attributes and are based on the conditions' 

dominance for each attribute. There are introduced a definition of conditions' pe11urbation for 

each attribute and a measure of cłusters' perturbations. They allow us to desc1ibe in some 

sense cłusters' simiłarities and are used for coupłing of cłusters by twos. A pair of cłusters 

described by the lowest value of clusters' perturbation rneasure is coupłed creating a new 

cluster, and after removing this pair the number of cłusters is decreased by one. Next, there is 

defined a measure of clusters' concentration as well as a measure of cłuster's distance. These 

two measures resorted to compute an evaluation of clusters' set. This evaluation allows us to 

compare different sets of cłusters which are obtained du1ing clustering process. In the paper 

the new definitions are elucidated by examples, and there is considered a case of data series 

clustering problem as an illustrative example. 

Keywords: Clustering; Nominał attributes; Theory of sets 



1. Introduction 

There are collected lots of data characterized by huge number of objects and each object 

is characterized by a large number of attributes. The attributes in a data set can be numerical 

or categorical; the categorical attributes can be either ordinal or nominał. In a case of the 

ordinal attributes same order relationship between elements of the set of its values have to be 

distinguished, otherwise we can say about the nominał nature of the attributes. Often nominał 

attributes are considered in a symbolic way. 

Clustering is one of approaches for revealing structure of data sets. There are specialized 

algorithms for clustering long chains of symbols (Berkhin, 2006). The algorithms found 

applications e.g. in text analysis or in bioinformatics (Apostolico et al., 2002; Gioni s and 

Mannila, 2003, Lin et al., 2007). 

Most of algo1ithms dealing with nominał data are based on application of same distance 

measures between objects, e.g. Wang (2010), Domingo-Ferrer and Solanas (2008), where 

generały nominał attributes' values are changed inio digital and clustering problems are 

treated as numerical ones. However, there are attemptes to operate directly on categorical 

att1ibutes, e.g. a very intersting approach was proposed by Hu, Yu, Liu and Wu (2008) who 

used rough sets to evaluate categorical features, it means to reduce nume1ical and categorical 

features. 

In this paper our aim is to group a data set desc1ibed by nominał attiibutes on subsets. The 

proposed method is based on the theory of sets. However, we introduced severa! new 

definitions supporting the new cluste1ing method. Proofs of corollmies are contained in 

Appendix I. First, we defined a cluster as a conjunction of attributes' conditions, next we 

gave a definition of a domina11ce of conditions. The dominance of conditions is considered for 

each pair of clusters and for each attribute separately. Next, instead of conside1ing similarities 

between clusters, we introduced a measure of perturbation of one co11ditio11 by another 

condition. The idea of the measure of condition's pe1turbation is based on a relation between 

two att1ibutes' values sets, where each set belongs to different cluster's pair. This concept was 

extended on all conditions within describing the considered clusters, as a result we defined 

a measure ofperturbatio11 one cluster by cmother cluster. It is interesting that this measure is 

not symmetric, it means a value of the measure of pe1turbation of cluster e; by cluster ej can 

be different then a value of the measure of perturbation of cluster ej by cluster e;. A pair 

of clusters characterized by minimal value of the measure of clusters' perturbation can 
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be merged as a new joined new cluster. In this way the measure of clusters' perturbations 

is used for coupling the most si mi lar clusters by twos, and by replacing this pair by the new 

joined cluster the total number of the considered data set clusters is reduced consecutively. 

The results of cluste1ing algorithms can give different results of grouping the same data 

set, therefore evaluation of clustering seems to be very important. It is difficult to state when 

a clustering result is acceptable, thus some forma! validity techniques and indices have been 

developed. Two main measurement criteria have been proposed for selecting an optima! 

cluste1ing scheme: the objects of each cluster should be as close to each other as possible and 

the clusters themselves should be widely separated. If a data set contains well-separated 

clusters, the distances among the clusters are usually large and the dispersions of the clusters 

are expected to be small. 

Often the process of clustering, it means the process of reducing the number of clusters for 

the considered data set is kept on until the presc1ibed number of clusters is reached. For 

nume1ical data it is quite easy to define a measure of clustering quality (Manning, Raghavan 

and Schiitze, 2008), but in the case of nominał data a cluste1ing quality assessment seems to 

be less precise and mostly based on evaluation of clustering methods for benchmark data sets. 

One of the main goals of clustering is to assure that all objects collected within each 

cluster must be in same sense close, and it is possible to compute objects' concentration 

within each cluster. We introduced a 11ew measure of clusters' concentration calculated for 

each cluster. Our measure of clusters' concentration relies on comparison cardinality numbers 

of proper sets. In this case there are considered sets representing the domains of the attributes 

and representing the actual desc1iptions of clusters' attributes. 

The second main goal of clustering is to assure the clusters should be in some sense 

remote one from another. In this paper we introduced a 11ew measure of distance betweell 

c/usters, the measure is based on the idea of the sets' perturbations or clusters' perturbations 

and relations between the sets of the att1ibutes' domains as well as the sets representing 

descriptions of clusters' attributes. 

In our paper we introduced a new definition of c/usters' va li dity, which is meant in the 

following way. There is a set of clusters, each cluster is characte1ized by its measure 

of concentration, and any pair of clusters is characte1ized by two measures of the distance 

between clusters within the pair. The measure of distance between clusters is not symmetJical 

- it means that the distance from cluster e; to cluster ej may be different then the distance 

from cluster ej to cluster e;. For each pair of clusters the !ower distance is chosen and the 



average measure of concentration is calculated, and then a product of these two values is 

obtained. The sum of such products done over all pairs of the considered clusters constitutes 

the new measure of clusters' validity. In the following sections it is proved that this measure 

of clustering quality is ranged between zero and one. The proposed measure of validity of 

clusters' set are intended for nominał att1ibutes. In the paper many deductions are illustrated 

by simple example in order to clmify the new definitions. 

At the end there is an illustrative example, which shows the efficiency of the proposed 

method. 

The developed algorithm has severa! features common with standard ones, namely our 

algorithm is hierarchical and agglomerative ("bottom-up"). Hierarchical cluste1ing (defined 

by Johnson in 1967) is starting with N clusters (each containing one object). This kind 

of algorithms can find the closest (most similar) pair of clusters and merge them into a single 

cluster. The main weaknesses of agglomerative cluste1ing methods are that they can never 

undo what was done previously. 

Due to the introduced idea of perturbation of one cluster by another, and introducing the 

measure of clusters' perturbations, it seems to be rational to call the proposed method 

as Clustering Perturbation Method (CPM), which can be applied directly to clustering 

of symbolic data sets. 

2. Problem statement 

Given is a finite set of objects U= { e,, ), indexed by 11, 11 = 1,2, .. . , N. The objects are described 

byKnominal att1ibutes A={a, , ... ,aK) indexed by j. The set v., ={vj _,,vj_, , .. . ,vj.L, } is the 

domain of the att1ibute a j e A, L j denotes the number of nominał va lues of the attribute aj , 

L j ;?: 2, j =I, ... , K. Each object e„ e U is represented by K elementary conditions in the 

following manner: 

( l) 

where vj. ,u ... , e v., and j = I, .. . ,K. This notation states that the attribute a j takes the value 

vj.,,j_,,, for the object e,,. The index 1(),11) for je (1,2, ... ,K} and ne (1,2, ... ,N} specifies which 

value of the attribute aj is used in the n-th object. 
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For instance, for the attribute a 1 and l j = 4, the set v., using letters of the alphabet can 

have the following nominał form V,,, = (a, b, c, d). An exemplary data object for a given 

ne (!, ... ,N ) and K = 4 can be written as follows: 

e,, = (a, E (b}) A (a, E (d}) A (a, E (a}) A(a, E (cl) 

We consider the problem of clustering a set U into C disjoints sets (i.e. clusters) 

C 

c, , c,, , ... , c, . , where U c, = U and c, .. n c,. = 0, for "et w. It is required that the objects in 
I • ' i:J ,, 

each cluster are in some sense 'similar', and the objects from different clusters should 

be 'dissimilar' . In the proposed CPM method we introduced a measure of clusters' 

perturbations which describes in some sense clusters' similarities and clusters' dissimilarity. 

The proposed algorithm belongs to a family of hierarchical clustering algo1ithms. We start 

with N objects as individual clusters and proceed to find the whole set U as one cluster. A pair 

of clusters described by the lowest value of clusters' perturbation measure is coupled creating 

a new cluster, and in this way the number of clusters is decreased by one. For a fixed number 

of clusters C, C < N , we stop the clustering when exactly C clusters are found. The set 

of clusters on U is denoted by C(U). 

3. Clusters similarities 

3.1 Preliminaries 

Let us con si der the attri bute aj e A , je (!, ... , K) , where v., is the domai n of the attribute 

aj and thek-th set AJ.',j.kl sV.,, card(Aj.,u.kl)<'.l. The condition described by (a j e Aj.,u.,,) 

means that att1ibute aj accepts values from the set Aj.,u . ., . For instance, the condition 

(a j E {a,b,J}) means that clause (a j e {a)) v (a 1 e {b)) v (a1 e (f}) is satisfied. 

For a pair of conditions as well as for a pair of clusters there is introduced the definitions 

describing mutual relations, respectively. 

We say, that the condition (aj e AJ.,u.kll clominates cmother condition (a1 E A1_,u.,,,l if the 

clause A1.,,j.1J :1A1_,, 1_,,, is satisfied, denoted by (aj e A1_,,j.kl ) c:; (aj E Aj.,u.,,,) . 

For instance, the condition (a j e {a,b,f)) dominates the condition (a1 e {a,f)) , 

i.e. (aj e {a,b,f)) c:; (aj e (a ,f)) , and does not dominate the condition e.g. (aj E {a,c)). 
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It should be noticed that dominance is a transitive relation, and following conditions 

are satisfied: if (aj E Aj.Hj.kJ) t (aj E Aj·'"·"') and (aj E Aj·'"·"') t (aj E Aj·'"·"'') then 

Using the term a condition, every cluster c, can be described by a conjunction 

of conditions associated with the set of values of the att1ibutes describing objects, 

C,= (a, E A,.,"··")/\ ... /\(aK E AK_,,K_,,), 

where Aj.,u.,, s;; Vn, , card(Aj.,,j._,,) 2: I for }E {l, .. . ,K}. 

For instance, for the attributes A= {a,,a ,,a3 ) and V,, =(a, b, c), V,,, ={d, e), V,,, ={f, g, h. 

i), we can describe an exemplary cluster C_, as (a, E {a,c}) A (a, E {cl}) A (a 3 E { g ,i)) . 

We say, thai an object e„ EC_, if the following relations of conditions' dominance are 

satisfied: 

(aj E A j.,,j_,,) t (aj E {vj.,u.,,,}) , V} E {!, ... , K) . 

The exemplary object e,, =(a1 E{c})A(a2E{d})A(a3 E{i}) belongs to the cluster 

C_, = (a, E {a,c}) A (a, E {d}) A (a3 E {g,/1,i}) because the following relations are satisfied: 

(a, E {a,c)) t (a, E {c}), (a 2 E {d}) t (a, E {d}), (a3 E {g,h ,i}) t (a 3 E {i}). 

Let us consider a pair of clusters: c_,,containing the objects {e,,: 11E 1,, c{l, ... ,N}}, and 

c,, containing the objects{e,,: nel,, c{l, ... ,N) ), where l,,nl _,, =0. Thejoin between 

these clusters is defined as: 

K 

C,, (BC,, = t)aj E A,.,'1 .. ,,l U Aj.,(j._,,i). 

A new cluster c,, contains objects from the pair of clusters {e,,: 11 E 1,, u 1,,). For 

instance, the procedure of merging a pair of cluster in order to create a new one is shown 

in Table l. 

Table l 

Cluster\ Attribute a, lll a, a, a_, a, a, a, a, a" 
C,, : { e, , e2 ) e e g. I, e, d d g g f. g f f 
c,, : { e3 , e,, e5 } f e g f. e e g g g g.J g 

C,, = C,, (B C,, : {ei, e,, e3 , e,, e, ) e.f e g, h e, d.f d, e g g f. g f. g f. g 

The term of dominance of conditions can be extended on a clusters' dominance. Let us 

consider a pair of clusters described as follows C_,, = (a, E A,_,,,.,.,) A ... A (aK E AK.,<K.,.,) and 
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c,, = (a, E A,., 0 _",il /\ ... /\ (aK E AK_,,K.,,,). The dominance of clusters can be dete1mined on the 

ground of the dominance of conditions. We say, that cluster c,, dominates cluster c,, 

(denoted by c,,?::: c,,) if the clause (a, E A,.,o .. ,,,J?:::(a, E A1.,o .. ,,,), 'dj, j = !, ... , K , is satisfied. 

For in stance, an exemplary cluster (a, E { a,b,c )) I\ (a, E {b}) /\ (a3 E {b,c )) dominates 

cluster and does not dominate 

In the next section measure of clusters' perturbation is define for nominał attributes , 

which desc1ibes in some sense clusters ' similarities. 

3.2 Measure of perturbatio11 

Let us consider two clusters: C,,: (a, E Auo .. ,,,) /\ ... /\ (aK E AK.,<K.,,,) and 

c,,: (a, E Auo.,,,) /\ ... /\ (aK E AK.,cK.,,,). Attaching the j-th condition in cluster c,, to the j-th 

condition in cluster C_,, can be considered that the second condition is perturbed by the first 

condition, in other words the condition (ajEAj.,u.,,,) perturbs the condition(ajEAj.,u.,,,), 

JE{!, ... , K). Here we propose the following way to measure a level of condition 's 

pe1turbati on. 

Definition 1. Measure of perturbatioll of colldition (aj E Aj.,u.,,,) by colldition (aj E A j.,,i,,,,), 

j E {!, ... , KJ , is defi11ed in the followillg mam zer: 

card(Aj.,u.,,, \ Aj.llu,,) 
Per( (aj E Aj.,u ... ,,) H (a j E Ai,,u .. ,,,)) = -----'---'-"'---'--'-""'­

card(V",) -1 
(2) 

For instance, for V0 , = {a,b,c,d,e), card(V,,) = 5, a few exemplary measures of 

perturbation of conditions are shown below. 

l 
Per((a, E {a,c}) H (a, E {b,c})) = 4 , Per((a, E {b,c}) H (a, E {a,c})) 

4 
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Per((a, E {a,b,c,d ,e)) H (a, E {e)))=.i~1, Per((a, E {e)l H (a, E {a ,b,c,d,e)))= O, 
4 

GJ 
Per((a, E {a,b,c)) H (a, E {a,b,c)))) = O. 

Definition 1 can be applied for all conditions of clusters, and in this case we consider 

attaching a cluster c.,, to a cluster c_,,, or in other words a perturbation of the cluster c,, by 

the cluster c,,. In this way we can introduce a definition of the measure of pe1turbation of 

one cluster by another. 

Definition 2. Measure of perturbation of cluster c,, by cluster C_,, ( denoted Per( C.,, H c,, )) 

is defined in the following man ner: 

) K 

Per( C,, H C.,,) = K ~Per((aj E Aj.,cj .. ,,il H (aj E Aj.,cj . .,,,)). (3) 

It is easy to notice thai (3) can be rew1itten as follows 

_!_ f, card(A;.,u . .e,I \ A;.,u . .,, 1) 
Per( c,, H c_,,) = L.., 

K j•t card(Vn,) -1 
(4) 

Let us consider two clusters c,, and c.,,. Measure of pe1turbation of cluster c_,, by 

cluster C.,, is zero if and only if cluster c,, dominates cluster c_,,, which can be stated as 

a following corollary. 

Corollary 1. Per( C_,, H c,,) = O if and only if c,, t c,, . 



Additionally we can prove that a measure of the cluster's perturbation is always positive 

and less than 1, as shown in the Corollary 2. 

Corollary 2. Measure of perturbation cluster c,, by cluster c,, satisfies the following 

inequality 

OSPer(C_,, H c,,) SI. 

For instance, let us consider two clusters: c,,:(a1 E(a,b,c))/\(a2 e(d))"(a3 e{g,h)) and 

c,,:(a1 e{b,c})"(a2 e{d})"(a3 e{g}), where K=3, v., ={a,b,c), v., ={d,e,f), v.,={g,h). 

Measures of cluster's perturbation are calculated as follows: Per( c,, H c,,) 

In the next section we describe the proposed algorithm CPM based on measure of 

clusters' perturbation. The algo1ithm is illustrated by a simple example. 

4. Clustering algorithm 

4.1. Algorithm description 

We proposed a hierarchical agglomerative approach to cluster nominał data sets. The 

bottom level of the structure of clustering has singular clusters (objects) while the top level 

contains one cluster with all objects. During the iterative process the pair of closest clusters is 

heuristically selected. The selected pair of clusters is then merged to form a new cluster. The 

basie elements of the proposed CPM method are introduced below. 

Suppose we have a fin i te set of objects U= { e,,}, 11 = I, 2, ... , N . The objects are described 

in the form of conditions associated with the finite set of K att1ibutes. We intend to split the 

set of objects U in to non-empty, dis joint clusters c(u) = { c,,, c,, , ... , c,, } , 
C 

UC, =U, 
i:! ' 

c,. n c,. = 0, for u et, w, C - assumed number of clusters. lt is assumed that each object must 

belong to only one cluster. The algo1ithm is forrnulated as follows. 

Step 1. We assume that each object creates one-element cluster in the initial set of clusters 

c(u), card(C(U)) =N , i.e. c(u) = {c,,, c,, , ... , c,, }, where 't/11 = 1,2, ... , N 

c,. = (a 1 E { v1.,o.,.1}) /\ ... /\(a" E { v K.,iK.,.>)) = (a1 E A1.,o.,) I\ ... I\ (a" E AK.,JK .. ,.>) . 

Step 2. We create a matrix of cluster's perturbations MP: card(C(U)) x card(C(U)), where 
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MP[n,111] =Per(C.,_ H C.,_), 11=1,2, ... ,card(C(U)), m=l,2, ... ,card(C(U)), n>'m. 

Next, we find two clusters c; .. and c; __ that minimize the following criterion : 

Per( c;., c;_) = min Per(C,. H C,. ) 
V,,e (l.'2 ..... rnnf(C (U)) 
V111E ( l , :! .. ... l'(ll'l/(C (U) ] 

Step 3. We create a new cluster in the set of clusters c(u), 

c, ... := c;_ EB c_: ... =(a, E A,.,o .. , .. , u A,.,(l ,g.,)) /\ ... /\ (aK E AK.,(K .. ,., u AK.,(K.,., ) 

where c, .... containing the objects {e: eE U, eE c;_ uc;, .. ). 

Step 4. The clusters c· . ~,, and c· 
.r: , • 

are removed from the set C(U). Thus, 

card(C(U)) := card(C(U))-1. 

Step 5. If the required number card(C(U)) = C is reached go to Step 6; otherwise modify the 

matrix MP within Step 2. The modification of MP[n,111] relies on removing of the 11-th and 

m-th rows as well as the n-th and 111-th columns and at the end adding a new row and 

column. The new row and column are related to the new cluster c, ... ,. The perturbations 

Per(C, .. . H C,, ) for j=l, ... ,card(C(U))-1 andPer(C,, H C, .• ) for i=!, .. . ,card(C(U))-1 

are counted. 

Step 6. STOP. We have obtained non-empty and disjoint a set of clusters C(U) = { c,,, ... , 

c, .. , .. w.,,,, ), where card(C(U)) - states required number of clusters, 

c,, = (a1 E A,., 0_,, , ) A ... " (aK E AK.HK .. ,,>), ... , C,,. = (a1 E A,., 0_, _, ) /\ ... /\ (aK E AK.,iK .. ,,> ) 

where Aj.,u .,,, kV,,, , jE {l, ... ,K). iE {l, ... ,C}. 

4.2. lllustrating exa111ple 

Let us consider data shown in Table 6. The objects e1, e2 , e3 , e', e5 and e' are described 

in the form of conditions associated with the set of attributes { a1 , ... ,a5 ). 

Table 6 

Object \ Attribute al a, a, a, a_, 
el C b a a b 

e' b a b a C 

e' d b C a b 
e' d a a b a 

e' b a b b a 

e' d b C a b 

10 



The set V,, is the domain of attribute ai, j = 1, ... ,5; that is V,, ={b,c,d), V,, ={a,b ), 

V,,={ a,b,c), V,,={ a,b), V:,,={ a,b,c). Our aim is to group the objects in to prescribed number 

of C = 2 clusters. At the beginning we assume that each object creates one-element cluster in 

the initial set of clusters c(u )= {C,, ,c,, , ... ,c,,.}, card(C(U)) = 6 in the following way: 

C_,, :(a1 E{c}),-(a2 E{b}),- ... ,-(a,E{b}), ... , c,, :(a1 E{d}),-(a 2 E{bj),- ... A(a,E{b)), 

see Table 7. 

Table 7 

Cluster\ Attribute a, a, a, a, a_, 

C. : {e'} .,, C b a a b 

C,, : {e'} b a b a C 

C,,: {e3 } d b C a b 

C,,: {e'} d a a b a 

C : {e'} ,, b a b b a 

C : {e 6 } i:,, d b C a b 

We count values of measure of perturbations of cluster c,; by c,, (the matrix MP), where 

MP[i,j] = Per( c,. H c,, ), i'# j, i= 1,2, .. . ,6, j = 1,2, .. . ,6, see Table 8. 

Table 8. Matrix MP 

Cluster\ Cluster cx1 c,, c_,, c.i:.~ c,, ci:6 
c.~1 - 1/2 1/5 3/5 7/10 2/10 

c,, 1/2 - 1/2 1/2 3/10 1/2 

c_,, 115 1/2 - 3/5 7/10 o 
c.i:.~ 3/5 1/2 3/5 - 1/5 3/5 

c,ltj 7/10 3/10 7/10 1/5 - 7/10 

ci:6 2/10 1/2 o 3/5 7/10 -

The minimal values in Table 8 appear for two clusters c,, and c,,, then from a pair 

of clusters C and C a new cluster C is created, while clusters C and C are removed 
,l:J -~6 .':1 ,lt) 11. 

from the set C(U). Thus, card(C(U)):=card(C(U))-1 = 5, see Table 9. The newly formed 

cluster is shaded in the table. 
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Table 9 

Cluster\ Attribute a, a, a, a, a, 

C,,: {e'} C b a a b 

C : {e'} 
-~2 b a b a C 

C,, : {e'} d a a b a 

C : {e'} 
>I~ b a b b a 

C : {e3 e6 } 
-~7 ! d b C a b 

Because the number card(C(U)) = 5 > 2, we modify a table of cluster's pe11Urbations, see 

Table 10. The newl y calculated values are shaded in the table. 

Table 10 

Cl us Jer \ CI us ter c.lt1 c,, CJ,/4 c,, CK, 

ci:1 - 1/2 3/5 7/10 1/5 

c,, 1/2 - 1/2 3/10 1/2 

c.~4 3/5 1/2 - 1/5 3/5 

c.~s 7/10 3/10 1/5 - 7/10 

c,, 115 1/2 3/5 7/10 -

The new cluster c,, is created on the base of clusters c,, and c,,, see Table 11. 

The newly formed cluster is shaded in the table. 

Table 11 

Cluster\ Attribute a, a, a, a, a, 

C,, : {e'} b a b a C 

c,, : {e'} d a a b a 

C,,: {e'} b a b b a 
C . {, I J 6} -~•. e .e ,e C, d b a, C a b 

Because card(C(U)) = 4 > 2, we modify a table of cluster's perturbations in the following 

way, see Table 12. The newly calculated values are shaded in the table. 
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Table 12 

Cluster c,, C ,, c,, c,, 
c,, - 1/2 3/10 1/2 

c_,, 1/2 - 2/10 1/2 

cf.:, 3/10 2/10 - 7/10 

c,, 7/10 7110 9110 -

From a pair of clusters c,, and c,, is created a new cluster G_,,, see Table 13. The newly 

f01med cluster is shaded in the table. 

Table 13 

Cluster\ Attribute a, a, a, a, aj 

C,,: {e 2 } b a b a C 

C,:, : {ei .eJ ,e6} 
C, d b a, C a b 

C_,,: {e',e'} b, d a a, b b a 

Because card(C(U)) = 3 > 2, again we modify a table of cluster's perturbations, see Table 

14. The newly calcu lated values are shaded in the table. 

Table 14 

Cluster c,, c,, c,, 
c_,, - 1/2 3/10 

c,, 7/10 - 7/10 

c,. 1/2 7/10 -

A pair of clusters C_,, and C_., creates a new cluster c,,,, see Table 15. The newly formed 

cluster is shaded in the table. 

Table 15 

Cluster\ Attribute a, a, a, a, a_, 

C · {e' 3 e6 } K,. ,e ' C, d b a, C a b 
c·{,'''} -'io. e ,e ,e b, d a a, b a, b a, C 

The required number of clusters has been already reached, card(C(U)) = 2. We obtained 

the following set of clusters C(U)={C,, ,c,J, where 

c,, :(a, E {c,d)) A (a, E {b)) A (a3 E {a,c)) A (a, E {a)) A (a, E {b)) and C,, ={e"e3 ,e6 }. 
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c,,. :(a, E (b,d))r-(a, E {a})A (a3 E {a,b))r-(a 4 E {a,b))r-(a, E {a,c}) and C_,,. ={e,,e,,e,}. 

In this way, two clusters were formed. The hierarchical clustering dendrogram 

representing the entire process of clustering starting from individual objects and ending with 

two clusters G and G is shown below. 
..... .f10 

c_,, 

c,. 

c,, 

c,, 

c,, 

c,,. 

c,, 

Figure l. Dendrogram 

5. Cluster validity 

Measure of goodness of a clustering obtained by different algorithms is very important issue 

in cluste1ing analysis. Determining the cmTect number of clusters in a data set has been, by 

far, the most common application of cluster validity. There is no universally "best" measure. 

Many different indices of cluster validity have been proposed and tested, such as the Dunn 's 

validity index (1974), Davies-Bouldin's index (1979), the Xie-Beni's validity index, and the 

Gath-Geva's index, etc. 

In this section a new measure of validity of clusters' set are introduced. The proposed 

cluster validity index is based on the degree of concentration of clusters as well as the 

distances between them. The proposed measure of validity of clusters' set are intended for 

nominał attri butes. 

14 



5.1. Cluster concenlration 

Let us consider cluster C,=(a, E A,.,0 __ .,)A .. l\(ax E Ax.,ix.,,), where Aj_,,j.,,, eV"; , 

card(Aj.,u .. ,,) 2:: I, JE{!, ... , K). The set V", = {vj_,. vj_,, ... , vj.L;) is the domain of the att1ibute 

aj EA, j = !, ... , K. Conditions' concentration measure can be introduced by the following 

way. 

Definition 3. Mea.wre of concellfration of condition (a j E Aj_,,j_,,), for card(Aj.,,w) ~ l, 

is de.fined i11 thefollmving manner 

card(V", )- card(A j.,U .. d) 
MC(a j EAj. ,u .. ,,)= card(V )-1 n, 

(6) 

For instance, for attribute aj and V", = {a,b,c), a few exemplary measures of concentration 

3-1 3-2 I 3-3 
are shown, MC(a j E (aj)=--=!, MC(aj E {a,b))=--=-, MC(a . E {a,b,c))=--=0 . 

2 2 2 1 2 

For the set 8 1 , where Bj c V", and card(Bj) 2:: O, a measure of concentration condition 

(aj EB) is defined in the modified f01m 

card(Vn )-card(B) 
MC'(a .E B )=--~• ----

1 1 card(V",) 

It is easy to notice that measure MC' (aj E Bj) satis fi es the conditions O$ MC' (aj E Bj) S l. 

(7) 

Next, we introduce a definition of clusters' concentration as an extension of the 

conditions' concentration. 

Definition 4. Measure of concentration of cluster C, (denoted by MC( C, )) is de.fined in the 

following manner: 

' MC( c, ) = f IMC(a j E Ai.,u._. ,) . 
j=I 

(8) 

It is easy to notice thai MC( C ) = _!_ I ca,-c/(V", )-ca,-rl(Aj.,{ j._,, ) 
' K j•> card(V", ) - I . 
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Corollary 3. Mea sure of co/lcelltratioll of cluster C, satisfies the following condition 

0$MC(C,)$1. 

For instance, we assume that v., = {a,b, c }, v., = {d,e,f), v., = {g , h). A few exemplary 

measures of concentration of clusters are shown below 

1 3-1 3-1 2-1 
MC((a1 E{a})A(a,E{/'})A(a3 E {g}))= -(-+-+-)= 1, 

- . 3 2 2 1 

I 3-3 3-3 2-2 
MC((a, E {a,b,c}) /\. (a, E {d,e,/})A (a3 E {g,h})) = - (-+-+--)=O. 

- 3 2 2 I 

5.2. Distallce of clusters 

Lei us consider two clusters c,, and c,,, where c,,: (a, E A1.1,1.,,,) A ... A (aK E AK.,<K.,,,) and 

C,,: (a, E A1.1,1.,,,) A ... A (aK E AK.,<K,.<,,), Aj.,<j.,,, ~ v., , Aj.,fJ.,,, ~ v., where card(A j.,u.,,,) <'. 1, 

card(Aj,,u.,,,)<'.l for je {l, ... ,K}. The set v., ={vj_,.v1_,, ... ,v1.i1 ) is the domain of the attribute 

a1 EA. We propose measures of distance between two clusters in the following way. 

Definition 5. Measure of distcmce from clusterC,, to c,, ( denoted by MD( c,, H c_,,)) 

is dejilled i11 the followillg mamzer: 

I K 

MD( C,, H C,,) = K; Per((a1 E A1.,,; .. ,,,) H (a1 E A1.,,;.s,,))· MC'(a1 E Aj_,, 1._,,, n A1_,u ... ,,). (9) 

Using (2) and (7) it is easy to rewrite (9) in the new form 

MD( C,, H C_,.) = _!_ ± card(A1_,. 1 __ ,,, \ A;.,u .. ,,,) _ card(V,, \(A;.,u.,,, n AM;.,,,)) . 

· K 1. , card(V,, )-1 card(V,1 ) 

(10) 

Corollary 4. Measure of distcmce from cluster c,, to c,, satisfies the followillg colldition 

05'MD(C,, H C,,)$1. 

For instance, Jet us assume that K=2 and V,, = V,, = {a,b,c,d,e). A few exemplary cases of 

the measures of distance from cluster C to cluster C are shown below: 
/.11 /:2 
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c,,:(a, E {a))A(a, E {c)), c,, :(a, E {b))A(a, E {e)), 

115 15 I 
MD( C H C )=-(-·-+-·-) =-.,, .,, 2 4 5 4 5 4 ' 

C,,: (a, E {a,c))" (a, E {e,c)), C,,: (a, E {b,c)) "(a2 E {d,c}), 

I I 4 I 4 I 
MD(C H C )=-(-·-+-·-)=-, 

,, ,, 2 4 5 4 5 5 

C,,:(a, E {e))A(a, E {b,c)), C_,, :(a, E {a,b,e))A(a, E {b,c), 

I O 4 O 3 
MD(C H C )= -(-·-+-·-)=O, .,, ,, 2 4 5 4 5 

C,,: (a, E {a,b,e)) "(a, E {b,c), C,,: (a, E {e)) "(a2 E {b,c}), 

124 03 I 
MD(C H C )=-(-·-+-·-)=-. ,, .,, 2 4 5 4 5 5 

Now Jet us assume that K= 3, V,,, =(a,b,c), V,,, ={d,e,f},V,,, ={g,h). The distances 

between the following clusters 

C,, :(a, E {a,b,c))A(a 2 E {d})A(a3 E {g,h)) and C,, :(a, E {b,c})A(a, E {d})A(a3 E {g)) 

are calculated below 

I I I O 3-1 I 2-1 2 
MD(C H C )= - (-·- + -·- +-·-) -9, 

'' ·'' 3 2 3 2 3 I 2 

I O I O 3-1 O 2-1 
MD(C H C )= - (-·- + -·- +-·-) =0. o 

'' ·'' 3 2 3 2 3 I 2 

5.3. Val i dity of cl11s1ers' ser 

Let us consider clustering results, i.e. the set of clusters on U, denoted 

by C(U) = {C,, ,C,, , ... ,C,, ) , card(C(U)) = C. We propose the new quantitative validity 

of clusters' set C(U) which is a sum of a product of two terms. The first term determines 

a minimum measurc of distance between two clusters c,. and c,., 'tf(u, w), I$ u< w$ C. The 

second te1m detem1ines an arithmetic average of measures of concentration of this pair of 
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clusters. When we consider C clusters then the number of possible connections between these 

C·(C-1) 
clusters is equal ---

2 

Definition 6. Validirv of clusters' set C(U) (delloted by <P(C(U))) is defilled ill the followillg 

/llGllller: 

2 MC(C. )+MC(C. ) 
cf>(C(U))=--- I;min{MD(C,. HC_,.).MD(C,. HC,.) }· '· '· . (11) 

C(C-1) '""<"'SC 2 

Corollary 5. Validiry ofc/usters' set C(U), delloted by <P(C(U)) , fu/fils the fol/owillg 

colldition O :5 <P(C(U )):51. 

The proposed measure of validity of clusters' set is illustrated on example. For instance, 

!et us consider three objects shown in Table 16, U={e',e',e'). We assume, that 

v., ={a,b,c,d), V., ={e,f,g,h), card(V,,)=card(V,,)=4,K=2. 

Table 16 

Attribute \ Object a, a, 

e' C f 
e' b e 

e' d f 

Let us consider three sets of clusters C'(U) = 1c;, ,c;, ), C'(U) = ie:, ,c:, ) and 

C3 (U) = {C:, ,c;, ,C_', I shown in Table 17, 18 and 19. 

Table 17. C'(U) Table 18. C2 (U) Table 19. C3(U) 

Attribute Attribute Attribute 
Cluster a, a, Cluster a, a, Cluster a, a, 

c;,: { e') C f c:, :{ e2 ) b e c;,: { e') C f 
c;, :{ e' ,e' I i,, d e,f c:, :{ e' ,e' ) C, d f c:, :{ e2 } b e 

C;, :{ e3 ) d f 

Our goal is to compare the validity of clusters' set C' (U), C' (U) and c' (U) using <P 

function. The higher value of the validity function means the better clusters 

configuration . First, we obtain the measure of concentration of these clusters: 
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MC(c;, )= 1, 

MC(c;,) = 4/6, 

MC(C;,)= 1, 

MC(C;,) = 5/6, 

The clusters' distanccs are shown in Table 19, 20 and 21. 

Table 19. MD(c;_ H c;,J Table 20. MD(c:, H c:,) 

Cluster c.~1 c;! Cluster c:I c' ,, 
c' - 1/6 ,, c;, - 1/3 

c;l 11/24 - c;, 1/2 -

MC(C:,)=l, 

MC(C;,) =l. 

Table 21. MD(C;, H c;,) 

Cluster c' ,, c' ,, 
c' - 1/3 ,, 
c:, 1/3 -

c:, 1/6 1/3 

From Table 19, 20 and 21 we calculate <t> function as the validity of clusters' sets 

1 • I I I 5 5 
<t>(C (U))= I· mm(6, 24} ·6 = 36' 

, . I I Il 11 
<f>(C-(U)) = l-m,n(3,2}- 12 = 36 , 

<f>(C'(U)) =_!_•(min(_!_)} • I+ min(_!_)}- I+ min(_!_)}• I)= .!Q _ 
3 3 3 6 6 3 3 36 

c:l 
1/6 

1/3 

-

The value of the function <l>(C'(V)) is highest compare to the values <l>(C'(V)) and 

<l>(C'(V)), so the di vision C'(V) is better than C'(V) and C'(V). It is consistent with intuition, 

because the set C'(I.I) is disjoint and in each set C'(V) and C'(V) there is a common pat1. 

6. Conclusions 

In this paper we introduced a new Clusrering Perfurbarion Merlzod which is suitable to 

cluster nominał data set. New definitions related to dominance of conditions, measure 

of perrurbarion of one condirion by anorher condirion, 111easure of perturbation one cluster by 

anotlzer chtsrer, as well as the introduced new measure of clusters' concentration and new 

measure of distance berween clusters give a basement for the new method of clustering. 

Additionally, we introduced a new definition of clusters' validity, which allows debugging the 

clustering process quality. 

In the text there are lots explanations of the new terms and definitions onboard in order to 

make the paper mare readable. 
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It seems that this method is not sensitive on arrangement of objects at the beginning and 

the costs of computations are reasonable - in Section 4 we desclibed the new algolithm and in 

respective tables the shadowed fields point out the extra costs within each iteration of the 

algolithm. Additionally the method avoids the effect of attraction small clusters or even 

objects by much more large clusters (numerous clusters), it means that in the finał stage of 

clusteling we can obtain even a separate object as a cluster. 

At the end we performed an illustrative example to support the efficiency of the 

Clusteri11g Pert11rbatio11 Method. The example was run for the data prepared according to the 

procedure describe<l in Appendix 2, and the data treat a problem of dimension reduction 

without losing crucial information of data se1ies. The result of clusteling was perfect what 

allows us to presume thai the CPM provides good quality and stable clustering for nominał 

data for nominał dala. 

lt seems that this methodology can be extended to more generał clustering algo1ithms 

applicable to mctho<ls. Due to the introduced idea of perturbation of one cluster by another, 

and introducing the measure of clusters' perturbations, it seems to be rational to call the 

proposed method as (CPM), which can be applied directly to cluste1ing of symbolic data sets . 
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Appendix 1 

Corollary 1. Per( C,, H c,,) = O if and only if c,, t c,,. 

Proof The "if and only it" statement is proved by showing that the causa! relationship is met 

in both directions. 

1) We begin by the left to right implication: Per( C,, H C,,) = O • c,, t c,,. 

We assume that Per( c,, H c,,) = O. By Definition 5, function Per( C,, H c,,) is non 

negative, and reaches a minimum when there is a condition card(A;.oru,I \ A;.or;.,,,) = O, 

V}: }E {l, .. .K). If card(A;.ou.,,, \ A;.ou.,,,) = O then condition A;.,r;.,,, ~ A1_0,;.,,, is satisfied. 

So, by Definition 1, C,, t c,, is satisfied. 

2) Consider now the right to left implication: c,, t C_,, • Per( c,, H c,,) = O. 

Let us assume that cluster c,, dominates cluster c,,, c,, >- c,,. By Definition 3, the 

clause (a, E Ai., 11 _,, 1)t(a1 EA'-'"··'•'), V}, J=l, ... ,K, is satisfied. Next, by Definition 1, conditions 

Aj.of/.,, 1 ~Aj.or; .. ,,,, Vj, j = I, .. , K, are satisfied. Thus, Aj.ou.,,, \Aj.or;.,, 1 =0, and 

card(A;.oc;.,, 1 \ A0_011 _,,,) =O, V}E {l, ... , K) . Thus, we obtain Per( C,, H C,, )= O. 

The equality Per( c,, H c,,) = O is always ve1ified when c,, t c,,. 

Corollary 2. M ea.rnre of' perturbation cluster c,, by cluster C_,, satisfies the following 

inequality 

0$Per(C,, H C,,) $I. 

Proof I) We first prove the first inequality Per(C,, H c,,) ~O. 

By Definition 5 it should be noticed that the inequalitycard(A;.ou.,, 1 \ A;_0, 1_,, 1) ~O, 

V} E {!, ... , K), is satisfied. We thus obtain Per( C_,, H c,,) ~ O. 

2) Let us pruve now the second inequality, Per(C,, H c,,) $I. 

For each }E {l, ... ,K} we consider the sets A1.ou.,,, ~v., and A;.ou.,,, ~v.,. It should be 

noticed that the inequalilies I$ card(A,.0u.,, 1) $ card(V.,) and I$ card(A;,ou.,, 1) $ card(V.,) are 

satisfied. We thus obtain the inequality card(A;.ou.,,, \ A;.ou.,, 1) $ card(V.0 )-1. So, we obtain the 

following inequality 
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1 ,· card(Vn)-1 
Per(C. H C )$- °" ' I. 

'' '' K -;t card(Vn)-1 

Corollary 3. Measure of co11ce11tratio11 of cluster C, satisfies the followi11g conditions 

0$MC(C,l$1. 

Proof l) We first prove the first inequality MC(C,) ~O. 

We consider sets A;.,,;.,, !,;;;V",, '<!JE {l, ... ,K}, so l$card(A;.,(J.,,)$card(V", ). It should be 

noticed that card(V,, , )- rnrd(A,.,u.,,) ~O. Thus, we get the inequality MC( c,) ~O. 

2) Let us prove the second inequality MC(C,) $I. 

We consider sets A;.,u.,, !.:V",, card(A;.,(J.,>)~I, '<!JE (l, ... ,K}. It should be noticed that 

the inequality card(V„ 1 ) - card(A;.,u.,,) $ card(Vn, )-1, '<IJ E { 1, ... , K}, is satisfied. We thus obtain 

I K card(V )-1 
MC(C,)$--L "; I. 

K jol ctml(\~,,) - I 

Corollary 4. M,•w;ure o(distancefrom cluster c,, to c,, satisfies thefollowing conditions 

o:,; MD(C,, H C, , )$I. 

Proof l) We first prove the first inequality MD(C,, H C,,) ~O. 

We consider sets A, ,,u,, !,;;; V", and A1.,u.,,, !.: V", , '<!JE {I, ... , K}. It should be noticed that 

the inequalities '</JE {l. ... ,K}, card(A;.,C/ .. ,,, \A1.,u.,,,)~0 and card(V„1 \(A1„u.,,, nA;.,(J.,,,))~O. 

card(Vn,)-l>O are satisfied. Thus we obtain MD(C,, H c,,)~0. 

2) Let us prove now the second inequality MD(C,, H c,,) $ l. 

It should be noticed that card(A1.,u.,,, \A;.,u.,,,) :<,card(Vn,)-1 and 

card(V", \(A1.,u ,, , nA;.,u.,, ,))$card(Vn)• '<!JE (1, ... ,K}. Thus we obtain the estimate 

I ~ card(\I ) - I card(V ) 
MD(C C ) < - L. "1 ·--"-' = l 

,, ' .,, - K j•I card(V., )-1 card(Vn,) . 

Corollary 5. \lalidity of'clusters' set C(U), de11oted by cf>(C(U)), fu/fils the following 

condition o:-:;ct>(C(U))$I. 
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Proof 1) We first prove the first inequality <l>(C(U)):S l. The conditions MD (C,. H c,.) :S l, 

MD (C,_ H c,.) :S l (Corollary 4) are fulfilled. It should be noticed that 

MC(C,)+MC(C,_) <I 

2 
(Corollary 3). 

<!>(C(U)) $ : Il·!= 2 . C-(C-1) =I. 
C-(( -]) ""<»SC C · (C-1) 2 

So we obtain 

2) Let us prove the second inequality <l>(C(U))<:: O. Because the conditions 

MD (C,_ H c,_) <::O, MD (C,_ H c,_) <:: O (Corollary 4) and conditions MC(C,. ) <::O, 

MC(C,_ )<::O (Corollary 3) are fulfill, we obtain <l>(C(U)) <:: 2 I<O· O+O) = O. 
C · (C-1) ,s,« .. -sc 2 
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