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Monitoring series of dependent observations 
using the sXWAM control chart for residuals 

Olgierd Hryniewicz and Katarzyna Kaczmarek-Majer 

Abstrnct Control charts for monitoring residuals are the main tools for statistical 
process control of autocorrelated streams of data. X chart for residuals calculated 
from a seties of individual observations is probably the most popular, but its statis­
tical characteristics are not satisfactory, especially for charts designed using limited 
amount of data. In order to improve these characteristics Hryniewicz and Kaczmarek 
proposed a new chart for residuals, XWAM chart, using the concept of weighted 
model averaging. Unfortunately, the design of the XWAM chart is rather compli­
cated, and requires significant computational effort. In this paper we propose its 
simplification, named sXWAM chart, which is simpler to design, and in some prac­
tically important cases has similar statistical properties. 

1 Introduction 

Control charts are nowadays the most frequently used tool of Statistical Quality 
Control (SQC). They were introduced in the 1920th by Shewhart who at that time 
worked for an American company Western Electric. Since that time many statisti­
cal procedures which have their origins in Shewhart's works have been developed, 
and their usage in practice is known under a common name of Statistical Process 
Control (SPC). In the majority of applications control charts are used for monitor­
ing production processes when long series of quality-related measurements are ob­
served. In such a case a well grounded mathematical theory have been established. 
Later on, control charts have been also applied in cases of short production runs. In 
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this case the mathematical theory of control charts is still under development, and 
analyses based on computer simulations are frequently used by researchers. Con­
trol charts may be used for monitoring of all kind of processes, both univariate and 
multivariate. However, the most popular of them are designed under the assump­
tion of independence of consecutive observations. Unfortunately, serious problems 
arise when consecutive observations are statistically dependent. Such situations take 
place quite frequently when we use control charts for monitoring continuous process 
(e.g., chemical) data or are used to monitor data related to human health. Pioneering 
works in the area of process control in presence of dependent (autocorrelated) data 
were published in the 1970th (e.g., [7]). Since that time many papers devoted to this 
problem have been published, and they can be, in general, divided into two groups. 
Authors of the first group of papers, such as, e.g., Vasilopoulos and Stamboulis 
[25], Montgomery and Mastrangelo [22], Maragah and Woodall [21], Yashchin [28] , 
Schmid [23] or Zhang [30], propose to adjust design parameters of classical control 
charts (Shewhart, CUSUM, EWMA) in order to take into account the impact of 
autocorrelation in data on chart's statistical properties. The second group of papers 
is originated by the paper by Alwan and Roberts [3] who proposed a control chart 
for residuals. In order to develop a control chart for residuals we have to build a 
mathematical model of the observed process using the methodology developed for 
the analysis of time series. The deterministic part of this model is used for the com­
putation of predicted values of observations, and differences between predicted and 
observed values of the process, named residuals, are used as observations plotted on 
a control chart. Properties of different control charts for residuals have been inves­
tigated by many authors, such as, e.g., Wardell et al. [27], Zhang [29], Kramer and 
Schmid [19). Both approaches have been compared in many papers, such as, e.g., 
Lu and Reynolds [20]. It has to be noted, however, that the applicability of the charts 
for residuals in SPC was a matter of discussion (see, e.g., the paper by Runger [24]), 
but now this approach seems to be prevailing. 

The concept of residuals is a quite general one. In theory, any mathematical 
model used for prediction purposes can be used for the calculation of residuals. 
However, in practice only relatively simple autoregression models are used. For 
such models there exist analytical formulae that allow to implement a control chart 
for residuals relatively simply. However recently, more sophisticated control charts 
based on the idea of residuals have been proposed. For example, the ARMA chart, 
based on the autoregressive moving average model, proposed by Jiang et al. [17], 
the chart proposed by Chin and Apley [11] based on second-order linear filters, the 
chart proposed by Apley and Chin [4] based on general linear filters or the PCA­
based procedure for the monitoring multidimensional processes proposed by De 
Ketelaere et al. [12]. Unfortunately, these charts can used in practice only with the 
help of professional software dedicated to the analysis of time series or specially 
dedicated programs (e.g., written by the community which develops the openly ac­
cessed programming language R). 

A proper design of a control chart for autocorrelated data requires the knowl­
edge of the mathematical model of the monitored process. When we have enough 
data for precise identification of the process model few solutions have already been 
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proposed for the calculation of such characteristics of a control chart as the Aver­
age Run Length (ARL) in the in-control state, when the monitored process remains 
in stable conditions. However, serious problems arise when we want to calculate 
control chart's characteristics when the monitored process goes out of control. The 
situation is even worse when the amount of available data is not sufficient for the 
identification of the underlying model of dependence. In such a case only few ana­
lytical results exist (see, e.g., the paper by Kramer and Schmid [19] or the paper by 
Apley and Lee [6]). The main reason of these difficulties is the fact that for impre­
cisely estimated model of dependence not only observations, but residuals as well, 
are autocorrelated. Unfortunately, this happens in practice when we have to design a 
control chart after the observation of limited amount of available process data, such 
as, e.g., taken from the process being in its prototype phase or when we monitor 
patients in a health-care system. 

The performance of the control charts for residuals strongly depends upon proper 
identification of the dependence model. In other words, if we want to have an ef­
ficient control chart for residuals we have to use good predictor for future obser­
vations of the monitored process. When we have enough data for building a good 
model, i.e., when the available time series is not too short, one can use methods 
described in textbooks on time series. However, when available data is not suffi­
cient for building such good predictors we have to use more sophisticated meth­
ods, such as those developed by econometricians for prediction purposes in short 
economic time series. In such cases efficient Bayesian methods combined with the 
Markov Chain Monte Carlo (MCMC) simulation methodology have been devel­
oped. For very good description of this approach, see the book by Geweke [13). 
Many Bayesian models used for the prediction in short time series are based on 
the concept of model averaging. This concept consists in taking into account not 
only prior knowledge about model parameters, but also prior knowledge about sev­
eral possible models that can be used for prediction purposes. In practice, non­
informative priors are used, and MCMC simulations are used for the evaluation of 
predictive posterior distributions. Better results could be obtained if take more in­
formative probabilities (weights) of the considered models. However, finding such 
weights remains a serious practical problem. To overcome this, Hryniewicz and 
Kaczmarek [14] proposed to use some computational intelligence methods for the 
construction of the prior distribution on the pre-chosen set of models. Their algo­
rithm appears to be highly competitive when compared to the best available algo­
rithms used for the prediction in short time series. In their recent papers [15) and 
[ 16) they have adopt a similar approach for the construction of a new Shew hart-type 
control chart for residuals, named the XWAM chart. 

This paper presents further development of the ideas described in [15] and [16) . 
In particular, a new and much simpler method for the construction of the XWAM 
chart (with only one model that is alternative to the estimated one) has been pro­
posed. The properties of this new version of the XWAM chart, named the sXWAM 
(simplified XWAM) chart, have been investigated using extensive computer simu­
lations. 
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The paper is organized as follows. In the next section we describe the assumed 
mathematical model of the monitored process. In the third section we present the 
algorithm for the construction of the XWAM chart, and its simplified sXWAM ver­
sion. The results of computer simulations which have been performed with the.aim 
to evaluate statistical characteristics of the sXWAM control chart are presented in 
Section 4. The paper is concluded in the last section, where we also outline possible 
areas of future investigations. 

2 Shewhart X chart for residuals 

Consider random observations described by a series of possibly dependent random 
variables X1 ,X2, .... In statistical quality control these random variables may de­
scribe individual observations or observed values of sample statistics, such as, e.g., 
averages plotted on a popular Shewhart X -chart. The most frequently used control 
charts are designed under the assumption of mutual independence of the observa­
tions (measurements) of monitored processes. In many practical cases, however, the 
assumption of independence does not hold and the full mathematical description of 
such a series of observations can be done using a multivariate (possibly infinitely­
dimensional) probability distribution. Unfortunately, in practice this usually cannot 
be done. Therefore, statisticians introduced simpler and easier tractable mathemat­
ical models which are well described in textbooks devoted to the analysis of time 
series. In the most popular model of this kind the random variable representing the 
cu1Tent observation is given as the sum of a deterministic part depending on the 
observed values of previous observations, and a random part whose probability dis­
tribution does not depend upon the previously observed values, i.e., 

X; = f(x1, .. , .x;-1) +e;,i = 1, . ... (1) 

In the simplest version of (1) we usually assume that random variables e;, i = 1, . .. 
(called sometimes innovations) are mutually independent and identically distributed 
with the expected value equal to zero. On the other hand, we often assume that the 
detelTllinistic part f(x1, ... ,Xi-1) has a form that assures stationarity of the time 
series X1 ,X2, .. . (for the definition of stationarity, see any textbook on time series, 
e.g., [9] ). In this paper we make even stronger assumption that 

(2) 

where e;, i = 1, ... are normally distributed independent random variables with the 
expected value equal to zero, and the same finite standard deviation. Thus, our as­
sumed model describes a classical autoregressive stochastic process of the pth order 
AR(p). The comprehensive description of the AR(p) process can be found in every 
textbook devoted to the analysis of time series, e.g., in the seminal book by Box and 
Jenkins [8] or a popular textbook by Brockwell and Davis [9]. It is worth noting that 
more complicated models have been recently proposed for monitoring processes 
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with dependent data. These general models, such as, e.g., the ARMA(p,q) which 
are also special cases of (1) and are widely used in the statistical analysis of time 
series, are also described in the aforementioned books. 

Estimation of the model AR(p ), given by (2), is relatively simple when we know 
the order of the model p. In order to do this we have to calculate first p sample 
autocorrelations l'J, r2, . .. , r p, defined as 

. ___ 11E;',;:{(x1-P.)(x1+1-P.) ._ 
1,- ( ')'"'" (· P,)2 ,1-l, ... ,p, 

ll - I i...,/= J >.1 -
(3) 

where 11 is the number of observations (usually, it is assumed that 11 2'. 4p) in the 
sample, and p. is the sample average. Then, the parameters a1, ... ,a,, of the AR(p) 
model are calculated by solving the Yule-Walker equations (see, [9]) 

r1 =a, +a2r1 + ... +aprp-1 
r2 = a,r, +a2 + ... +a,,rp- 2 

(4) 

rp = a1rp- l +a2rp-2 + ... +ap 

In practice, however, we do not know the order of the autoregression process, so we 
need to estimate p from data. In order to do this let us first define a random variable, 
called the residual. 

Z; = X;- (a,x;-1 + ... +apX;-p),i = p+ l, ... ,N. (5) 

The probability distribution of residuals is the same as the distribution of random 
variables e;, i = 1, ... in (2), and its variance can be used as a measure of the accu­
racy of predictions of future values of the process. For given sample data of size 11 

the variance of residuals is decreasing with the increasing values of p. However, the 
estimates of p models parameters a,, ... ,a,, become less precise, and thus the over­
all precision of prediction with future data deteriorates. As the remedy to this effect 
several optimization criteria with a penalty factor which discourages the fitting of 
models with too many parameters have been proposed. In this research we use the 
BIC criterion proposed by Akaike [l], and defined as 

/I 

BIC = (n - p)ln[no-2 /(11- p)] +11(1 +In \,1"27r) + pln[(I:Xf-na2)/p], (6) 
t=I 

where x1 are process observations transformed in such a way that their expected 
values are equal to zero, and &2 is the observed variance of residuals. The fitted 
model, i.e., the estimated order p and parameters of the model a,, ... , a" minimizes 
the value of BJC calculated according to (6). 

SPC for processes with autoc01Telated data using a control chart for residuals 
was firstly proposed by Alwan and Roberts [3]. Their methodology is applicable 
for any class of processes, so it is also applicable for the AR(p) process considered 
in this paper. According to the methodology proposed by Alwan and Roberts [3] 
the deterministic part of (1) is estimated from sample data, and then used for the 
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calculation of residuals. This methodology is also known under the name "filter­
ing". The residuals are used for the design of a control chart for residuals, and are 
used as transformed process observations that are plotted on the control chart. If we 
have enough observations, and the model of our process is estimated sufficiently 
precisely, the calculated residuals are approximately independent, and we can use 
standard control charts (Shewhart, CUSUM, EWMA, etc.) for process control. 

It is a well known fact that the accuracy of prediction in time series strongly de­
pends upon the number of available observations. Moreover, problems arise with the 
identification of the probability distribution of residuals, as in the case of the inaccu­
rately estimated prediction model the residuals become dependent. The effect of this 
dependen:cy was investigated the01'etically by Kranier and Schmid [19]. Therefore, 
the usage of classical control charts (with assumed independent observations) for 
monitoring residuals becomes questionable. In the context of SPC we may face this 
problem when we have to design a control chart for a short production run. In such a 
case the accuracy of the estimated model of a monitored process may be completely 
insufficient if we follow recommendations applicable in the case of a control chart 
for independent observations. 

The problem of insufficient information used for the design of a control chart is 
typical not only for the control charts for residuals. In the case of Shewhart control 
charts for original, but independent, observations this problem was considered, e.g., 
in the paper by Albers and Kallenberg [2], who proposed some corrections to the 
control limits of a chart, or in the recent paper by Chakraborti [10], who proposed a 
method for exact calculation of the characteristics of a Shewhart control chart with 
estimated control limits. 

An interesting comparison of the behavior of the classical Shewhart X chart for 
individual observations and the Shewharl X chart for residuals has been presented in 
the recent paper of the authors of this paper [16] . They have performed an extensive 
simulation expe1iment in which N = 50000 (200000 in the case of independent 
observations) charts were designed, and for each of them NR = 5000 process runs 
of maximum MR= 500000 observations (curtailment value) were simulated. The 
charts of both types (i.e., for original observations and residuals) have been designed 
using the information coming from the simulated samples of 11 items. For each of 
the considered charts they have calculated the average run length (ARL), and the 
median rnn length (MRL). Below, we present the results of that comparison only for 
the case of the average rnn length (average time to the alarm signal) ARL. In Table 
1 taken from [16] we present the comparison of the following characteristics of the 
probability distribution of ARL: average of the distribution of ARL's (AvgARL), 
standard deviation of the distribution of ARL's (StdARL), median the distribution 
of of ARL's (MedARL), skewness of the distribution of ARL's (SkewARL). All the 
presented results have been obtained for independent observations. 

The results of simulations presented in Table 1 confirm many of well known facts. 
For example, in the case of the X chart for individual and independent observations 
(columns 2-5) the distribution of ARL's (over a set of possible control charts) for 
small samples is extremely positively skewed. Averaging of ARL's yields for small 
samples strongly positively biased estimators of the theoretical value of the ARL 
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Table 1 Characteristics of the ARL distributions for X charts, and X charts for residuals - inde­
pendent observations 

X-chart X-chart (residuals) 
11 AvgARL StdARL MedARL SkewARL AvgARL StdARL MedARL SkewARL 

20 1554.7 9228.l 256.9 23.0 485.6 5106.4 66.5 47.5 
30 863.7 3326.9 287.6 37.2 369.9 1924.4 114.4 66.2 
40 674.0 1730.8 306.3 30.5 342.9 801.6 150.2 14.4 
50 578.l 988.5 315.4 10.9 341.2 637.1 180.0 13.8 
100 455.9 401.2 342.3 4.1 345.8 315.l 258.1 5.7 
200 408.6 225.0 355.6 2.1 356.2 194.6 309.5 2.0 
500 385.0 125.3 364.9 1.2 365.9 118.8 346.4 1.2 
1000 377.2 85.1 367.0 0.8 369.4 83.1 359.2 0.8 
2000 374.2 59.1 369.2 0.5 371.4 58.3 366.6 0.5 

equal to 370.4. This means that the rate of false alarms is lower than expected (a 
positive effect), but on the other hand, the ability of a chart to detect process deteri­
oration becomes significantly lower than needed (a strongly negative effect). When 
we consider the X chart for residuals (columns 6-9) the situation is somewhat dif­
ferent. In this case the uncertainty related to imprecisely calculated control limits 
(positive bias) is combined with the uncertainty related to the computation of resid­
uals (negative, as it was proved in [19]). The total bias of the estimators of ARL, 
based on averaging, is not a monotonic function of the sample size 11, and attains its 
minimum at n approximately equal to 40. 

In Tables 2-3, taken from [16], we present the results of similar simulation ex­
periments for autocorrelated data when the autocorrelation is described by the au­
toregression model of the first order - AR(I) model. Four cases of the strength of 
dependence are considered, described by the autocorrelation coefficients equal to 
-0.9 , -0.5 , 0.5 , and 0.9, respectively. In columns 3 and 7 values of another charac­
teristic, median of the Median Run Length (MedMRL), are also presented. 

Table 2 Prnperties of the X chart for residuals with dependent observations - negative autocorre­
lation 

p = -0.9 p = -0.5 
11 AvgARL MedARL MedMRL SkewARL AvgARL MedARL MedMRL SkewARL 
20 2212.6 165.7 115.0 19.3 763.5 84.4 59.5 34.4 
30 928.l 203.0 141.0 42.7 503.5 132.3 92.0 57.1 
40 589.6 225.3 157.0 91.6 419.8 171.7 120.0 30.3 
50 524.4 244.4 204.0 97.5 388.5 199.7 139.0 18.5 
100 395.1 293.8 204.0 3.9 368.7 273.8 190.0 3.9 
200 377.5 327.3 227.0 2.3 369.6 320.7 223.0 2.1 
500 371.4 351.0 244.0 1.1 370.8 351.2 244.0 1.2 
1000 370.7 360.6 250.0 0.8 370.9 360.8 251.0 0.8 
2000 371.0 366.7 254.0 0.5 371.1 366.2 254.0 0.5 

The interpretation of the results presented in Tables 2-3 is similar to that in the 
case of independent data. We can see that the expected values of ARL are more 
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Table 3 Properties of the X chart for residuals with dependent observations - positive autocorrela­
tion 

p =0.9 p =0.5 
n AvgARL MedARL MedMRL SkewARL AvgARL MedARL MedMRL SkewARL 

20 1304.8 70.5 49.0 24.7 629.3 67.7 47.3 40.5 
30 654.3 116.0 81.0 48.3 457.3 119.1 83.0 70.5 
40 461.7 155.3 108.0 83.8 398.2 160.4 112.0 31.8 
50 390.9 184.4 128.0 183.4 374.8 191.2 133.0 19.3 
100 361.4 266.3 185.0 4.3 364.9 270.5 188.0 3.9 
200 365.4 318.2 221.0 2.2 368.4 319.6 222.0 2.1 
500 369.2 349.7 243 .0 1.2 370.6 350.5 243.5 1.2 
1000 370.5 360.0 250.0 0.8 370.9 360.7 250.5 0.8 
2000 371 .3 366.3 254.0 0.5 371.1 366.2 254.0 0.5 

sensitive to the strength of dependence in the case of negative dependence. However, 
in case of the positive dependence the observed bias practically does not depend 
on the strength of dependence (except for very small sample sizes). From Tables 
1-3 we can also notice extremely high values of skewness of the distribution of 
ARL's when sample sizes are small. In practice it means that from time to time (but 
rather seldom) we can face the case of a control chart with too wide control limits. 
Such charts are unable to detect changes of the process level. Therefore, when our 
chart is designed using a small sample of observations, we can never be sure that 
the lack of an alarm is due to good behavior of a monitored process, and not the 
consequence of too wide control limits. To alleviate this problem Hryniewicz and 
Kaczmarek [16) propose to curtail the length of a process run. When the number of 
consecutive observations (residuals) reaches the curtailment limit, say MR, without 
observing an alarm, we should stop charting, and should recalculate control limits. 
Extreme skewness of the distributions of ARL's has a very negative impact on the 
investigations based on computer simulations. If we use averages (over a set of 
simulated control charts) for the estimation purposes even in the case of thousands 
of simulated charts few outlying cases, that make the value of skewness so high, 
may dramatically change the results of estimation. 

As it could be expected, introduction of curtailment for a monitored process may 
significantly change operational characleristics of control charts. This influence of 
curtailment on X control charts for residuals was investigated in [16]. An example 
of such analysis is presented in Table 4, taken from [16]. 

Table 4 Properties of the X chart for residuals with dependent observations - positive autocorrela­
tion, runs curtailed at 1000 

p =0.9 p =0.5 
n AvgARL MedARL MedMRL SkewARL AvgARL MedARL MedMRL SkewARL 

20 190.8 70.0 49.0 1.7 172.5 67.8 48.0 1.9 
30 220.0 117.4 82.0 1.4 214.1 119.2 83.0 1.5 
40 241.0 156.8 109.0 1.3 249.l 169.3 113.0 1.3 
50 255.0 187.4 131.0 1.1 259.7 193.7 135.0 1.1 
100 296.8 262.8 187.0 0.82 299.5 265.8 189.0 0.83 
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The results of simulation experiments presented in [16) show that the average 
values of ARL's are, especially for small sample sizes, significantly smaller than 
those observed for processes without curtailment imposed on the run length. It is 
worth noting than in the case of a classical Shewhart control charts with known 
process parameters the curtailment to 1000 observations decreases the ARL from 
370 to 345. From Table 4 we can see that in the case of small samples the impact of 
curtailment may be even more significant. Therefore, when we design a X control 
chart for residuals using information corning from small samples, we should not use 
345 as the design target value for the ARL. 

3 XWAM control chart for residuals and its sXWAM 
modification 

The results published by many authors, including the results of computer simula­
tions presented in [15) and [16), and recalled in the previous Section, show un­
doubtedly that properties of the X chart for residuals designed using small amount 
of data are unsatisfactory from a practical point of view. Large values of the average 
ARL presented in Tables I - 3 for non-curtailed run lengths signal the possibility 
of non-detecting process disorders. On the other hand, when we impose curtailment 
we observe a contrary effect: the average ARL is too small, and thus, the rate of 
false alarms is too high. The possible reason of these effects is related to imprecise 
estimation of the process model, necessary for calculation of residuals. 

The problem of small sample sizes in the design of control charts is not new. 
However, autoconelated data have been usually considered for production processes 
with large number of available observations. Possible application of control charts 
in areas where data are correlated and scarce, such as data encountered in health care 
systems, changes this situation. Thus, we have to look for better solutions in the ar­
eas where short time series are common, namely in the analysis of economic data. 
The problem of prediction in short economic time series is of great importance for 
econometricians. They have introduced many effective methods, especially those 
based on the Bayesian paradigm and model averaging. A good description of the 
Bayesian approach in the analysis of time series can be found in the monograph by 
Geweke [13) . The concept of model averaging, promoted in [13] and other papers, 
inspired Hryniewicz and Kaczmarek [14] who proposed a prediction algorithm in 
which model weights are computed using some methods of intelligent computing 
and data mining. The proposed prediction algorithm has appeared to be very com­
petitive in comparison to many others considered as good ones (see, [14]). A similar 
approach was used by the same authors when they introduced in [15) a new control 
chart, named XWAM (X Weighted Average Model chart) for residuals. 

Let Mo be the process model estimated from a sample, and its parameters esti­
mated from this sample denote by a vector (a1,o, ... ,ap0 ,o). We assign to this es­
timated model a certain weight wo E (0, 1]. We also consider k alternative models 
Mi, j = 1, .. . , k, each described by a vector of parameters ( a?,1, ... , a~ j,}). In gen-
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eral, any model with known parameters can be used as an alternative one, but in 
this paper we restrict ourselves to autoregression models of maximum fourth or­
der. Let w11, ... , w~ denote the weights assigned to models M1, ... ,Mk, Then, in the 
construction of the XWAM chart we assign to each alternative models a weight 
Wj = (1-wo)w~,j =I, ... ,k. 

When we model our process using k + I models (estimated, and k alternative) 
each process observation generates k + l residuals. When all considered models 
belong to the class of autoregression processes AR(p) residuals are calculated using 
the following formula 

z1,J = x; - (a1,1X1-1 + ... +ap1,1x1- p1),j = 0, ... ,k; i = PJ + l,.... (7) 

Let i111;11 = max(po, ... ,Pk)+ 1. For the calculation of the parameters of the XWAM 
control chart we use 11 - i111 ;11 + 1 weighted residuals calculated frorp. the formula 

k 
* " .. Z; - 1..,WJZi,j,l=l111i11,•··•n. (8) 

j=O 

The central line of the chart is calculated as the mean of zi, and the cpntrol limits 
are equal to to the mean plus/minus three standard deviations of zi, respectively. 

The weights w1
1, ••• , w~ were calculated in [15] and [16] using a methodology 

known from data mining of time series. For each of the considered alternative mod­
els MJ, j = 1, ... , k a long template time series was generated. Then, the observed 
sample was compared to each template series using the Dynamic Time Warping 
(DTW) method introduced by Berndt and Clifford [5]. The result of this compari­
son is expressed as a certain distance dist;, i = 1, ... ,J. Having evaluated distances 
between the sample and each template series generated from the respective alterna­
tive models { M1, ... , M1}, we select k models characterized by the smallest distance. 
Then, the weights { w1

1, ••• , w~} are calculated from the formula 

, dist; 
W; = k , (9) 

Lh=I dist1, 

It is worth noting that any method of comparison can be used for this purposes. 
For the description of other methods, we refer the reader to a recent survey and 
experimental comparison of representation methods and distance measures for time 
series data provided by Wang et al. [26]. 

The properties of the XWAM chart for residuals have been extensively investi­
gated in [16]. In Table 5, taken from [16], we present the average ARL's for pro­
cesses with independent observations (p = 0). We consider here different weights w 
of the estimated model, and different shifts of the monitored process level expressed 
as multiples of the process standard deviation (real, not estimated). The simulations 
were performed for a very small sample size, 11 = 20. 

Table 5 shows a very interesting feature of the XWAM chart for residuals. When 
we decrease the weight w assigned to the estimated model the respective values of 
the average ARL's are increasing when shifts of the process mean are either not 
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Table 5 Average ARL for different weights assigned to the estimated model and different shifts of 
the process level, p = 0, n=20 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 4.6 4.9 4.8 4.8 4.8 4.8 4.8 4.9 4.9 5.0 5.2 
-2 9.8 9.9 9.0 10.0 10.1 10.3 10.6 11.0 11.5 12.3 13.4 
-I 46.9 49.5 52.4 55.7 60.0 64.0 69.2 75.2 82.0 90.0 99.2 
0 177.4 190.4 204.6 220.2 237.3 255.9 276.1 297.3 318.6 339.2 358.0 
1 50.0 52.5 55.3 58.4 62.0 66.1 70.8 76.3 82.6 90.1 98.9 
2 10.4 10.5 10.5 10.6 10.7 10.9 11.1 11.5 12.0 12.6 13.6 
3 5.0 4.9 4.9 4.9 4.8 4.8 4.9 4.9 5.0 5.1 5.2 

present (the in-control state) or are small (e.g., the shift of one standard deviation). 
For larger shifts these values for the XWAM chart are similar or may be even smaller 
( !) than in the case of the classical X chart for residuals (w = 1). It means that for the 
XWAM chart for residuals the rate of false alarms is smaller than in the case of the 
X chart for residuals, and similar or even smaller for large shifts of the process level. 
Thus, the proposed XWAM chart seems to be more effective than the Shewhart X 
cha.rt for residuals. 

Interesting behavior has been observed in [16) for autocorrelated data. For ex­
ample, in Table 6, taken from [16], we show the average values of ARL when the 
process observations are positively, but not very strongly, coITelated (p = 0.5). For 
non-shifted processes and processes with small shifts of the expected value the de­
creased weight of the estimated model results with larger values of the ARLO (a 
positive effect) but also with larger values of the ARL for shifted processes (a neg­
ative effect). However, for larger shifts of the process level the situation becomes 
different; the value of ARL becomes smaller (a very positive effect) with decreased 
values of w. Therefore, one can think about an "optimal" value of w for which we 
have a low rate of false alarms (large ARLO), and a high rate of alarms (low ARL) 
for significantly shifted process levels. 

Table 6 Average ARL for different weights assigned to the estimated model and different shifts of 
the process level, p = 0.5, n=20 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0,0 
-3 16.7 16.3 15.7 15.0 14.2 13.5 12.8 12.2 11.8 11.4 11.2 
-2 43.0 47.0 45.8 46.4 46.6 46.4 45.9 45.1 44.1 43.1 42.2 
-I 107.2 117.2 126.4 135.0 142.7 149.2 154.3 158.0 160.3 161.4 161.5 
0 165.8 185.0 204.2 222.7 239.7 254.5 267.1 275.0 284.8 289.5 291.4 
l 105.2 115.3 124.6 132.7 139.5 144.6 148.1 150.2 151.3 151.5 151.0 
2 42.0 44.0 45.3 46.0 46.3 46.1 45.7 44.9 43 .9 42.6 41.4 
3 16.2 15.9 15.4 14.7 14.0 13.3 12,5 11.9 11.4 11.1 10.8 

From Tables 5 - 6, and others presented in [16), we can see that the XWAM chart 
has better discriminative power than the classical X chart for residuals. Taking into 
account that too large values of the ARL for shifts of small and medium sizes may 
be not acceptable, we can set parameter w to such value that the average time to 
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a false alarm is not smaller than a given value (e.g., equal to 250), or to find its 
"optimal" value, defined, e.g., as the value of iv for which we have the highest rate 
of alarms (i.e., the lowest value of the ARL) for large shifts of the process level. In 
the cases considered in (16], such an "optimal" value ofw seems to be close to 0.5. 

The method for the construction of the XWAM chart was firstly proposed by 
Hryniewicz and Kaczmarek in (15] taking in mind the possibility to use several sets 
of real data series as templates. However, when we consider a large number of alter­
native models (for example, all stationary AR(p ),p = 1, .. , 4 autoregression models) 
the proposed method for finding alternative models and their weights is time con­
suming. Therefore, there is a practical need to simplify it, and thus make it easier 
for implementation. In this paper we propose a modification of the XWAM chart, 
coined as the sXWAM (simplified XWAM). In this modification we use only one 
alternative model. To find this model we do not compare directly the observed sam­
ple and the stored template time series, but their summarizations provided in terms 
of the autocorrelation functions of the pth order. Let r1, r2, ... , rp be the consecu­
tive p values of the sample autocorrelation function calculated using (3). Similarly, 
let r1,;, r(2, i), ... , rp,i, i = 1, ... ,J be the consecutive p values of the autocorrelation 
function of the alternative model. For given parameters of the alternative autoregres­
sion process a1,; , .. . , ap,i, i = 1, ... ,J the values of r1,;, r(2, i), ... , ,,,,;, i = l, ... ,J can 
be found by solving the Yule - Walker equations (4). In general, the consecutive val­
ues of r P can be computed using the following recursion equation 

(10) 

In this paper we consider only processes of the maximum fourth order. In such a 
case, by doing some simple but tedious algebra, we can obtain the following explicit 
formulae for the first three autoregression coefficients: 

where 

r1 =Ai, 

A l = ___::!_ 
1 - a2' 

a3 
Az=--, 

1-az 
a4 

A3=-- , 
l -a2 

Ai (a1 +a3) +a2 B1---------- l-(a1+a3)A2-a4' 

(11) 

(12) 

(13) 
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82 = A3(a, +a3) . 
l-(a,+a3)A2-a4 

Hence, the consecutive values of r4 , r5, . . . can be directly computed from (10). 
As the measure of distance between the estimated autocorrelations r 1 , r2 , . .. , rp 

and the correlations calculated for the ith alternative model r1 ,; , r2,;, ... , r p,i, i = 
1, ... , J we use a simple sum of absolute differences ( called the Manhattan distance 
in the community of data mining) 

/1 

dist1,MH = L h - rk,;I, i = l, ... ,J. 
k= I 

(14) 

The autoregression model with the lowest value of dist;,MH is chosen as the alterna­
tive model with the weight equal to 1 - w. 

The design of the sXWAM chart for residuals is thus much simpler. The values of 
the autoregression functions for different alternative models can be computed in ad­
vance, and stored in an external file. This file can be red by a computer program, and 
used for choosing the model that fits to the observed sample (and its estimated au­
toregression function). The properties of the sXWAM chart have been investigated 
in extensive computer simulations. The results of these investigations are presented 
in the next Section. 

4 Properties of the sXWAM chart - numerical experiments 

The properties of the XWAM chart, extensively investigated in [15] and [16] and 
recalled in Section 3, show that statistical properties of this new control chart are 
undoubtedly better than the properties of the classical X control chart for residuals. 
The price for this improvement is a significant complication of the design algorithm. 
The sXWAM chart, introduced in this paper, does not require such computation ef­
forts, and from a practical point of view is simpler for implementation. However, this 
simplification may result in worsening of its statistical properties. In this Section we 
investigate this problem using Monte Carlo simulations. All results presented in this 
Section have been obtained from simulations of 10000 control charts for residu­
als . Each simulated control chart was designed using a simulated sample of either 
n = 20 or n = 100 observations. Samples were generated using a chosen autoregres­
sion process with innovations having the standard normal distribution. In the design 
process for calculation of residuals we used the estimated (from the sample) autore­
gression model. Then, for each chart we simulated 5000 runs, each curtailed after 
1000 observations. In this experiment many different characteristics were evaluated. 
However, in this paper we restrict ourselves to average (averaged over the set of all 
simulated charts) values of the ARL (Average Run Length). 

The most important characteristic of a control chart is its ARL for a process being 
in an in-control state, usually denoted by ARLO. For the XWAM chart this value, 
as it is demonstrated in Section 3, is growing with increased values of the weight 
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assigned to alternative models. For the sXWAM chart, as it has been shown in Tables 
7 - 8, this looks somewhat different. 

Tnble 7 Average in-control ARL, ARLO, for different weights assigned to the estimated model, 
n=20 

Model/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
AR(-0.9) 258 .3 270.2 277.6 280.8 280.6 278.0 274.0 269.5 264.8 260.4 256.4 
AR(-0.5) 201.0 202.5 203.9 205.3 206.5 207.7 208.7 209.7 210.4 21 I.I 211.7 

AR(O) 169.5 169.8 170.0 170.I 170.0 169.8 169.6 169.2 168.8 168.4 167.9 
AR(0.5) 175.8 176.5 177.1 177.7 178.2 178.6 178.9 179.2 179.4 179.5 179.5 
AR(0.9) 146.5 149.3 151.0 151.8 151.8 151.4 150.9 150.2 149.6 149.0 148.4 

AR(0.7,-0.9) 205,6 207.2 205.7 201.6 195.6 188.7 186,7 174.1 167.1 160.5 154.2 
AR(0.7,-0.9,0.1) 196.3 200.3 202.8 203.9 203.4 201.6 198.8 195.2 191.0 186.4 181.6 

AR(0.7,-0.9,0.1,-0.2) 209.5 214.2 217.4 219.0 219.0 217.5 214.8 211.1 206.7 201.9 196.8 

Table 8 Average in-control ARL, ARLO, for different weights assigned to the estimated model, 
n=IOO 

Model/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
AR(-0.9) 323.6 341.5 351.0 352.7 349.0 342.3 335.2 329.0 324.3 321.2 319.4 
AR(-0.5) 310.1311.0311.7 312.2 312.5 312.7 312.6 312.4 312.0 311.4 310.7 

AR(O) 288.1 288.5 288.7 288.6 288.2 287.7 286.9 285.2 284.6 283.2 281.5 
AR(0.5) 307.3 308.0 308.7 309.1 309.4 309.5 309.5 309.3 309.0 308.5 307.9 
AR(0.9) 302.6 314.2 320.3 322.0 320.6 317.7 314.8 312.6 311.2 310.8 311.1 

AR(0.7,-0.9) 302.4 304.6 297.3 282.5 263.2 242.3 221,9 203.2 186.5 171.8 158.8 
AR(0.7,-0.9,0.1) 296.6 302.9 305.6 304.8 300.9 294.1 285.2 274.8 263.5 251.7 239.8 

AR(0.7,-0.9,0.1,-0.2) 292.3 299.3 303.1 303.7 301.2 295.9 288.4 279.3 269.0 258.2 247.2 

First of all, we can notice that the growth of the ARLO value is not present in 
the case of independent observations (i.e., the AR(O) process), and not significant 
in the case of processes with weak or moderate autocorrelations (e.g., AR(-0.5) or 
AR(0.5) processes). In the case of strongly autocorrelated processes, and processes 
of complicated autocorrelation structure, the dependence of ARLO upon the value 
of the weight w assigned to the alternative model is more visible. This property 
indicates that for significantly correlated process observations in the case of the 
sXWAM chart we can expect lower false alarm rates than in the case of usual X 
charts for residuals. However, for processes without strong correlations the profits 
from the usage of the sXWAM chart may not compensate the costs related to its 
complicated design. Analyzing the data presented in Tables 7 - 8 we can also see 
somewhat unexpected finding. The most advantageous effect of the usage of the 
XWAM chart, i.e., the decrease of the false alarm rate (i.e., the increase of the ARLO 
values), in the case of the sXWAM chart seems to be more significant for larger 
sample sizes. 

When the knowledge about a monitored process is limited or when a practitioner 
is advised to use a certain (e.g., the sXWAM) chart it is interesting to know if the 
practically unnecessary choice of the sXWAM chart may decrease abilities of the 
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chart to detect unwanted shifts of the process level. In Tables 9 - 10 we present the 
values of the ARL for differently shifted process levels when consecutive observa­
tions are independent. The shifts are given in units of the standard deviation in the 
distribution of innovations. 

Tobie 9 Average ARL for different weights assigned to the estimated model and different shifts of 
the process level, AR(0), n=20 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 4.92 4.92 4.91 4.91 4.91 4.91 4.92 4.93 4.95 4.96 4.98 
-2 9.8 9.8 9.7 9.7 9.7 9.7 9.7 9.8 9.8 9.8 9.8 
-1 46.2 46.l 45.9 45.8 45.7 45.6 45.5 45.4 45.4 45.4 45.3 
0 169.5 169.8 170.0 170.1 170.0 169.8 169.6 169.2 168.8 168.4 167.9 
l 45.0 44.8 44.6 44.5 44.4 44.3 44.2 44.2 44.l 44.l 44.l 
2 9.6 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.6 9.6 9.6 
3 4.92 4.91 4.91 4.91 4.91 4.91 4.92 4.93 4.95 4.96 4.99 

Table 10 Average ARL for different weights assigned to the estimated model and different shifts 
of the process level, AR(0), 11= 100 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 4.81 4.80 4.79 4.79 4.79 4.79 4.80 4.81 4.82 4.83 4.85 
-2 9.2 9.2 9.1 9.1 9.1 9.1 9.1 9.2 9.2 9.2 9.3 
-1 46.l 46.0 45.9 45.8 45.7 45.6 45.5 45.4 45.4 45.3 45.2 
0 288.1 288.5 288.7 286.6 288.2 287 .7 286.9 285.2 284.6 283.2 281.5 
1 46.4 46.3 46.2 46.1 46.0 45.9 45.8 45.7 45.7 45.6 45.5 
2 9.2 9.2 9.2 9.1 9.1 9.1 9.2 9.2 9:2 9.2 9.3 
3 4.81 4.80 4.79 4.79 4.79 4.80 4.80 4.81 4.82 4.84 4.85 

The results presented in Tables 9 - 10 show that when we use the sXWAM chart 
for uncorrelated processes the detection abilities have not been deteriorated, and 
in some cases are even very slightly improved. Similar results have been obtained 
for weakly and moderately autocorrelated processes (not presented in this paper). 
Therefore, we can say that even in cases when the sXWAM chart is not advisable 
for process monitoring purposes, its usage does not lead to worse detection abilities 
than in the case of the X chart for residuals. 

Now, let us consider cases when the usage of the sXWAM chart seems to be 
profitable, as by increasing the value of the weight assigned to the alternative model, 
i.e, by decreasing the value of w (but not too much), we can decrease the false alarm 
rate. In practice we can profit from this property only in cases when such increasing 
does not lead to significant worsening of the detection abilities. Let us start from the 
case of strongly negative autocorrelation, i.e., the AR(-0.9) process. The respective 
values of the ARL are given in Tables 11 - 12. 

In the considered case oftheAR(-0.9) process by decreasing the value ofw (i.e., 
by increasing the weight of the alternative model) we also increase the value of ARL 
for shifted processes. However, when the value of w is in the range of (0.5 - 0.8) we 
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Table 11 Average ARL for different weights assigned to the estimated model and different shifts 
of the process level, AR(-0.9), n=20 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 2.21 2.21 2.21 2.22 2.22 2.23 2.24 2.26 2.28 2.31 2.36 
-2 2.7 2.7 2.7 2.8 2.8 2.9 3.0 3.1 3.2 3.4 3.6 
-1 13.8 14.8 15.9 17.l 18.3 19.5 20.6 21.6 22.6 23.7 24.7 
0 258.3 270.2 277.6 280.8 280.6 278.0 274.0 269.5 264.8 260.4 256.4 
I 13.6 14.6 15.7 16.9 18.0 19.2 20.2 21.3 22.3 23.4 24.4 
2 2.7 2,7 2,7 2.8 2.8 2.9 3.0 3.1 3.2 3.4 3.6 
3 2.21 2.21 2.21 2.22 2.22 2.23 2.24 2.26 2.28 2.31 2.36 

Table 12 Average ARL for different weights assigned to the estimated model and different shifts 
of the process level, AR(-0.9), n=lOO 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 2.05 2.05 2.05 2.05 2.06 2.07 2.08 2.10 2.11 2.14 2.17 
-2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.8 2.9 3.0 
-1 9.1 9.7 10.3 10.9 I 1.5 12.1 12.7 13.3 13.8 14.4 14.9 
0 323.6 341.5 351.0 352.7 349.0 342.3 335.2 329.0 324.3 321.2 319.4 
1 9.1 9.7 10.3 10.9 11.5 12.2 12.7 13.3 13.9 14.4 14.9 
2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.8 2.8 3.0 
3 2.05 2.05 2.05 2.05 2.06 2.07 2.08 2.10 2.11 2.14 2.15 

observe the increased values of the ARL0. Thus the positive effect of the decreased 
false alarm rate may overweight the negative effect of the increased alarm rate for 
shifted processes. The analysis of the discrimination rate, defined as the quotient of 
the ARL value for a shifted process and the ARL0, shows that for small sample sizes 
(e.g., when 11 = 20) the 'optimal' value of w is close to 0.5. On the other hand, for 
larger sample sizes (e.g., when 11 = 100) this value may be even smaller. However, 
despite higher discrimination rate for low values of w the values of the ARL for 
shifted processes may be regarded as too high. Thus, the value of w equal to 0.5 
may be recommended also in this case. 

An interesting case of strongly positively autocorrelated process, AR(0.9), is pre­
sented in Tables 13 - 14. It is quite clear that for considered sample sizes the detec­
tion abilities of the chart are very poor. The false alarm rates for a small sample size 
(11 = 20) are high, and alarm rates for shifted processes are prohibitively low (large 
values of ARL's) . Other experiments show that this bad property is related to the au­
tocorrelation of sample residuals, and vanishes only in the case of very large sample 
sizes. However, when we have only small sample sizes by the usage of the sXWAM 
chart we can decrease the false alarm rate and increase the discrimination rate, thus 
making the monitoring process more effective. However, this positive effect is not 
significant, so the usage of the sXWAM chart in this case may be questionable. 

Finally, let us consider the case of a process with a complicated autocorrelation 
structure, namely the AR(0. 7, -0.9, 0.1, -0.2) process. In the case of this process 
the autocorrelation function has a shape of a slowly damped sinusoid, and thus the 
effects of the autocorrelations are not easily evaluated using small samples . The 
results of the respective simulation experiment are presented in Tables 15 - 16. 
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Table 13 Average ARL for different weights assigned to the estimated model and different shifts 
of the process level, AR(0.9), n=20 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 100.5 100.4 99.0 98.6 98.1 98.2 98.9 100.l 101.7 103.4 105.1 
-2 122.9 124.2 124.5 124.3 123.8 123.5 123.4 123.5 123.9 124.4 124.9 
-1 140.0 142.9 143.8 144.3 144.2 143.9 143.4 143.0 142.6 142.2 141.9 
0 146.5 149.3 151.0 151.8 151.8 151.4 150.9 150.2 149.6 149.0 148.4 
1 140.0 142.3 143.6 144.0 143.7 143.2 142.6 142.l 141.7 141.4 141.1 
2 122.7 123.9 124.1 123.7 123.l 122.6 122.5 122.6 123.1 123.6 124.2 
3 100.1 100.0 99.0 98.0 97.4 97.6 98.4 99.6 101.2 102.9 104.6 

Table 14 Average ARL for different weights assigned to the estimated model and different shifts 
of the process level, AR(0.9), n=lOO 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 214.0 196.8 199.9 188.6 188.2 190.5 194.8 200.5 207.0 214.0 221.l 
-2 247.6 250.l 248.5 245.3 242.8 242.1 243.3 246.0 249.7 254.0 258.6 
-1 286.7 295.5 299.0 298.5 296.1 293.4 291.5 290.8 291.1 292.3 294.1 
0 302.6 314.2 320.3 322.0 320.6 317.7 314.8 312.6 311.2 310.8 311.1 
l 287.5 296.3 299.8 299.3 296.9 294.1 292.2 291.3 291.1 292.7 294.5 
2 248.8 251.4 249.8 246.5 243.9 243.1 244.2 246.8 250.4 254.6 259.1 
3 214.6 198.0 193.0 189.7 189.2 191.4 195.6 201.3 207.7 214.6 221.6 

Table 15 Average ARL for different weights assigned to the estimated model and different shifts 
of the process level, process AR(0.7, -0.9, 0. 1, -0.2, n=20 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 4.31 4.33 4.36 4.39 4.43 4.47 4.52 4.58 4.65 4.74 4.84 
-2 9.2 9.3 9.5 9.7 9.9 10.1 10.3 10.5 10.7 10.9 11.l 
-1 54.2 55.8 57.2 58.3 58.9 59.2 59.2 58.9 58.4 57.8 57.0 
0 209.5 214.2 217.4 219.0 219.0 217.5 214.8 211.1 206.7 201.9 196.8 
I 53.4 SS.I 56.5 57.6 58.3 58.7 58.7 58.5 58.0 57.4 56.7 
2 9.1 9.3 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 
3 4.34 4.36 4.39 4.42 4.46 4.51 4.56 4.62 4.69 4.77 4.86 

Table 16 Average ARL for different weights assigned to the estimated model and different shifts 
of the process level, process AR(0.7, -0.9, 0.1, -0.2, n=lOO 

Shift/w: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
-3 4.16 4.17 4.19 4.21 4.23 4.25 4.28 4.31 4.35 4.39 4.44 
-2 7.3 7.4 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 
-1 38.8 39.7 40.4 40.8 41.0 41.0 40.8 40.5 40.0 39.5 38.8 
0 292.3 299.3 303.1 303.7 301.2 295.9 288.4 279.3 269.0 258.2 247.2 
I 39.1 39.9 40.6 41.1 41.3 41.3 41.1 40.7 40.2 39.7 39.0 
2 7.3 7.4 7.5 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 
3 4.16 4.18 4.19 4.21 4.23 4.26 4.28 4.31 4.35 4.39 4.44 
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Similarly to the case of the AR(0.9) process, the best discrimination rate can be 
obtained for the values of IV close to 0. 7. However, the final choice of the value of IV 

has to be made taking into account a balance between a required high value of the 
ARL0, and possibly low values of ARL's for shifted processes. Thus, the value of w 
in the range (0.7 - 0.9) may by preferable. 

5 Conclusions 1 

In the paper we have proposed a simplified version of the XWAM control chart for 
residuals. In contrast to the original XWAM control chart, described in the papers 
by Hryniewicz and Kaczmarek, [15] and [16], there is only one alternative model 
that is taken into account for model averaging purposes. Moreover, the choice of the 
alternative model is not based on the comparison of the observed sample time series 
and the template time series of greater length, but on the comparison of the sample 
autocorrelation function with autocorrelation functions derived theoretically for all 
stationary autoregression processes of the maximal order of four. 

In order to evaluate the proposed methodology we have pe1formed many simula­
tion experiments. From the results of these experiments we can see that the proposed 
sXWAM control chart has good properties only for relatively strongly negatively 
autocorrelated processes. For positively correlated processes and for processes with 
weak or moderate autocorrelations of both types the original XWAM chart performs 
much better, and the performance of our new simpler chart is only slightly better 
than the performance of the classical X chart for residuals. A probable explanation 
of this effect is the following. By choosing only one alternative model that is well fit­
ted to the observed data we, in some sense, replicate the estimated model. Therefore, 
we do averaging using two similar models. In contrast, in the case of the original 
XWAM chart we use several alternative models, thus making the final model more 
flexible, and possibly closer to the original one. It is interesting, however, how the 
performance of the s:XWAM chart will change if we take into consideration more 
alternative models chosen according to their proximity to the estimated one in terms 
of the autocorrelation function. Moreover, in future investigations the methodology 
used for the construction of the sXWAM chart may be used for the construction 
of other control charts for residuals, such as EWMA or CUSUM. These have been 
proved to perform better than the classical Shewhart X chart for individual obser­
vations, so it is interesting if this superiority will be preserved for similar control 
charts based on the model averaging principles. 
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