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Abstract 

In the paper influence of the deadliness mutual relations (deadliness 
intervals) on the asymptotical optimal solution values behavior, where 
total profit is maximized (i.e. total cost is minimized), is considered for 
the case of the random Sequencing Jobs with Deadlines (SJD) problems. 
Asymptotically sub-optimal algorithm has been proposed. It is assumed 
that problem coefficients are realizations of independent, uniformly dis
tributed over (0, 1) random variables, n -; oo, with deadlines remaining 
deterministic. 

Keywords: Scheduling, Knapsack Problem, Probabilistic Analysis, Approximate 
Algorithm, Profit, Cost Criterion 

1 Introduction 

The sequencing jobs with deadlines problem (SJD) is to maximize the weighted 
number of jobs processed before their deadlines. Deadlines are special cases of 
due windows (due intervals) see eg. Janiak et al. [5]. Each job j (j = l, ... , n) 
is to be processed on a single machine. It requires a processing time ti and 
has a deadline dj(n). If the job is processed before its deadline, a profit Pi is 
earned. The objective is to maximize the total profit, which could be considered 
as equivalent to minimize the total cost. 

From the point of view of the deterministic scheduling problems theory SJD 
problem belongs to the class of the single machine scheduling (SMS) problems. 
More precisely it is considered as scheduling problem with optimisation criteria 
involving due dates, classified as 111 '£wjUj, see Blazewicz et al. [l], p. 106. 
Many research papers are dealing with SMS problems due to their own research 
value as well as a part of more generalized and complex problems. 
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Assuming that 

(1) 

the SJD problem can be formulated as a binary (0-1) programming problem (cf. 
Lawler and Moore [8]): 

s.t. 

n 
zoPT(n) = max L PjXj 

j=I 
i 

L t1xj '.S d;(n), i = 1, ... , n 
j=l 

where Xj = 0 or 1, j = l, .. . , n 

(2) 

where Xj = l only if job j is processed before its deadline. Jobs on time should 
be processed according to (1), while late jobs may be processed in an arbitrary 
order or even not processed. Without Joss of generality we may assume that 

0 < tj '.S d1(n) and Pj > 0, j = l, ... , n 

SJD is well known to be an NP-hard problem, see Garey and Johnson [4], 
but it can be solved in a pseudopolynomial time by a dynamical programming 
method of Sahni [11]. In the paper by Dudzinski and Szkatula [2] simple and effi
cient heuristic algorithms to solve SJD was presented. In the literature simplified 
version of the SJD problem, where instead of processing times t;, i = 1, ... , n, 
each job takes 1 unit of time, i.e. t; = c, where c is certain constant. For the 
simplified version of SJD many efficient greedy type algorithms were proposed, 
cf. Puntambekar [10]. Moreover greedy type algorithms for simplified SJD are 
'often used in the teaching process at the universities, cf Kocur [7]. 

It could be easily observed that SJD is a special case of the well known 
binary (0-1) multi-constraint knapsack problem, cf. Kellner et al. [6], in the 
following formulation: 

ZQPT(n) = max"~ C;·X; s.t. "~ aj;·X; '.S bj(n), x; = 0 or 1, i, j = l, ... , n 
L..,,t=l .L...,,t=l 

where Cj = Pj, a;j = tj, l :S i :S j, % = 0, j < i '.S n, bj(n) = d1(n), 
j = l, .. . , n. When all constraints, but last, in (2) are dropped, then SJD 
problem is reduced to classical (single constraint) knapsack problem: 

n n 
ZoPT(n) =max"· p; ·X; s.t. "· t; · X; '.S dn(n), X; = 0 or 1, i = 1, ... ,n L..,,i=l .L...,,t=l 

(3) 
It is well known that multi-constraint knapsack problem is NP hard in the strong 
sense, while both SJD and single-constraint knapsack problems are NP hard but 
not in the strong sense, cf. Garey and Johnson [4]. 

Probabilistic properties of the random version of the multi-constraint binary 
knapsack problem were analyzed in the papers by Frieze and Clarke [3], Mamer 
and Schilling [9], Schilling [12],[13] and Szkatula (14],[15] . Due to the very sub
stantial differences between the general knapsack and the SJD problems those 
results can not be adopted for the case of the SJD problem in the straightfor
ward manner. In the Szkatula paper [16] asymptotic growth (as n • oo) of the 
value of ZOPT(n) for the class of random SJD problems was analyzed. 

The goal of this paper is to investigate the influence of the deadliness intervals 
on the optimal solution values ZOPT(n) asymptotical behavior (as n • oo) in 
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the case of random version of the SJD problem, where deadliness intervals are 
defined by di ( n), j = l, ... , n mutual relations. Simple heuristic algorithm 
solving SJD problems is proposed and it is proven that in the average case it is 
asymptotically sub-optimal. 

The results achieved make contribution to the field of scheduling problems as 
well as to the probabilistic analysis of the combinatorial optimization problems. 
These results could be also useful for constructing and testing approximate 
algorithms for solving SJD problems. 

The following notation is used throughout the paper: Vn ~ Yn, n --+ oo 
denotes: 

• Yn · (l -o(l)) :c:; Vn :c:; Yn · (l +o(l) if Vn and Yn are sequences of numbers; 

• limn-+oo P{Yn · (l - o(l)) :c:; Vn '.S Yn · (l + o(l))} = 1 if Vn is a sequence 
of random variables and Yn is a sequence of numbers or random variables, 
where o(l) > 0 and limn-+oo o(l) = 0 as usual. 

In Section 2 some useful duality estimations of (2) are presented. Those 
estimations are exploited in the Section 3 presenting probabilistic analysis of 
the SJD problem. Section 4 contains the main results of the paper related 
to deadliness intervals and approximate algorithm. Section 5 discuss obtained 
results. 

2 Lagrange and dual estimations 

Let us consider the Lagrange function of (2), cf. Szkatula [16]: 

Fn(x,i\.) f,PjXj + t>-; · (d;(n) - L;=l tixi) = 
1=1 i=l 

t >.;d;(n) + t Pi Xi - t >.; · (L;=l tixi) = 
i=l J=l i=l 

i=l j=l 

where x = {x1, ... ,xn}, A= {>-1, . .. An}, Aj = I:I=iA;. Let for every A, 
>.i '.:". 0, j = l, ... , n 

n n 

max Fn(x A) = '\""' >..;d;(n) + '\""' (p - A · t) · x ·(i\.) = 
xE{O,l}n ' L.., L.., J 1 1 1 1 

i=l J=l 
n n 

L>..;d;(n) + L(Pi(i\.i)-i\.j ·tj(Aj)) = 
i=l j=l 
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where ' 

Let us denote: 

X3·(A3·) = { 01 if P; - A;i; > 0 
otherwise 

Pi(Ai) { pa if P; - A, t, > 0 . 
otherwise ' 

ti (Ai) { 6 if P; - A, ti > 0 
otherwise 

n i 

Zn(A) LP, (A,); s;(A) = Lti(Ai); 
i=l i=l 

{ P,(Ai) if si(A) :5:_di(n). z (A)=~ "(A·)· 
0 otherwise ' n L.., p 1 ' 

i=l 
n n 

LA;· d;(n); Sn(A) = L >.; • s;(A) = 
i=l i=l 

n 

LAi · ti(Ai)i 'Pn(A) = zn(A) + Dn(A) - Sn(A) 
i=I 

The problem dual to SJD (2) is then as follows: 

(4) 

By the construction of Zn(A), Zn (A), Sn(A), Dn(A), 'Pn(A) and <l>~(A) we 
have for any A 2: 0: 

and 

3 Probabilistic analysis 

The following random model of SJD problem (2), cf. Szkatula [16], will be 
considered: 

• n 2: 1, n is positive integer, n-+ oo, i, j = l, ... , n 

• ti, Pi, are realizations of mutually independent random variables and 
moreover ti, Pi, are uniformly distributed over the (0, 1] interval; 

• 0 :-S: d1(n) :-S: d2(n) :-S: · · · :-S: dn(n) and A= {>.1, ... , >-n} are deterministic, 
di ( n) are functions of n. 

Let us compute the distributions and expectations of t;(A;), p;(A;), as func
tions of n, A; in the asymptotical case, when n -+ oo: 
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G;(A;,x) P{t;(A;)<x}=P{ti<xUt;>xnp;<Ai·t;}= 

{ 
1 _ 21://g=;~ 1:;~} O<x~min{1,f} 

l x > min { 1, f} 

H;(A;, x) P {H;(A;) < x} = P {Pi < x u ti > x n Pi <Ai• ti} = 

E(t;(Ai)) 

E(pi(Ai)) 

{ 

1 - l-x2 if A·> 1 
2·A· ' -

½ + t~, if x ~ Ai ~ 1 
x if Ai~X~l 
1 if x2':1 

1 min{l/Ai} 

j x • dGi(A;, x) = 
0 

j x • (l - Ai• x)dx = 
0 

{ rlr 
l - fu 
2 3 

if Ai 2': 1 

otherwise 0 ~ Ai ~ 1 

1 1 

j x · dH;(A;,x) = j x • G; (A;,x/A;) dx = 
0 0 

{ 
3_\ if A; 2': 1 

• 2 

l - & otherwise 0 < A· < 1 2 6 - ' -

We are looking for such A1, ... , An 2'. 0 that 

E(s;(A;(n))) ~ d;(n), for all i = 1, ... ,n 

By construction Aj = ~~=j A;, Aj 2'. 0, j = 1, ... , n and 

(6) 

A1 2': A2 2': · · · 2': An and therefore E(t1(A1)) ~ E(t2(A2)) ~ · · · ~ E(tn(An)). 
(7) 

Let us observe that if for certain i, 1 ~ i ~ n 

E(s;(A)) = d;(n) and d;+1(n)-d;(n) < E(t;+1(A;+1)) (8) 

then 
E(s;+1 (A) > d;+l (n) 

which means that if for some deadliness d1 (n), d2(n), · · · , dn(n) vector A, such 
that (8) holds, is determined, then (6) will not be fulfilled for all i = 1, ... , n. 
This will be caused by monotonicity of Aj and E(tj(Aj), refer to (7). Hence in 
Szkatula (16) recursive Algorithm 1 determining A(n), A;(n) 2'. 0, i = 1, ... ,n, 
guaranteeing that for each 0 ~ d1 (n) ~ d2 (n) ~ · · · ~ dn(n) (6) will be fulfilled, 
was proposed. 
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Algorithm 1 Procedure to determine Oj(n) and Ai(n), j =I, ... , n · 

Initialization Step: Let l +-- 0, do(n) +-- 0 
Main Recursive Step: Let 

•• { I dm(n) - di(n) . dj(n) - d1(n)} J=ma.x m =mm . 
l<m::,n m - l l<j'.5n J - l 

(9) 

and 

(10) 

fork= l + l, ... ,j*. 
Checking Step: if j* = n then the procedure is completed. Otherwise, we put 
l +-- j* and Main Recursive Step is repeated until j* = n. 

In the Algorithm 1 values of 01(n), 02(n), ... , on(n) and A1 (n), A2(n), ... , An(n) 
are determined. Below certain features of their construction are investigated: 

• 01(n) '.S 02(n) '.S ... '.S On(n); 

• I::}=1 Oj(n) '.S d;(n). If o;(n) < 0;+1(n) then I::}=1 oi(n) = d;(n); 

•A·(n)={ ✓G-o;(n) ifO<oi(n):S½ J ,j=l, ... ,n; ! - 3 • Oj(n) if½ < oi(n) '.S ½ 

• A1(n) 2:: A2(n) 2:: ... 2:: An(n); 

• If oi(n) = oi+1(n) then Ai(n) = Ai+1(n), Aj(n) = 0, E(sj(A(n)) '.S di(n); 

• ifoi(n) < oi+1(n) thenAi(n) < Ai+1(n), Aj(n) > 0, E(si(A(n))) = di(n); 

• I:;~=l A;(n)·(I::}=1 Oj(n)) = I:::1 A;(n)·E(s;(A(n))) = I:;~=l A;(n)·d;(n); 

• E(pi(Ai(n))) = { /j · oi(n) if O < oi(n) '.S ½ . 
½ + i · o j ( n) · (1 - o i ( n)) if ½ '.S o i ( n) '.S ½ 

Hence: 

n 

E(Zn(A(n))) LE(p(Aj(n))) "".' 
j=l t (Tj(n) G + ¾ai(n)(l -oi(n))) +'fi(n) ✓2 · 0;(n)) 

h ( ) { 1 if½ < oi(n) '.S ½ ( ) ( ) w ere Tj n = 0 otherwise and 'tj n = l - Tj n , j = 1, ... , n. 

The main result of the Szkatula [16] paper is stated in the theorem given 
below. 
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Theorem 1 Let Pi, ti, j = l, ... , n, be realizations of mutually independent 
random variables uniformly distributed over (0, 1], d1(n)::; d2(n)::; ... ::; dn(n), 
di(n) be deterministic, and oi(n) be defined by the above Algorithm 1. If 

then: 

~<::JO 
n • 01(n) 

~ ( (1 3-oi(n) ) ,fDE_\ zoPT(n) ""ki_ Tj(n) 8 + --2-(1 - Oj(n)) + 'tj(n)y ----y---3-} (11) 

The main idea of the Theorem 1 proof is based on showing that: 

Zn(A(n)) ""E(zn(A(n))) ""'Pn(A(n)) and E(zn(A(n))) <::J Zn(A(n)) 

and using (5). For further details refer to Szkatula [16]. 

4 Deadliness intervals and approximate algorithm 

Construction of the Oj(n), j = l, ... , n, provided by the Algorithm 1 and de
scribed in the Section 3 indicates that values of the o j ( n) as well as their prop
erties significantly depend on the mutual relations between di ( n), j = l, ... , n. 
It is assumed that dj(n) are monotonic cf. (1). Formula (9) in the Algorithm 1 
may be considered in different formulation, namely 

(12) 

where I +-- 0 at the initialization step and then in the recursive steps if j* < n 
then l +-- j*and when j* = n Algorithm 1 is finished . Formula (12) is clearly 
indicating that values o1 (n), Oz (n), .. . , On(n) depends on · 

d1 (n), d2(n) - d1 (n), . .. , dn(n) - dn-1 (n). 

To be more precise from the construction of the oi(n), Ai(n) = I:~=i Ai(n), 
j = l, ... , n, it follows that: 

if oj(n) = oi+1(n) then Aj(n) = AH1(n), Aj(n) = 0 and E(si(A(n)))::; di(n); 

if Oj(n) < Oj+1(n) then Aj(n) > AH1(n), Aj(n) > 0 and E(si(A(n))) = dj(n). 

From the duality theory it follows that if Ai(n) = 0 then corresponding con
straint in (2) is "inactive". It means that it is fulfilled by other "active" con
straints for which Aj(n) > 0, i,j E {1, ... ,n}. Formula (12) is enabling to 
distinguish 3 different classes of Oj(n), Aj(n), Ai(n), i,j = 1, ... ,n. 

Lemma 1 If for all j = 2, . . . , n 

(13) 
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then 

c51(n) = c52(n) = ... = On(n);Ai(n) = A;+1(n) = >-n(n),>-i(n) = O,i = 1, ... ,n-1. 
(14) 

Proof. If (13) holds then in Algorithm 1, according to formulas (9) and 
(12), Main Recursive Step is performed only once with j* = n and (14) will 
follow immediately from (10). • 

In the case considered in Lemma 1 only last constraint is active and SJD 
problem is reduced to the single-constraint knapsack problem (3). 

Lemma 2 If for all j = 2, . .. , n 

(15) 

then 

for i = 1, ... , n. 

Proof. If (15) holds then in Algorithm 1 , according to formulas (9) and 
(12), Main Recursive Step is performed n times with j* = 1, 2, . .. , n, and (16) 
will follow immediately from (10). • 

Lemma 2 is dealing with the situation when all n constraints are active. 

Lemma 3 If there exists jl, 1 < jl < n - 1 such that 

j -1 jl + 1 
dj-1(n) 2'. -.- · dJ(n), j = 2, ... ,j1; and djl+1(n) < -. - 2 · dj1+2(n) (17) 

J JI+ 

then 

c51(n) = ... = OJ1(n) < OJ1+1(n); A1(n) = ... = AJl(n) > AJ1+1(n), Ai(n) = 0, 
(18) 

where i = 1, ... ,j1. 

Proof. In this case when (17) holds then in Algorithm 1, according to 
formulas (9) and (12), first execution of the Main Recursive Step is providing 
j* = jl. Then starting with l = jl + 1 Main Recursive Step will be performed 
at least once more and (18) willfollow immediately from (10) . • 

In the Lemma 3 mixed case is considered where some, at least first jl, con
straints are inactive, while some constraints, at least jl + 1 one, are active. It 
also may happen, that this situation will be repeated several times. For ex
ample there may exist jll and jl!I, jl < jll < jl!I < n, such that constraints 
j I + 1, ... , j II are active, constraints j II + 1, ... , j /II are inactive and so on. 

For any given set of deadliness d1 (n), d2(n), ... , dn(n) Lemmas 1, 2 or 3 are 
covering all possible relations between deadliness and resulting "activity" status 
of constraints. 

Three lemmas presented above are allowing to introduce recursive intervals 
of deadliness corresponding to three cases considered. Theorem below presents 
the main result of this paper. 
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Theorem 2 If all j = 2, ... , n - l 

di(n) E [j ! 1 · dH1(n), j ~ l · dj-1(n)] (19) 

holds then Lemma 1 holds and (14) is describing mutual relations between Oj(n), 
Aj(n), >-;(n), i,j = 1, ... , n. If for all j = 2, ... , n - l 

(20) 

holds then Lemma 2 holds and (16) is describing mutual relations between oj(n), 
Aj(n), >-;(n), i,j = l, ... ,n. 
If There exists jt, 2 < jt < n - l such that for all j = 2, ... , jt - l 

[ j j ] jl+l 
dj(n) E j + l · dH1(n), j - l · dj-1(n) and dj1+1(n) < jt + 2 · dj1+2(n) 

(21) 
holds then Lemma 3 holds and (18) is describing mutual relations between Oj(n), 
Aj(n), .>-;(n), i,j = l, ... ,n. 

Proof. In order to prove the Theorem 2 is sufficient to observe that Lemma 1 
is proving (19), Lemma 2 is proving (20) and Lemma 3 is proving (21). • 

Formulas (19), (20) and (21) are defining in recursive manner deadliness in
tervals. If deadliness di(n), j = 2, ... , n- l, are belonging to the corresponding 
deadliness intervals, as presented in the (19), (20) and (21) then it is guaran
teed that Oj(n), Ai (n), >-;(n), i,j = 1, ... , n, will belong to one of the 3 different 
classes defined by Lemmas 1-3 and Theorem 2. This provides certain flexibil
ity in defining deadliness actual values since they may vary in the proposed 
deadlin_es intervals. Because of the recursive definition of the deadlines intervals 
first and last deadliness may have special influence on the intervals construc
tion. Presented below 3 examples are illustrating above defined classes of Oj(n), 
Aj(n), .>-;(n), i, j = l, ... , n . 

Example 1 

Let 

dj(n) = f and then oj(n) = ~' j = l, ... , n; dn(n) = ~-

In this case assumptions {13) of Lemma 1 and of Theorem 1 are fulfilled and 
according to (11) we have: 

1 
ZQPT(n) ~ - . n 

2 
(22) 

which means that in this case only last constraint is active, optimal solution has 
maximum possible value and all jobs will be processed before their deadliness 
in the asymptotical case for the considered random model of SJD problem. 
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Example 2 

Let 

j 2 2j - 1 . n 
dJ(n)=-2 andthenc5J(n)=-2-, J=l, ... ,n; dn(n)=-. 

n n 2 

In this case assumptions (15) of Lemma 2 and of Theorem 1 are fulfilled . All 
constarints are active and all jobs will be processed before their deadliness and 
(22) will hold. 

Example 3 

Let 

i and then c5J(n) = ¾, j = l, ... ,n*, n* = fil, 
j2 2j -1 . • n 
- and then c5J(n) = --, J = n + l, ... ,n; dn(n) = -. 
~ ~ 2 

In this case assumptions (17) of Lemma 3, where jl = n* ,and of Theorem 1 are 
fulfilled. According to (10) c5J(n) = ½, j = n* + l, ... , n,and from (11) we have: 

zoPT(n) ::::; ! · n - ~ · n* - ! 
2 32 2' 

which means that in this case some constraints will be active while some inactive 
and optimal solution value is smaller than the possible maximum one. Some 
jobs will not be processed before their deadliness (i.e. providing no profit) in 
the asymptotical case for the considered random model of the SJD problem. 

Below the heuristic, greedy type algorithm designed to solve SJD problem (2) 
in the general deterministic case is presented. This algorithm is using procedure 
equivalent to one applied in the Algorithm l. 

Algorithm 2 

Initialization Step: Let l t- 0, do(n) t- 0 
Main Recursive Step: Let 

j* = max {m I dm(n) - d1(n) = min ~d3~•(n~) __ -_d_i~(n~) } 
l<m'.5,n m - l l<j'.5,n J - l 

and 

Xj+-Xj(AJ•), j=l+l, ... ,j*, referto(4). 

Checking Step: if j* = n then the Algorithm 2 is completed. Otherwise, we 
put l t- j* and Main Recursive Step is repeated until j* = n . 

Algorithm 2 has extremely low computational complexity of order of O(n). 
It does not require sorting of elements as greedy type algorithms usually do. 
From computational point of view most expensive are max and min operations, 
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which have computational cost of O(k), where k is number of elements of the 
corresponding set. In the case when max and min operations are repeated k 
times over sets of order of k elements then computational complexity will be of 
order of O(k2 ). According to Lemmas 1 - 3 this situation may not occur since 
either Main Recursive Step will be repeated only once (Lemma 1) or it will be 
repeated several times (n in the case of Lemma 2) but number of elements of 
the corresponding sets will be small, i.e. of order of ~, where n is number of 
jobs (i.e. size of the problem) and m number of necessary repetitions of the 
Main Recursive Step. Therefore overall computational complexity of Algorithm 
2 will be of order of O(n). 

In the sense of the worst case analysis this algorithm is always providing fea
sible solutions of the SJD problem (2) which is guaranteed by (23), but it does 
not have any guarantees of the accuracy of the solutions provided. Therefore in 
the sense of the worst case analysis Algorithm 2 is the heuristic algorithm. How
ever for the considered random model of the problem (2) Algorithm 2 is asymp
totically sub-optimal. In the random case Algorithm 2 is behaving identically 
to the computational procedure described in the Algorithm 1. Asymptotical 
sub-optimality of the Algorithm 2 follows immediately from the Theorem 1. 

5 Concluding remarks 

In the present paper one of the classical scheduling problems - Sequencing Jobs 
with Deadlines problem (SJD) was considered. On the basis of the author's 
previous results, cf. Szkatula [16], probabilistic analysis of the impact of the 
deadlines mutual relations and functional properties was performed for the ran
dom model of the SJD problem. As the result of this analysis three specific 
categories of the deadlines mutual relations were identified. Then, on the basis 
of the results achieved in Lemmas 1, 2, and 3 Theorem 2 was formulated . In 
the Theorem 2 recursive deadliness intervals for the considered random model 
of the SJD problem were defined. In this framework roles of the first and last 
constraint, d1 (n) and dn(n) respectively, are crucial. Deadliness intervals may 
provide substantial flexibility in formulating SJD problems, because deadlines 
mutual relations may be analyzed in more convenient manner and their influ
ence on the SJD problem solutions (list of the jobs to be performed before their 
deadliness and providing profit) is demonstrated in convenient and convincing 
manner. 

Another interesting outcome of the paper is simple heuristic algorithm of 
very low computational complexity, which in the average case, i.e. for the 
considered random model of the SJD problem is asymptotically sub-optimal. 

Those results are enriching knowledge base for the Scheduling Problems, es
pecially Sequencing Jobs with Deadlines problem, theory and also may positively 
influence solvability of the SJD problem instances in practical applications. 
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