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Abstract 

Practitioners are very often posed to the dilemma of choice be­
tween the wealth of mathematic models for time series forecasting. 
They choose the forecasting method and its assumptions based on 
some prior information from the literature and rough guesses. The 
Bayesian approach enables formalizing this approach and expressing 
prior knowledge as probability distributions. Unfortunately, proper 
selection of the prior probability distributions may become very chal­
lenging task. Within this research, linguistic summaries are success­
fully incorporated into the construction of the prior information for 
forecasting models. Instead of defining proLaLility distriLutious, the 
user validates expected trends and the system creates the probability 
distributions automatically. Linguistic summaries are constructed as 
linguistically quantified sentences mined from databases, that may be 
exemplified by 'Among all increasing trends, most are short'. The pro­
posed approach is evaluated with experiments on real-life time series 
from the pharmaceutical market and the M3 Competition benchmark 
datasets. The results confirm that the incorporation and processing of 
the linguistic summaries increases the interpretability of the forecast­
ing process and may improve its accuracy. 

1 Introduction 

Recalling the 'No Free Lunch' theorem of Wolpert [Wolpert(1996)] and ap­
plying the metaphor for the mathematical forecasting problems, the cost of 
finding a solution, averaged over all problems, is the same for any method, 
and there is no method that is best for any mathematical problem. However, 
for some classes of problems, the selected forecasting methods outperform 
the others. Choosing the proper forecasting method for the given problem 
becomes very challenging task. 

For a recent review of competitive forecasting models and methods, 
see e.g., Gooijer and Hyndman [Gooijer and Hyndman(2006)]. Among 
competitive methods and models for forecasting, the Bayesian approach 
has been proven successful in various practical applications including in­
dustry, financial market, quality control, healthcare and more [Box and 
Tiao(1973) , Geweke(2005), Petridis et al.(2001)Petridis, Kehagias , Petrou, 
Bakirtzis, Kiartzis, Panagiotou et al.]. The main principles for the Bayesian 
approach are to express all assumptions using probability statements, and 
then to design distribution for the future events conditional on the observed 
values and a certain loss function. However, the main technical obstacles are 
in the expression of assumptions and the proper selection of the prior proba-
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bility distributions for the unknown variables. Usually, the assumptions are 
expressed by the analysts or experts of the field based mostly on their ex­
pertise and intuitions. In practice, the problem arises when experts fail to 
adequately establish the prior probability distributions. It is still one of the 
main challenges in the Bayesian forecasting. 

Furthermore, the research on psychology of decision-making proves that 
people may take irrational decisions and be influenced by emotions. There­
fore, simple and easily interpretable tools are required to support the selec­
tion of the prior knowledge for the forecasting process. Hopefully, there is a 
wealth of modern data mining techniques that discover interesting imprecise 
knowledge from large datasets, and the literature on discovery of summaries 
about time series data is extensive, see e.g. , [Nauck and Kruse(2014) , Kempe 
et al.(2008)Kempe, Hipp , Lanquillon and Kruse, Moewes and Kruse(2009)j. 

The objective of this paper is the introduction of the predictive method 
for time series with the use of linguistic summaries being human-consistent 
results of data-mining. 

This paper is continuation of our previous works (Hryniewicz and Kacz­
marek(20 l 4), Kaczmarek et al.(2015)Kaczmarek, Hryniewicz and Kruse]. 
Nonetheless, the method presented in this paper is applicable for time series 
of any length. The proposed method is in line with the granular computing 
approach for time series forecasting introduced in [Hryniewicz and Kacz­
marek(2015)]. However, the information granules considered in this paper 
are limited to linguistic summaries, and the prior model probability distri­
butions are constructed automatically with their use. The calculations are 
transparent for experts, nonetheless, no user input is obligatory for generat­
ing forecasts. 

An illustrative overview of the proposed method is presented in Figure 1. 

Figure 1: Overview of the proposed method. 

The performance of the F-LS method is illustrated with the study for 
the real-life sales time series from the pharmaceutical market. The proposed 
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approach is evaluated also with experiments for benchmark time series from 
the M3-Competition repository. The numerical results of the forecast accu­
racy show that the proposed approach with linguistic summaries may lead 
to the increase of the accuracy compared to the benchmark methods. None 
of the studied benchmark methods outperforms or dominates the proposed 
F-LS method. F-LS approach delivers forecast on the similar accuracy level 
as the ForecastX method, which has scored the best results (on average) in 
the whole competition. At the same time, it is observed that for real-life 
time series, the approach delivers forecasts with reasonably small error. 

The structure of this paper is as follows. Next Chapter briefly explains 
the discovery of linguistic summaries from the time series datasets. In Chap­
ter 3, the supervised learning module of the proposed approach is explained. 
Then, in Chapter 4, the Bayesian procedure for forecasting with linguistic 
summaries is presented. The numerical results of the experiments are de­
scribed in Chapter 5. This paper concludes with general remarks and further 
research opportunities in Chapter 6. 

2 Discovery of Linguistic Summaries 

When analyzing time series and performing the visual inspection, people 
perceive and process shapes rather than single data points [Attneave(l954)] 
and easily describe the evolution of time series with adjectives, like increasing 
trend, constant, decreasing, long, short, high values, medium, low, interesting 
feature, strong, weak, slight, etc. People have the ability to reason in the 
imprecise and uncertain environment and process such labels that refer to 
e.g., imprecise values, trends, judgments or features. 

The potential applications are summarization data from sensors e.g., in 
eldercare to monitor the patients health. The linguistic summary can take the 
following form: 'On most nights the resident had a high level of restlessness. ' 
cf. Wilbik and Keller [Wilbik and Keller(2012)]. 

The knowledge discovery process can be divided into segmentation, 
clustering, classification of identified meaningful intervals or patterns, de­
tecting anomalies, frequent patterns and discovery of association rules 
[Batyrshin and Sheremetov(2008) j. The data mining tools enable gen­
eration of various semantic and lexico-grammar structures summarizing 
large datasets. To formally describe the quantified sentences, we adapt 
the classic calculus of linguistically quantified propositions and the con­
cept of the protoform in the sense of Yager [Yager(l982)] developed by 
Kacprzyk et al. [Kacprzyk(2008), Kacprzyk and Wilbik(2009), Kacprzyk 
et al.(201l)Kacprzyk, Wilbik, Partyka and Ziolkowski]. 

3 



Let us now recall that a discrete time series is a sequence y = {y;};1,;,1 

of observations measured at successive {1, ... , m} moments and at uniform 
time intervals. Linguistic summaries describe general facts about evolution 
of time series with quasi natural language. The formal definitions are as 
follows. 
Linguistic summary [Yager(1982)] 
Let O = {o1 , o2 .. . ,ob} denote a finite set of objects (e.g. , trends of sequence 
data) in a considered domain. The properties of objects are measured by 
observables and are called attributes. Let A= {a1,a2 ... ,ar} denote a finite 
set of attributes (e.g., dynamics of change, duration), and S = {s1, s2 ... , s1} is 
a finite set of imprecise labels for attributes (e.g., quickly increasing, short). 
The protoform-based linguistic summary 

LS: Q o are P (1) 

consists of a quantity in agreement Q ( quantifier like e.g., most, among all), 
summarizer P (attribute together with an imprecise label) about objects 
o E O and a measure T of validity or truth of the summary. 

Alternative philosophy about the linguistic summarization is provided by 
Dubois and Prade [Dubois and Prade(1992)] . The authors introduce and 
discuss the gradual inference rules of the form 'The more X is F, the more Y 
is G' or 'The less Xis F, the less Y is G', where F, Gare gradual properties 
and X, Y are entities satisfying them to some degree. 

The data mining can produce a lot of summaries and it is always impor­
ta.nt to evaluate their interestingness. There have been proposed different 
measures to evaluate the quality of linguistic summaries. One of the first 
measures introduced by Zadeh is the degree of truth (validity) defined as 

T(LS) = µQ(~:'.:1 (µ:(Yn) /\ µp(Yn))) 
~ i= l µR(Yn) 

(2) 

where µR(Yn), µp(yn) are t he membership functions determining the degree 
to which R, P respectively, are satisfied for the time series y at the given 
moment n. 

Other measures that are commonly used in applications are e.g., the 
support ( covering) defined as follows: 

1 
dsup(LS) = -card{y: µp(Yn) > 0 /\ µn(yn) > O} 

n 

or the degree of imprecision (fuzziness) [Kacprzyk and Zadrozny(2005)]: 

dimp(LS) = 1 - m II card{x E X1 : µ., (x) > O} 

j=l, ... ,rn 
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where summarizer P is given as a family of fuzzy sets P = { s 1 , s2 , ... , sm} 
and card denotes the cardinality of the corresponding (non-fuzzy) set. 

Other quality measures (the degree of informativeness, the degree of 
specificity, the degree of appropriateness, length of the summary) could 
be also considered. For definitions and the review on alternative quality 
measures, refer to Yager [Yager (1982)], Kacprzyk and Zadrozny [Kacprzyk 
and Zadrozny(2005)] and the Chapter 4.3. of the Ph.D. thesis by Wilbik 
[Wilbik(2010)]. 

3 Supervised Learning of Probabilistic Models 

The algorithm starts from the definition of imprecise concepts that describe 
the trends and linguistic summaries . Secondly, the preprocessing of the time 
series data is performed to ensure that they are normalized and without miss­
ing values. Next is the supervised learning of the probabilistic models. Its 
goal is to build the training database and to discover rules enabling the clas­
sification of the probabilistic models based on the sets of linguistic summaries 
describing the evolution of t ime series. 

Then, the mining for t he human-consistent prior information is per­
formed. Its goal is to discover and validate with experts the linguistic sum­
maries about the expected evolution of the predicted t ime series. Next, the 
prior probability distributions are calculated. Finally, Markov Chain Monte 
Carlo Posterior Simulation is run to simulate the posterior probability dis­
tributions for the vector of interest and calculate the forecast Yn+i· 

Discrete time series 
Let O = { o1 , 0 2 ... , oq} denote a finite set of objects in a considered domain. 
The properties of objects are measured by observables P = {p1 ,p2 .. . ,pr}­
Discrete time series y = {yt};1=1 E Wn is a sequence of observations of given 
object's property (o,p) such that o E O and p E P measured at successive 
t E T = { 1, ... , n} moments and at uniform time intervals. For each t E T 
the observation Yt is a realization of the random variable Yi defined on the 
probability space (D, A, P ). A sequence of Yi formulates a stochastic process. 

4 Forecasting with Linguistic Summaries 

We adapt the Bayesian approach. Forecasts for future events w are generated 
in t he process of the Bayesian inference due to the following posterior density 
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of the vector of interest: 

J 

p(wly, M) = LP(MJIY, M)p(wly, MJ) (5) 
j=l 

This posterior density p(wly, M) is a weighted average of the posterior den­
sities of models { M1 , M2 , ... , M.1} which are defined as follows: 

(6) 

where p(MJ); Mj EM need to be defined a priori . 
Usually, the definitions for the prior probabilities are based on subjective 

expert's experience, some combination of relevant data, information from the 
literature and rough guesses !Kass and Raftery(1995) J. Nonetheless, such 
subjective definitions might be inaccurate, a.nd at the same time, the proper 
selection of a priori distributions is essential for good performance of the over­
all Bayesian forecasting process. The theoretical and empirical evidence show 
that prior assumptions for Bayesian model averaging are critically important 
[Ley and Steel(2009)]. 

The input for the algorithm is the discrete time series for prediction y 
and the set of template probabilistic models M, that need to be defined a 
priori. Within this research, we focus on supporting forecasting of short time 
series assuming that nmin = 10, nmax = 20. 

Bayesian averaging [Geweke(2005)I 
The posterior density of the vector of interest w conditional on multiple com­
petitive probabilistic models for forecasting M = { M 1 , M 2 , ... , 1W.1} is defined 
as follows 

.J 

p(wly, M) = LP(MJIY, M)p(wly, MJ) 
j=l 

(7) 

This posterior density p(wly, M) is a weighted average of the posterior den­
sities of models {M1 , M2 , ... , M.1} which are defined as follows: 

(8) 

We propose the approach to construct the prior model distributions 
p(M;), i E {1, ... , .l} with the support of the intelligent techniques. 
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Algorithm 1 Forecasting with Linguistic Summaries (F-LS) provides pre­
diction Yn+t 

Output: Yn+l 
Algorithm: 

1: Defining of imprecise concepts: 
2: build_fuzzy _numbers (S) 
3: Data preprocessing: 
4: repeat difference(y) until y is validated 
5: min-max normalization(y) 
6: Supervised learning for the training database: 
7: while i E J do 
8: 

9: 

10: 

Ti,, cs = generate k sample time series (M;, k , m) 
LI8 = discover_linguistic_summaries (T~) 
vs = calculate_degree_of_truth (LI 8 ) 

11: CL = supervised_ learning_ withSVM ( cs ,vs) 
12: Imprecise knowledge retrieval from humans: 
13: LIE = create_provisional_linguistic_ summaries (y) 
14: vE = calculate_ degree_ of_truth (LIE) 
15: TE = expert_ evaluation (LIE, vE) HUMAN INPUT NEEDED 
16: while i E J do 
17: ScM' = estimate_classification_scores (TE , CL) 

18: Posterior simulation and forecasting: 
19: P = construct_prior_prob_distr (M, ScM) 
20: Yn+i = MCMC _posterior_ simulation( P, y) 

5 Results and Discussion 

The performance of the proposed method is illustrated with the experiments 
on the artificial and real-life time series datasets. 

5.1 About Experiments and Datasets 

The goal of the experiments is to provide an illustrative demonstration of the 
proposed approach and to evaluate its forecasting accuracy. The program 
has been implemented in Python with the support of NumPy, SciPy and 
the PyMc extension modules. Linguistic summaries are generated with the 
Trend Analysis System [Kacprzyk(2008)]. 

The following forecast accuracy measures are adapted to evaluate the 
performance: 
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- Mean Absolute Percentage Error (MAPE) 

(9) 

- Symmetric Mean Absolute Percentage Error (sMAPE) 

(10) 

where h denotes the forecast horizon, Yt+i, F(y); and ei+i = Yt+i - F(y); 
determine the actual value, the forecasted value and the error for the ith 
forecast. 

Datasets considered for the experiments are as follows: 

1. simulated time series; 

2. pharmaceutical sales time series; 

3. benchmark time series from the M3-Competition by [Makridakis and 
Hibon(2000)]. 

First, time series are simulated from the autoregressive processes to verify 
some theoretical assumptions for the proposed approach. 

Secondly, monthly sales time series from pharmaceutical market are eval­
uated. The exemplary time series from the dataset are presented on Figure 
3. 

Alternative method has been proposed in [Kaczmarek and 
Hryniewicz(2013)]. 

Furthermore, the subset of yearly and monthly real-life time series from 
the M-3 Competition is considered. The experiments have been performed 
for the subset of the 10 first yearly time series of medium length ( observa­
tions from 4 years) from the M3-Competition [Makridakis and Hibon(2000)] 
dataset repository. 

5.2 Supervised Learning of Probabilistic Models 

We consider following 6 imprecise labels in the experiment: low, medi'IJ,m, 
high, increasing, constant, decreasing. Values for imprecise labeled sequences 
referring to increasing, constant, decreasing labels are defined based on ex­
perts' subjective beliefs. For labels: low, medium, high triangular fuzzy 
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numbers are constructed based on the minimum, average and maximum val-
ues calculated from the time series. Then, imprecise labeled sequences are 
calculated from appropriate membership funct ions. 

Types of linguistic summaries produced from different time series within 
the same model. 

Table 1: Degree of truth for sample time series from process AR with ¢1 = 0.9 

A utoregressive coefficient 0 .9 
Sample No. 91 92 93 94 95 96 97 98 99 100 Avg 

Among all coust y , most are med 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Among all const y, most are med and mod 1.0 0.9 0.9 1.0 1.0 1.0 0.8 1.0 1.0 0.8 0.9 

Among all const y , most are mod 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 

Among all canst y, most are short 0.1 0.4 0.1 0.3 0.0 0.0 0.2 0.1 0.2 0.1 0.2 

Among all canst y, most are short and mod 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.2 0.0 0.1 

Among all deer y, most are low 0.0 0.4 0.5 0.2 0.0 0.9 1.0 1.0 0.7 0.0 0.7 

Among all deer y, most are med 1.0 0.3 0.7 0.6 1.0 0.6 0.9 0.2 0.G 1.0 0.7 

Among all deer y, most are med and low 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 

Among all deer y, most are med and mod 1.0 0.2 0.4 0.4 1.0 0. 1 0.0 0.0 0.3 1.0 0.5 

Among all deer y, most are mod 1.0 0.6 0.5 0.8 1.0 0.2 0.0 0.0 0.5 1.0 0.7 

Among all deer y, most are short 0.9 1.0 1.0 1.0 1.0 LO 1.0 1.0 1.0 0.0 1.0 

Among all deer y, most are short and low 0.0 0.4 0.5 0.2 0.0 0.8 0.8 1.0 0.7 0.0 0.6 

Among all deer y, most are short and mod 0.9 0.5 0.0 0.1 1.0 0.0 0.0 0.0 0.2 0.0 0.6 

Among all incr y, most are low 0.9 0.3 0.2 1.0 0.2 0.7 0.8 0.7 1.0 0.4 0.6 

Among all incr y, most are med 0.6 0.9 0.6 0.6 0.5 0.4 0.4 0.3 0.4 0.9 0.6 

Among all incr y, most are med and low 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 

Among all incr y, most are med and mod 0.0 0.5 0.2 0.0 0.2 0.1 0.0 0.0 0.0 0.5 0.2 

Among all incr y, most are mod 0.1 0.9 0.8 0.0 0.8 0.3 0.3 0.3 0.0 0.7 0.5 

Among all incr y, most are short 1.0 1.0 1.0 1.0 1.0 1.0 LO 1.0 1.0 1.0 1.0 

Among all incr y1 most are short aud low 0.8 0.2 0.2 1.0 0.1 0.7 0.8 0.7 LO 0.3 0.6 

Among all incr y, most are short and mod 0.1 0.8 0.4 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.3 

Among all y, most are canst 0. 7 0.7 0.7 1.0 1.0 0.5 0.5 0.8 0.7 1.0 0.8 

Among all y, most are canst and mod 0.3 0.4 0.3 0.7 0.9 0.5 0.1 0.6 0.4 0.6 0.5 

Among all y, most are deer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Among all y, most are incr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Among all y, most are i11cr and low 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Among all y, most are low 0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.1 0.0 0.1 

Among all y, most are med LO 1.0 LO 1.0 1.0 1.0 0.9 1.0 1.0 LO 1.0 

Among all y, most are med and canst 0.5 0.5 0.6 0.7 1.0 0.5 0.3 0.6 0.6 0.9 0.6 

Among all y, most are med and canst and mod 0.2 0.2 0.2 0.5 0.8 0.4 0.0 0.4 0.3 0.5 0.4 

Among all y, most are med and mod 0.7 0.6 0.6 0.7 1.0 0.8 0.3 0.7 0.4 0.8 0.6 

Among all y, most are mod 0.8 LO 0.8 LO 1.0 0.9 0.5 0.9 0.7 1.0 0.9 

Among all y, most are short 0.5 0.7 0.5 0.5 0.2 0.4 0.7 0.6 0.6 0.2 0.5 

Among all y, most are short and canst 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Among all y, most are short and deer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Among all y, most are short and incr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Among all y, most are short and incr and low 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Among all y, most are short a11d low 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 

Among all y, most are short and mod 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Table 2 presents the degree of truth T for the considered time series. 
For example, the degree of truth for the summary Among all trends, most 

are short amounts to 0.2, 0.8, 0.9, 0.7, 0.8 and 0.3 for time series of Products 
No. 1 to 6, respectively. 
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Table 2: Evaluated linguistic summaries for sales time series of Prod 1- Prod 
6 

Prodl Prod2 Prod3 Prod4 Prod5 Prod6 
Among all deer trends, most are med'ium 0.5 0.2 0.2 0.4 0.1 0.5 

Among all deer trends, most are moderate 0.5 0.3 0.5 0.4 0.3 0.7 
Among all trends, most are constant 0.2 0.4 0.1 0.1 0.1 0.2 

Among all trends, most are deer 0.4 0.2 0.3 0.2 0.3 0.3 
Among all trends, mo.st are incr 0.4 0.2 0.3 0.2 0.3 0.3 
Among all trends, most are low 0.2 0.3 0.4 0.2 0.3 0.3 

Among all trends, most are medium 0.8 0.2 0.2 0.4 0.1 0.5 
A ·rnong all trends, most are moderate 0.7 0.2 0.6 0.5 0.4 0.8 

Among all trends, most are short 0.2 0.8 0.9 0.7 0.8 0.3 

The next step of t he proposed approach is the classification of the 
time series by probabilistic models based on the sets of t he linguistic 
granules. Again, for the clarity reasons, we group t he template prob­
abilistic models into 3 classes as follows: AR with weak positive auto­
correlation C1 = {M1, M2 , M3 } , AR with medium positive autocorrela­
tion C2 = { Jvh M5 , M6, M7} and AR with strong positive autocorrelation 
C3 = { M8 , Jv19 , M10}, and these classes are processed in the remaining of this 
experiment. The classification scores based on the linguistic summaries are 
presented in Table 3. For example, for TS representing sales of Product 1, 
the classification scores assigned to models C1 , C2 and C3 are 0.02, 0.39 and 
0.59, respectively. The weights for the Bayesian averaging are created as a 
consequence of t hese classification scores. 

Table 3: The classification scores in the 3-class problem based on the sets of 
linguistic summaries for the considered time series 

Scores Cl C2 C3 
Prod 1 0.02 0.39 0.59 
Prod 2 0.86 0.10 0.04 
Prod 3 0.92 0.06 0.02 
Prod 4 0.58 0.23 0.19 
Prod 5 0.94 0.04 0.02 
Prod 6 0.08 0. 46 0.45 

5.3 Forecasting performance 

To illustrate the performance of the forecasting approach, we use the subset 
of monthly time series that have length around 100 observations (94-100 ob-
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servations) from the M3-Competition Datasets Repository [Makridakis and 
Hibon(2000)]. They are categorized as industry, macro economy, finance , 
demographic data or other. 

The final step of the approach is the posterior simulation and the verifi­
cation of forecasting accuracy. The summary of the forecasting accuracy is 
demonstrated in Table 4. 

60 

50 --, 

40 

30 
I 

20 Fl u g --, 

10 e ....L. 
I 

....!,_ ....L. 

0 
F-LS Cl C2 0 Naive 

Figure 4: Box plot showing sMAPE forecasting accuracy on sales dataset 
by F-LS method, predefined 3 classes of autoregressive processes and naive 
method (last observed is first predicted). 

As demonstrated in Table 4, the sMAPE forecasting error for the pro­
posed F-LS method amounts to 7.8, and is around 5 times smaller than for the 
naive method. More importantly, for the considered time series, the approach 
also outperforms the traditional autoregressive models. The demonstrated 
forecasting accuracy results prove that the proposed method outperforms the 
naive method, however the error values seem to be significant. 

It is easily observed that this approach does not include the dependencies 
between different time series, and as confirmed by experts of the fields, the 
sales time series seem to be correlated. 

Next, the performance of the proposed approach assuming human input 
is compared to best 13 benchmark methods studied in [Makridakis and Hi­
bon(2000)]. These methods are briefly presented in Table 5. Methods marked 
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Table 4: Symmetric Mean absolute percentage error (sMAPE) for 6- step­
ahead forecast of the F-LS method, alternative autoregressive processes and 
naive method (last observed is first predicted) 

sMAPE 
Cl C2 C3 F-LS Naive 

Prod 1 2.0 1.5 3.6 3.4 6.9 
Prod 2 28.4 28.6 28.5 9.4 23.5 
Prod 3 6.4 3.8 2.8 2.3 12.2 
Prod 4 26.0 48.9 53.6 10.0 9.6 
Prod 5 20.0 11.7 26.8 15.0 14.6 
Prod 6 11.8 13.7 14.0 6.6 1 47.7 
Total 15 .8 18.0 21.5 7 .8 35.7 

with * are commercially available in forecasting packages. 
For real-life monthly time series (100 observations), the proposed method 

has scored sMAPE result of 11.03. 
Secondly, we test the proposed approach for the yearly time series. 
As demonstrated, none of the benchmark methods outperforms the pro­

posed F-LS method for all time series. On average, the proposed method 
scored a very good sMAPE result of 4.16, which is the best among the con­
sidered competitive methods. At the same time, it is observed that for some 
time series there exist methods that deliver more accurate forecast, so there 
is still potential for improvement. For example, when considering the time 
series N158, the sMAPE amounts to 3.41, 2.02, 3.04 for the proposed F-LS, 
ForecastX and the ForecastPRO method, respectively. The numerical results 
confirm that the proposed F-LS approach delivers very competitive results 
in terms of the forecasting accuracy. 

We have identified why the difference is significant. In general, the 
Bayesian approach is most successful for short time series. 

To sum up, the numerical results of the forecast accuracy show that the 
proposed approach of combining human input about linguistic summaries and 
various Box-Jenkins models through the Bayesian averaging may lead to the 
increase of the accuracy compared to the benchmark methods. None of the 
studied benchmark methods outperforms or dominates the proposed F-LS 
method for all time series. In almost half cases for the short time series, the 
proposed F-LS approach delivers more accurate forecast than the ForecastX 
method, which has scored the best results (on average) in the competition. 
F-LS provides forecasts which are similarly accurate to the ones provided by 
Comb S-H-D, Robust-Trend, Theta and RBF methods. 
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Table 5: Best methods from the M3-Competition. Methods marked with 
* are commercially available in forecasting packages. Source: Table 2, The 
24 methods included in the M3-Competition classified into six categories in 
[Makridakis and Hibon(2000)j 

Method Name Author D escription 
Fl ForecastX* J. Galt Expert System - selects from among 

several methods: Exponential 
Smoothing/ Box Jenkins / Poisson 
and negative binomial models/ 
Croston's Method/ Simple Moving 
Average 

F2 Theta [As- V. Assi- Decomposition technique - projec-
simakopoulos makopoulos tion and combination of the individ-
and Nikolopou- ual components 
los(20DD)] 

F3 AR.AR.MA N.Meade AR.IMA models - Automated 
Parzen's methodology with Auto 
regressive filter 

F4 ForecastPro* R. Goodrich, E. Expert System - selects from among 
Stellwagen several methods: Exponential 

Smoothing/ Box Jenkins / Poisson 
and negative binomial models/ 
Croston's Method/ Simple Moving 
Average 

F5 Comb S-H-D M. Hibon 1\-end model - combining three 
methods: Single / Holt/ Dampen 

F6 B-J Auto M. Hibon AR.IMA models - Box-Jenkins 
methodology of 'Business Forecast 
System' 

F7 Auto-ANN K. Ord, S. Automated Artificial Neural Net-
Balkin works 

F8 RBF M. Adya, s. R.ule-based forecasting: using ran-
Armstrong, F. dom walk, linear regression and 
Collopy, M. Holt's to estimate level and trend, 
Kennedy involving corrections, simplification, 

autonrntic feature identification and 
re-calibration 

F9 Robust-Trend N. Meade Trend model - Non-parametric ver-
sion of Holt 's linear model with me-
dian based estimate of trend 

FlO Naive2 M. Hibon Deseasonalized Naive (Random 
Walk) 
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Figure 5: Box plot showing sMAPE forecasting accuracy on monthly time 
series (N 2011 - N 2781) dataset from M-3 Competition by F-LS method , pre­
defined 3 classes of autoregressive processes and naive method (last observed 
is first predicted). 
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Table 6: sMAPE forecasting accuracy for monthly time series (N 2011 -
N 2781) from M-3 Competition by: the proposed F-LS method and the 
competitive methods from the M3 Competition 

F-LS Fl F2 F3 F4 F5 F6 F7 FB F9 Fl0 
N 2011 11.8 7.5 7.4 2.5 7.3 7.2 7.4 7.2 5.8 3.3 19.9 
N 2215 16.2 33.6 37.4 38.5 33.8 37.4 33.5 27.0 35.9 36.4 27.0 
N 2216 1.1 0.2 0.5 0.2 0.0 0.4 0.7 0.2 0.8 0.3 51.4 
N 2217 2.4 0.6 0.4 0.5 0.7 0.6 0.6 0.1 0.5 0.9 3.0 
N 2218 0.9 0.0 0.0 0.1 0.1 0.0 0.1 0.0 3.1 0.6 6.3 
N 2219 0.1 0.2 0.5 0.2 0.2 0.7 0.4 0.3 2.0 0.5 22.2 
N 2220 1.0 0.3 0.3 0.2 0.3 0.1 0.4 0.3 1.2 0.4 54.3 
N 2640 1.7 0.6 0.5 0.4 0.9 0.7 0.6 0.5 0.1 0.6 60.1 
N 2647 2.0 0.4 0.5 0.2 0.5 0.8 0.2 0.3 0.9 0.9 59.0 
N 2651 21.2 16.7 20.6 18.4 21.2 20.3 19.0 21.2 51.4 13.3 75.3 
N 2753 1.6 0.3 0.6 0.3 0.3 0.4 0.3 0.3 0.2 0.3 135.5 
N 2772 16.0 0.8 3.0 3.3 1.7 4.0 1.1 6.2 3.6 5.4 103.4 
N 2778 53.7 71.4 68.6 63.4 65.4 69.2 63.4 63.5 81.9 95.1 8.6 
N 2779 34.7 32.2 32.0 36.1 36.1 33.1 46.5 39.0 27.2 12.8 43.1 
N 2781 0.9 0.3 2.3 16.8 13.3 7.2 8.4 27.6 31.2 96.8 89.5 

Avg 11.0 11.0 11.7 12.1 12.1 12.1 12 .2 12.9 16.4 17.9 50.6 
Std dev 15.6 20.3 20.0 19.4 19.3 20.0 19.9 19 .0 24.5 33.1 38.4 

Table 7: sMAPE forecasting accuracy for yearly time series (N 156 - Nl68) 
from M-3 Competition by: the proposed F-LS method and the competitive 
methods from the M3 Competition 

F-LS Fl F2 F3 F4 F5 F6 F7 F8 F9 FlO 
N 156 0.6 3.9 0.0 4.2 4.4 1.1 3.3 1.8 3.9 3.1 4.5 
N 157 3.1 4.6 1.2 5.3 5.6 2.8 3.8 3.5 5.1 0.2 1.4 
N 158 1.3 0.1 2.5 1.0 0.7 1.7 1.5 1.4 0.7 2.8 4.0 
N 159 5.8 34.7 13.0 9.4 11.3 12.2 16.3 10.2 33.1 14.9 16.3 
N 160 1.3 4.4 2.7 5.9 6.0 5.2 5.9 1.0 3.9 4.9 5.9 
N 164 4.6 3.4 4.4 2.5 5.0 4.3 5.0 2.8 4.6 3.3 5.0 
N 165 4.4 3.2 4.8 2.2 4.6 4.3 5.1 3.6 5.4 3.4 5.1 
N 166 12.2 21..5 1.7 0.6 12.2 3.2 14.1 14.6 6.1 0.6 12.2 
N 167 2.1 4.1 5.0 3.7 4.1 5.1 5.6 0.3 4.5 3.2 4.1 
N 168 1.3 3.3 0.5 8.6 6.0 1.2 7.5 1.3 5.2 2.0 3.3 
Avg 3 .67 8.32 3.59 4.33 5.99 4.10 6.79 4.06 7.23 3.85 6.18 

Std dev 3.46 10.96 3.75 2 .98 3.38 3.21 4.73 4.65 9.20 4.11 4.51 
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Figure 6: Box plot showing sMAPE forecasting accuracy on yearly time series 
(N 156 - Nl68) dataset from M-3 Competition by F-LS method, predefined 
3 classes of autoregressive processes and naive method (last observed is first 
predicted). 
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6 Conclusion and Future Work 

In this paper we presented a novel approach of incorporating linguistic sum­
maries into the construction of the prior information for forecasting mod­
els. Instead of defining probability distributions, the user validates expected 
trends and the system creates the probability distributions automatically. 
The main advantages of the proposed solution are its human-consistency 
and accuracy. 

Recalling the 'No Free Lunch ' theorem of Wolpert, there is no single 
method or model being the best solution for any problem, but some meth­
ods perform well in specific situat ions. The proposed approach has been 
evaluated with experiments on real-life time series from the pharmaceutical 
market and the M3 Competition benchmark datasets. The results confirm 
that the incorporation and processing of the linguistic summaries increases 
the interpretability of the forecasting process and may improve its accuracy. 
As demonstrated in experiments, the proposed approach may outperform 
the benchmark methods. Furthermore, the considered imprecise labels and 
attributes enable to describe extremely well the autoregressive time series. 
The simulation study reveals the correlations between the probabilistic mod­
els and linguistic summaries which seems a very appealing idea within the 
interdisciplinary research on statistics and data mining. At the same time, 
the accuracy for the considered real-life dataset is still quite average among 
other methods. Nonetheless, the proposed approach is very plausible due to 
the human-centricity of the processed features. 

We identify the following major challenges for future research related to 
this topic: 

- selection of attributes, labels and types of linguistic summaries; 

- improving the computational complexity of the summarization; 

- search for other linguistic forms of summarization results valuable as fea-
tures for the construction of prior probability distributions; 

Future research assumes also next experimental studies to verify in which 
contexts linguistic summaries are outstanding to represent the real-life time 
series data. 
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