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Abstract: Pearson's coefficient oflinear correlation r is the most popular among practitioners 
measure of dependence. In the paper we have shown, using comprehensive computer 
simulations, that its application is very limited when we search for informative variables that 
can be used for the prediction of reliability. We have shown that Kendall's coefficient of 
association , is much better for this purpose. 
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I. lntroduction 

Reliability characteristics can be directly measured only in long-lasting life tests. Therefore, 

many attempts have been made to build mathematical models for the prediction of reliability 

basing on easily observed (or measured) characteristics. For example, prediction models 

presented in Military Handbook MIL-217-D [11] link the most popular reliability 

characteristic, namely the hazard rate A, with many factors describing the object itself, the 

condition of its usage, etc. These models are based on the statistical analysis of large sets of 

reliability data collected over years by such organizations like the U.S. Anny. Another type of 

prediction models links the values of difficult to measure characteristics with the values of 

other characteristics whose measurements are relatively easy. These models are frequently 

used when the characteristic of interes! can be measured by a destructive test (such as a 
' reliability test - norma! or acce!erated) which is tao costly for everyday usage. Therefore, 

there is a need to predict the values of such characteristics using the measurements of other 

characteristics. For example, reliability characteristics of semiconductor devices can be 

predicted by the measurements of low-frequency noise. Similarly, vibrations measured during 

the work ofmechanical devices are often used for the prediction oftheir remaining life-time. 

In order to build all such prediction models one has to evaluate the strength of statistical 

dependence between the characteristic of interes! and its best predictors. It is obvious that the 



values of good predictors should be strongly associated with the values of the characteristic of 

interest. Mathematical statistics offers many measures of statistical dependence, but Pearson's 

coefficient of correlation r is the most popular among practitioners. One can even say that in 

many technical communities it is the only measure of dependence that is used for building 

prediction models. 

Pearson's coefficient of correlation r (usually called simply "the correlation") measures the 

strength of linear correlation between random variables. In all statistical textbooks readers are 

warned against the usage of this measure of dependence when the dependence between 

random variables is nonlinear. For example, in the case of two random variables X and Y=X2 

defined on the space of real numbers their linear correlation coefficient will be equal to zero 

despite the strongest possible ( deterministic) relation. In practice however, one cannot easily 

recognize to what extent random variables are linearly dependent, even if the type of their 

bivariate probability distribution is known. Prom the theory of mathematical statistics it is 

well known that such linear dependence exists when the random variables are jointly 

distributed according to the multivariate norma! (Gaussian) distribution. However, in the case 

of reliability prediction this assumption is fulfilled only in very few practical cases, as the life­

time is seidom distributed according to the norma! distribution. Probability distributions 

encountered in reliability testing, such as the exponential, Weibull, gamma or log-norma! 

distributions, are skewed, and the multivariate (bivariate in practice) norma! (Gaussian) 

distribution carmot be used for the modeling of statistical dependence between the 

characteristic of interest and its predictors. Therefore, there is the need to investigate the 

behavior of Pearson' s correlation coefficient r when the underlying models of dependence are 

applicable in the context ofreliability prediction. This is the main aim ofthis paper. 

The paper has the following structure. In its second section we recall some basie information 

about the methods for measuring the dependence between random variables. The main aim of 

this section is to show important restrictions for the usage of the coefficient of linear 

correlation. The third section of the paper is devoted to the analysis of the relations between 

the values of the coefficient of linear correlation and the values of other popular measures of 

statistical dependence, such as Kendall's coefficient of association ror Spearman's coefficient 

of rank correlation p. Approximate formulae, based on the results of extensive Monte Carlo 

computer simulation experiments, that link the values of r with the values of other measures 



of dependence have been presented for some mathematical models that could be useful for 

modeling dependence in the context ofreliability. 

2. Measuring of dependence between random variables 

Let X and Y be random variables whose joint probability distribution is H(x,y). In this 

paper we assume that these variables have continuous marginal distributions. F(x) and G(y) 

with finite expected values E(X), E(Y), and variances V(X), V(Y), respectively. Many such 

distributions have been proposed over the last one hundred years. Sklar [9] published his 

famous theorem which says that any two-dimensional probability distribution function H(x,y) 

with marginals F(x) and G(y) is represented using a function C, called a 'copula, in the 

following way: 

H(x, y) = C(F(x ), G(y )) 

for all x,y e R. 

Any function defined on a square unit [O,l]x [0,1] and such that 

c(o,x)= c(x,0)= o, 
C(l,x)= C(x,1)= !, x e [0,1], and 

C(b,d)- C(a,d)-C(b,c )+ C(a,c )-;=: O, a,b,c,d e [0,11 a :5 b, c :5 d 

(1) 

is a copula. Conversely, for any distribution functions F and G and any copula C, the function 

H defined by (1) is a two-dimensional distribution function with marginals F and G. 

Moreover, if F and G are continuous, then the copula Cis unique. 

Let u=F(x), and v=G(y). The simplest copula, the product copula II(u, v) = uv, 

describes independent random variables. All other bivariate copulas fulfill the Frechet­

Hoeffding inequalities 

W(u, v) = max{u +v-1,0).:5 C(u, v) :5 min(u, v) = M(u, v) (2) 

The left inequality in (2) describes the case of full negative dependence between X and Y, and 

right inequality in this formula the case of full positive dependence between X and Y. 

Sklar's theorem has been generalized to the p-dimensional case, so it is applicable for 

any p-dimensional probability. Similarly, the Frechet-Hoeffding inequalities have been also 

generalized for the the p-dimensional case. However, in this more generał setting all 

mathematical formulae describing multidimensional probability distributions become very 



complicated, and thus have limited usage for practitioners. Therefore, in this paper we restrict 

ourselves only to the two-dimensional (bivariate) case. 

The most popular measure of dependence between two random variables is based on the 

concept of the covariance defined as 

Cov(X, Y) = ff (x - E(X)Xy- E(Y))f(x,y '}dxdy (3) 
s,.,, 

where S,y is the area for which the bivariate probability density function f(x,y) is positive. 

When we divide the covariance by the product of the standard deviations o-(X), and o-(Y) of 

X and Y we arrive at the famo us Pearson 's coefficient of Iinear correlation 

r(X,Y)= Cov(X,Y) 
o-(X)o-(Y) 

described in every textbook on probability and statistics. 

(4) 

Let (x;,Y;), i= !, ... ,n be the observed sample ofn independent pairs of observations of 

the random vector (X, Y). The sample version of Pearson's coefficient of Iinear correlation is 

given by the we)! known formula 

rxy = -,,=•=·•=I ==,-,===== 

f (x; -x)2 f (y; - y)2 
(5) 

i=l iel 

It is a well known that r(X, Y) describes only linear dependence between random 

variables, and thus for many bivariate probability distributions should not be used as the 

measure of dependence. For example, if X and Y are independent than r(X, Y)=O, but the 

converse is not true. There exist many examples of highly dependent data for whom we 

observe no Iinear correlation (r(X, Y) is equal or very close to zero). It has been proved that 

Pearson's coefficient of correlation fully describes the dependence structure only in the case 

of the bivariate norma! (Gaussian) distribution. This distribution is the special case (for 

norma! marginal distribution) of the norma! copula defined as 

(6) 

where <I> N (x, y; r) is the cumulative distribution function of the bivariate standardized norma! 

distribution with the correlation coefficient r, and <I>-1 (x) is the in verse of the cdf of the 

univariate standardized norma! distribution (the quantile function). Pearson's r may be also 

used as a measure of dependence for random variables that are jointly elliptically distributed. 



To this class of probability distributions belongs the aforementioned multivariate Gaussian 

distribution, the multivariate t-distribution, and other distributions whose multivariate 

characteristic function can be represented as a certain quadratic form„ However, even in the 

case of the elliptical distributions Pearson's r has meaning only for the distributions with 

finite variances. 

Another popular measure of dependence is Spearman's coefficient of rank correlation. Let 

x(i) :S; X(2) :S; .. • :S; x(n) and Y(i) :S; Y(2) :S; • • • :S; Y(n) be the ordered elements of (x;,y;), i=!, .. . ,n, 

and Jet R1 :S; R2 :S; • • • :S; R„ and S1 :S; S2 :S; • • • :S; S„ be the ranks of the original observations 

x1, ••• x„ and y 1, ••• y„ in this ordering. Spearman's coefficient of rank correlation is the 

coefficient of linear correlation calculated for these ranks, and is given by the formula 

6IA2 
1 l•I Pxy = --:T2---;11 , n~n - 11 

(7) 

where 

d; = R; -S;, i= l, ... ,n. (8) 

It has been proved, see Nelsen(2006), that the population version of Spearman's p can be 

found for any copula using the following formula 

p(X,Y) = 12 Ho.i]' C(u, v }iudv -3 . (9) 

Kendall's rank correlation coefficient, known as Kendal!'s r, was proposed in 1938, and is 

based on the concept of concordant and disconcordant pairs of observations. A pair of vector 

observations (x;, yJ, and (xi, yJ of continuous random variables (X, Y) is concordant if the 

respective ranks of the elements of both vectors agree, i.e if R; > Ri and S; > Si or 

R; < R1 and S; <Si. Other wise, this pair is disconcordant. Kendall's ris defined as 

_ 2 no. of concordant pairs - no. of disconcordant pairs 
T,y - n(n - I) · (1 O) 

A convenient representation of r has been proposed by Genest and Rivest [6] in the following 

form 

4 " 
r,y=-2)';-l, 

n ; .. 1 
(! I) 

where 



v; = card{(xi'½ ): X 1 <X;,½ < Y, }j(n-l), i= 1, .. . ,n . (12) 

The population version of Kendall's -r can be found, see Nelsen [8], for any copula using the 

following formula 

r(X,Y) = 4Ho.1]' c(u, V }ic(u, V )-1 . (13) 

There exist also many other measures of dependence, described e.g. in the book by Nelsen [8] 

or in the paper by Embrechts et al. [2]. Same of these measures are called the measures of 

concordance. Scarsini [9] defines a measure of concordance as a real valued measure of 

dependence K between two continuous random variables X and Y whose copula C satisfies 

the following properties : 

1. K is defined for every pair X,- Y of continuous random variables. 

2. -1:'>Kx ,r :-,1, K x,x =land Kx,-x =-1. 

3. Kx,Y = Ky,x' 

4. If X and Y are independent, then Kx,r =O . 

5. K_x,Y = Kx,- Y = -Kx,Y . 

6. If C and C are copulas such that C :<;; C, then Kc :<;; Kc . 

7. If {(Xn; Yn)} is a sequence of continuous random variables with copulas Cn, and if {Cn} 

converges pointwise to C, then lim Kc = Kc • 
n • co n 

Spearmans p Kendall's -rare measures of concordance (the proof can be found in the book by 

Nelsen [8]), but Pearson's r is not (as it is shown in the paper by Embrechts et al. [2]). It does 

not fulfill the condition 2., and the range of possible values of r depends upon the type of 

marginal distributions of dependent random variables X and Y. Below, we show same 

important properties of Pearson's r regarding this property 

Let us consider two continuous random variables X and Y described by the probability density 

functions.f{x) and g(y), respectively. Without loss of generalization Jet us assume that E(X)= 

E(Y)=E, and Var(X)= Var(Y)=I. Because Pearson's r is invariant with respect to linear 

transformations transforming the original random variables to the variables defined above 

does not change the value of r which in this case is equal to the covariance between X and Y. 



Now, !et us consider the two limiting cases defined by (2). In the case of full negative 

dependence random variables X and Y are linked functionally in the following way 

F(x)=l-G(y). (14) 

where F(x) and G(x) are the respective cumulative probability functions of the random 

variables X and Y. Hence, the covariance between X and Y is given by 

Cov,,,g(X,Y)= [ (x-EX{G-1[1-F(x)]}-E)/(x)dx (15) 

where G-(x) is the inverse (the quantile function) ofG(x). 

In the case of full positive dependence the link is of the form 

F(x)=G(y), (16) 

and a similar formula is given by 

Cov,,,,.(X,Y)= [ (x-EX{G- 1[F(x)]}-E)r(x)dx (17) 

The formulae (15) and (17) can be used for the calculation of the limiting values, r 111;n and r 111ax, 

of Pearson's r. From the analysis ofthese formulae we can derive the following properties of 

Pearson's r. 

Property 1 

When the probability distributions of X and Y have the same shape, then r max=!. 

Proof The proof of this property if straightforward. The same shape of two probability 

distributions means that after appropriate transformations of scale and location we have 

F(x)=G(y). Hence, G- 1 [F(x)]= x and Cov,,"'(X,Y) = Var(X), and thus r(X,Y)= rmax = I. 

Property 2 

When probability distributions of X and Y are symmetric around zero (E=O) and have the 

same shape, then rm;n=-1. 

Proof For symmetric distributions, with E=O, we haveG- 1(-x)=-G-'{x). Thus, for 

distributions with the same shape we G-1 (1- F(x )) = -G-1(F(x )) = -x. Then, we have 

Cov,,,g(X,Y)= -Var(X), and thus r(X,Y)= rm;n = -1. 



Property 3 

When at least on.e of random variables has a symmetric distribution, then rm;n = -rmax. 

Proof Let Ybe the random variable with a symmetric distribution, then 

c-1(1- F(x)) = -G-1(F(x)), Hence, we have Cov po,(X,Y)= -Cov.,g(X,Y), and consequently 

Except for cases when Properties 1 and 2 hold, the calculation ofrm;n and rmax is usually 

difficult. 

Example 1 

Consider the case when both X and Y have the same exponential distribution with E=l. 

Because for the exponential distribution the variance is the same as the expected value we 

have in the considered case r(X,Y)=Cov(X,Y). Then, the formula (15) takes the following 

form: 

2 

rm;n =Cov.,g(X,Y)= { '(x-1X{-1n[1-e-'TI-1}'d.x=l-: =-0,644934. (18) 

The integral in (18) has been evaluated using symbolic and numerical calculations provided 

by the mathematical package MA THEMA TICA ™. 

Example 2 

Consider the case when X is distributed according to the exponential distribution with E=l, 

and Y is uniformly distributed over the interval [-0,5 , 0,5). The maxima! value of the 

Cov(X, Y) is now 

Covpo,(x,Y)= fa"' (x-1X1 -e-x }'dx = ¼e-2'[(4e-x -2 ~ + 1 ]Io=¼· (19) 

Hence, rmax = ✓3/2 = 0,866, and, by the Property 3, rm;n = -0,866. 

When the random variables X and iY are distributed according to such popular in reliability 

distributions as Weibull or Log-norma!, the calculation of the minimal or maxima! values of 

Pearson's r can be done only numerically or by simulations. However, the numerical 



integration can be in this case very difficult, as the integrated functions may adopt infinite 

values at zero. Therefore, Monte Carlo simulations, described in the next section ofthis paper, 

seem to be a better way to find these values. 

3. Properties of Pearson's r 

It is a well known fact that the values of Pearson's r depend upon the type of the marginal 

distributions of a bivariate random variable. In the previous section we have shown how the 

range of possible values of r depends upon the shape of these marginals. More questions, 

important from a practical point of view, could be asked. In this paper we will try to answer 

some of them, and namely: 

a) How the values of r depend upon the type of marginal distributions in the case of 

distributions used in reliability? 

b) Do the properties ofr depend upon the type of dependence described by some popular 

copulas? 

c) What is the relationship between the values of r and the values of other measures of 

dependence, such as Kendall's ror Spearman's p? 

d) What is the accuracy of the estimation of different measures of dependence? 

For these, and many other similar questions, the answers cannot be found using analytical 

methods. Therefore, we have performed extensive computer simulations and analyzed 

samples of different size, generated from different copulas with different marginal 

distributions. 

W have analyzed four types of copulas. The first one, the norma! (Gaussian) copula have been 

already introduced, and defined by (6). The remaining three copulas belong to the family of 

the Archimedean copulas defined by Genest and McKay [5] in the following way 

C(u, v) = rp-1 (rp(u )+ rp(v )) , (20) 

where 91- 1 is a pseudo-inverse of the continuous and strictly decreasing function 

ą,: [0,1] • [o, oo], called copula' s generator such that rp(!) = O. From this family we have taken 

the following three weII known copulas: 



a) Clayton copula (Clayton [l]), defined as 

C(x,y )= [P-8 (x)+ G-B - I j ¼, 0 E {(-1,oo )\ {0}}, 

b) Frank copula (Frank [3]), defined as 

C(x,y) = --In 1 fe -_/ - , 0 E {(-00,00 )\ {o}}, 1 ( ( -w(,) 1X -lł'.,(y) 1)J 
, 0 e -1 

c) Gurnbel copula (Gumbel [4]), defined as 

C(x,y)= ex{-[(-lnF(x))8 + (-InG(y))8 ]Y0
), 0 >O. 

(21) 

(22) 

(23) 

One of the reasons of using these particular copulas is the relative ease of the computer 

simulation of samples from these copulas for the given strength of dependence defined by 

Kendall's r: For the norma! copula one can use for this purpose popular algorithms used for 

the simulation of samples from a classical bivariate norma! distribution, and for the remaining 

three copulas we used a generał algorithm proposed by Genest and McKay [5] for the 

Archimedean copulas. 

For the measure of dependence in the simulated samples we use Kendall's r. For this measure 

of dependence there exist formulae that link the value of r with the parameters of copulas. 

These links depend only on the type of copula, and because of a non-parametric character of 

Kendall's r do not depend upon the type of marginals. For the norma! (Gaussian) copula the 

following relation holds 

r = arcsin(r )!(1r 12). 

For the chosen Archimedean copulas we have the following formulae: 

a) Clayton copula 

b) Frank copula 

c) Gumbel copula 

0 
r=--

0+2' 

r = 1 + 4(_!_ rs_t_dt -1)f0, 
0 Jo e' -1 

(24) 

(25) 

(26) 



0 
T=-- . 

0+1 
(27) 

We see that except for the case of Frank copula, when we have to solve for 0 a very 

complicated equation, the dependence parameter of a given copula is straightforwardly related 

to the value of Kendall's i: Such simple relationships do not exist for Spearman's p, so we 

have chosen Kendall' s ras the measure of dependence in the simulated samples. 

In order to investigate the influence of the type of the marginal distribution on the value of 

Pearson's r we considered two cases. In the first one we assumed that both variables X and Y 

have the same marginal distribution: norma!, exponential and Weibull (with different 

parameters of shape o). In the second case, that seems to be more appropriate in the problems 

of reliability prediction, we have assumed that X has the norma! distribution, and Y is 

distributed according to different Weibull distributions (the exponential distribution included). 

The properties of considered statistics depend on the sample size n. In our simulation 

experiments we considered three values of n: n=S00, which allow to approximate the values 

of the population (theoretical) versions of the measures of dependence, n=I 00, which 

represents the case of relatively accurate estimation of these measure, and n=20, which 

represent the sample size more appropriate for the analysis ofreliability. 

In all runs of the simulation experiments we have simulated 1000000 sam pies. Therefore, the 

results of the experiment are very accurate, and the impact of the randornness of the Monte 

Carlo methodology can be neglected. 

The results of experiments have been summarized in xx tables. In this paper we present only 

few of them. Table 1 represents the results of a one of simulation experiments. For the 

Clayton copula with given marginals (norma! N(0,l) for X, and Weibull W(l,5) for Y) 

samples of n=IO0 elements were generated for 22 different values of r. In the consecutive 

colurnns of the table represent: the assumed value ofKendall's r, the estimated mean value of 

Kendall's T, the estimated mean value of Spearman's p, the estimated mean value of 

Pearson's r, the estimated standard deviation ofKendall's r, the estimated standard deviation 

ofSpearman's p, and the estimated standard deviation of Pearson's r, respectively. 



Table 1. X - N(0, 1), Y - Weibull (1,5), Clayton copula, n=I00 

TAU TAU-EST RHO-SP R-PEARS SIG-TAU SIG-RHO SIG-R 

I I I 0,966172 o o 0,0084 

0,95 0,949992 0,994631 0,946532 0,00854 0,001798 0,017117 

0,9 0,899987 0,981913 0,919786 0,015427 0,005713 0,022431 

0,8 0,799981 0,936722 0,85554 0,027768 0,017648 0,032724 

0,7 0,699994 0,868551 0,780478 0,038352 0,032555 0,043463 

0,6 0,600003 0,780904 0,695894 0,04729 0,048279 0,054479 

0,5 0,500009 0,676824 0,602098 0,054615 0,063348 0,065445 

0,4 0,400014 0,559039 0,499079 0,060357 0,076689 0,075943 

0,3 0,300006 0,430006 0,386769 0,064561 0,087601 0,085434 

0,2 0,200001 0,292128 0,265326 0,067204 0,09547 0,093221 

0,1 0,099982 0,147826 0,135595 0,0683 0,099877 0,098458 

0,05 0,049968 0,074125 0,06827 0,068284 0,100707 0,099894 

o 0,000009 0,000018 0,000000 0,067926 0,100639 0,100626 

-0,05 -0,05005 -0,07422 -0,06867 0,067215 0,099652 0,100441 

-0,1 -0,10004 -0, 14776 -0, 13675 0,066267 0,097949 0,099825 

-0,2 -0,20003 -0,29012 -0,28462 0,063941 0,092927 0,095035 

-0,3 -0,30002 -0,42179 -0,38989 0,061608 0,086718 0,094286 

-0,4 -0,40001 -0,53976 -0,50044 0,059577 0,079852 0,089898 

-0,5 -0,5 -0,64362 -0,59994 0,057632 0,072373 0,084198 

-0,6 -0,59998 -0,7345 -0,68926 0,05517 0,064142 0,076968 

-0,7 -0,69998 -0,81401 -0,76949 0,051404 0,054946 0,0679 

-0,8 -0,79995 -0,88379 -0,84174 0,045206 0,044319 0,056372 

-0,9 -0,89995 -0,94535 -0,907 0,03438 0,030933 0,040685 

-0,95 -0,94996 -0,97347 -0,93729 0,0252 0,021735 0,029471 

-1 -I -I -0,966157 o o 0,008387 

In Table 2 we present the results of simulation experiment when dependence is described by 

the norma! (Gaussian) copula. Note, that in this case the random vector (X, Y) does not have a 

bivariate norma! distribution, as its second component (Y) is distributed according to the 

Weibull distribution with the shape parameter 8=1,5. 

From the first two columns of Table I and Table 2 one can find that the estimates of 

Kendall's 1: obtained from the generated samples are unbiased. Their average values (over 

1000000 simulation runs) are practically the same as their assumed values. This has been 

confirmed in all simulation experiments, also for small samples of n=20 elements. This could 

serve as the proof that the algorithms used for the generation of data from different copulas 

work correctly. 



The comparison of the third and the fourth column of Table 1 and Table 2 shows different 

relation between Kendall's r, Spearman's p, and Pearson's r. This reflects the influence of 

the type of copula. For the Clayton copula the values of p and r are not symmetric with 

respect to the case of independence, where all dependence measures should have the value of 

zero. However, for the norma! copula this symmetry is visible. The same situation is 

observed, but with !ower intensity, for the observed standard deviations of the considered 

measures of dependence. 

Table 2. X-N(O,l), Y- Weibull (1,5), Norma! copula, n=lOO 

TAU TAU-EST RHO-SP R-PEARS SIG-TAU SIG-RHO SIG-R 

I I 1 0,966172 o o 0,0084 

0,95 0,949995 0,995218 0,963160 0,007045 0,001254 0,008448 

0,9 0,899992 0,983882 0,954148 0,012531 0,004014 0,008852 

0,8 0,799974 0,942093 0,918399 0,023055 0,013450 0,013104 

0,7 0,699955 0,876410 0,859881 0,032894 0,026777 0,022927 

0,6 0,599944 0,789484 0,780146 0,041776 0,042090 0,036417 

0,5 0,499934 0,684427 0,681280 0,049546 0,057634 0,051623 

0,4 0,399920 0,564551 0,565818 0,056037 0,071948 0,066825 

0,3 0,299910 0,433129 0,436664 0,061163 0,083980 0,080477 

0,2 0,199926 0,293305 0,297008 0,064859 0,093021 0,091262 

0,1 0,099936 O, 147973 0,150245 0,067111 0,098637 0,098170 

0,05 0,049942 0,074124 0,075299 0,067670 0,100054 0,099955 

o 0,000009 0,000018 0,000000 0,067926 0,100639 0,100626 

-0,05 -0,050053 -0,074276 -0,075486 0,067686 0,100084 0,099982 

-0,1 -0,100051 -0, 148130 -0,150423 0,067128 0,098671 0,098221 

-0,2 -0,200040 -0,293462 -0,297153 0,064903 0,093087 0,091346 

-0,3 -0,300033 -0,433290 -0,436767 0,061215 0,084050 0,080566 

-0,4 -0,400023 -0,564676 -0,565880 0,056091 0,072014 0,066892 

-0,5 -0,500011 -0,684503 -0,681312 0,049594 0,057687 0,051656 

-0,6 -0,600016 -0,789535 -0,780160 0,041819 0,042131 0,036424 

-0,7 -0,700006 -0,876442 -0,859885 0,032900 0,026783 0,022923 

-0,8 -0,800004 -0,942109 -0,918399 0,023055 0,013442 0,013102 

-0,9 -0,899994 -0,983882 -0,954148 0,012528 0,004013 0,008851 

-0,95 -0,949991 -0,995216 -0,963161 0,007050 0,001298 0,008443 

-1 -1 -1 -0,966157 o o 0,008387 

In Table 3 we present the results of simulations from the Clayton copula, but with a different, 

in comparison to the case presented in Table 1, marginal distribution of distribution of Y, 

namely the Weibull distribution with the shape parameter 8=2,0. The seed of the generator of 

random numbers was the same in all performed simulations, so it is possible to compare 



directly their results. The comparison of the second and the third columns of Table 1 and 

Table 2 shows that the average values of Kendall's i; and Spearman's p are, because of non­

parametric character of these statistics„ exactly the same. However, the values of Pearson's r 

are in both cases slightly different. This confirms the well known fact that the values of r 

depend upon the type of the marginal distributions. What seems to be important from a 

practical point of view is the observation that in the cases when marginal distributions are not 

very different with respect to their skewness the values of Pearson's r are not very different. 

Table 3. X-N(0,l), Y- Weibull (2,0), Clayton copula, n=I00 

TAU TAU-EST RHO-SP R-PEARS SIG-TAU SIG-RHO SIG-R 

l 1 1 0,986855 o o 0,004596 

0,95 0,949992 0,994631 0,97054 0,00854 0,001798 0,010542 

0,9 0,899987 0,981913 0,947121 0,015431 0,005713 0,015718 

0,8 0,799981 0,936722 0,88836 0,027767 0,017648 0,026511 

0,7 0,699994 0,868551 0,816918 0,038351 0,032555 0,038158 

0,6 0,600003 0,780904 0,733889 0,04729 0,048279 0,050384 

0,5 0,500009 0,676824 0,639403 0,054615 0,063348 0,062774 

0,4 0,400014 0,559039 0,53328 0,060357 0,076689 0,074757 

0,3 0,300006 0,430006 0,415361 0,064561 0,087601 0,085563 

0,2 0,200001 0,292128 0,285898 0,067204 0,09547 0,094172 

0,1 0,099982 0,147826 0,146231 0,0683 0,099877 0,099399 

0,05 0,049968 , 0,074125 0,07356 0,068284 0,100707 0,100468 

o 0,000009 0,000018 -0,000009 0,067926 0,100639 0,100629 

-0,05 -0,05005 -0,07422 -0,0737 0,067215 0,099652 0,099787 

-0,1 -0, 10004 -0, 14776 -0, 14625 0,066267 0,097949 0,098495 

-0,2 -0,20003 -0,29012 -0,28462 0,063941 0,092927 0,095035 

-0,3 -0,30002 -0,42179 -0,4108 0,061608 0,086718 0,090795 

-0,4 -0,40001 -0,53976 -0,5238 0,059577 0,079852 0,085687 

-0,5 -0,5 -0,64362 -0,62437 0,057632 0,072373 0,079514 

-0,6 -0,59998 -0,7345 -0,71382 0,05517 0,064142 0,072072 

-0,7 -0,69998 -0,81401 -0,79356 0,051405 0,054946 0,063075 

-0,8 -0,79995 -0,88379 -0,8649 0,045205 0,044319 0,051935 

-0,9 -0,89995 -0,94535 -0,929 0,034378 0,030933 0,037035 

-0,95 -0,94996 -0,97347 -0,95865 0,0252 0,021735 0,026421 

-1 -1 -1 -0,98685 o o 0,004588 

The properties of Pearson' s r are completely different in the case presented in Table 4 where 

the data were generated from the Frank copula, and the marginal distribution of Y was highly 

skewed (The Weibull distribution with the shape parameter o=0,5. The behavior of 

Spearman's pin comparison to the cases presented in Tables I - 3 was similar, and the 

observed differences could be neglected from a practical point of view. However, the 



behavior of Pearsons r is completely different. First of all, the absolute minimal and maxima! 

values of r are much smaller than l, as it is the case in the bivariate norma! distribution. 

Therefore, they may be completely misleading when this measure of dependence will be used 

for the analysis of strongly dependent data. 

Table 4. X - N(0,1), Y - Weibull (0,5), Frank copula, n=I00 

TAU TAU-EST RHO-SP R-PEARS SIG-TAU SIG-RHO SIG-R 

I I I 0,719517 o o 0,050144 

0,95 0,949986 0,995507 0,698992 0,006160 0,0010 1 I 0,072774 

0,9 0,899983 0,984952 0,674247 0,010692 0,003174 0,079032 

0,8 0,799966 0,945463 0,621826 0,019913 0,011089 0,083413 

0,7 0,699959 0,881641 0,565369 0,029395 0,023669 0,084575 

0,6 0,599949 0,794997 0,503263 0,038718 0,039444 0,085332 

0,5 0,499958 0,688860 0,434077 0,047261 0,055943 0,086974 

0,4 0,399950 0,567359 0,357510 0,054555 0,071105 0,089857 

0,3 0,299965 0,434539 0,274331 0,060343 0,083666 0,093489 

0,2 0,199954 0,293777 0,185891 0,064518 0,092957 0,096991 

0,1 0,099955 0,148060 0,093864 0,067048 0,098664 0,099509 

0,05 0,031895 0,047359 0,030073 0,067817 0,100410 0,100342 

o 0,000009 0,000018 0,000017 0,067926 0,100639 0,100577 

-0,05 -0,031975 -0,047467 -0,030051 0,067826 0,100422 0,100371 

-0,1 -0,100040 -0,148174 -0,093847 0,067086 0,098728 0,099595 

-0,2 -0,200029 -0,293877 -0, 185891 0,064607 0,093096 0,097130 

-0,3 -0,300027 -0,434610 -0,274362 0,060460 0,083831 0,093634 

-0,4 -0,399998 -0,567402 -0,357588 0,054681 0,071271 0,089981 

-0,5 -0,499991 -0,688871 -0,434205 0,047386 0,056102 0,087096 

-0,6 -0,599974 -0,794996 -0,503416 0,038813 0,039544 0,085484 

-0,7 -0,699970 -0,881636 -0,565504 0,029461 0,023723 0,084793 

-0,8 -0,799968 -0,945459 -0,621869 0,019944 0,011111 0,083606 

-0,9 -0,899982 -0,984951 -0,674239 0,010700 0,003183 0,079138 
-0,95 -0,949988 -0,995507 -0,698849 0,006164 0,001017 0,072896 

-1 -I -1 -0,71946 o o 0,050233 



Finally, in Table 5 we present the results of simulations for the Gumbel copula. This copula 

can model only positive dependence between random variables. 

Table 5.X-N(0,1), Y-Exponential, Gumbel copula, n=IO0 

TAU TAU-EST RHO-SP R-PEARS SIG-TAU SIG-RHO SIG-R 

1 1 1 0,909318 o o 0,017728 

0,95 0,94966 0,994974 0,907592 0,00766 0,001523 0,017109 

0,9 0,899655 0,98295 0,901015 0,013871 0,004802 0,017174 

0,8 0,799676 ' 0,938943 0,874321 0,025609 0,015906 0,019029 

0,7 0,69967 0,870859 0,829142 0,036312 0,030757 0,026007 

0,6 0,599654 0,782261 0,765283 0,045661 0,04689 0,038542 

0,5 0,499642 0,676797 0,682615 0,053541 0,062524 0,054827 

0,4 0,399666 0,5578 0,581473 0,059874 0,076405 0,0728 

0,3 0,299587 0,428082 0,461994 0,064564 0,087684 0,090058 

0,2 0,199649 0,290558 0,324978 0,067529 0,095758 0,103728 

0,1 0,09965 0,14718 0,170754 0,068657 0,100141 0,109652 

0,05 0,049681 0,074001 0,087428 0,068522 0,10089 0,107726 

o 0,000009 0,000018 0,000011 0,067926 0,100639 0,100616 

The most important difficulty with the usage of Pearson's r is its dependence upon the type of 

marginal distributions. One can ask, however, about the practical impact of the distributions 

used in the problems ofreliability prediction on the range ofpossible values of Pearson's r . In 

order to investigate this problem we have assumed that the random variable X is distributed 

according to the norma! distribution N(0,l), and the random variable Y, which in the context 

of reliability prediction describes the life-time, is distributed according to different Weibull 

distributions, the exponential distribution included. We have been looking for the minimal 

and maxima! possible values of r, defined by (I 5) and (17), respectively. These two values 

have been evaluated in the Monte Carlo experiments in which samples of 100, 500, and 1000 

items each were simulated in 1000000 runs. The results of this experiment are presented in 

Table 6. 

Table 6. Minimal and maxima! values of Pearson's r. One distribution symmetric. 

Distrib. Distrib. n=lOO n=500 n=lOOO 
X y rmin rmax rmin 'max rmin rmu 

N(0,1) Weib(0,2) -0,4407 0,4407 -0,3297 0,3298 -0,2949 0,2950 
N(O, l) Weib(0,5) -0,7195 0,7195 -0,6864 0,6864 -0,6796 0,6796 
N(O,l) Exp -0,9093 0,9093 -0,9045 0,9045 -0,9039 0,9039 
N(O, l) Weib(l,5) -0,9662 0,9662 -0,9647 0,9647 -0,9646 0,9646 
N(O,l) Weib(2,0) -0,9869 0,9869 -0,9863 0,9863 -0,9862 0,9862 
N(O,l) Weib(2,5) 0,9951 0,9951 -0,9949 0,9949 -0,9949 0,9949 



In this experiment one of the variables has a symmetric distribution, so according to the 

Property 3 the absolute values of rmin and rmax are the same. This has been confirmed in our 

experiments. Moreover, tt appears from Table 6 that the range of possible values of r differs 

from the range expected for good measures of dependence, namely [-1,1] only in cases of 

highly skewed distributions such as the Weibull with the parameter of shape equal to 0,5 or 

the exponential distribution. However, in the case of distributions with the increasing hazard 

rate the range of the possible values ofr is close to[-!,!]. This is not unexpected as with the 

increasing value of with the parameter of shape the Weibull distribution tends to the norma! 

distribution for whom Pearson's r is the proper measure of dependence. 

The situation becomes different when both dependent random variables have skewed 

distributions. In Table 7 we present the resu!ts of simulation for severa! such distributions. 

Table 7. Minimal and maximal values of Pearson's r. Both distributions asymmetric. 

Distrib. Distrib. n=lOO n=500 n=IOOO 
X y rmin rmax rmin rmax rmin rmu: 

Weib(0,2) Weib(0,2) -0,043138 1 -0,018837 1 -0,014069 1 
Weib(0,2) Weib(0,5) -0,104550 0,876690 -0,063580 0,804192 -0,054084 0,771048 
Weib(0,5) Exp -0,430280 0,924765 -0,393422 0,905902 -0,386876 0,901267 
Exp Weib(l,5) -0,773163 0,983631 -0,762072 0,982289 -0,760580 0,982088 
Exp Weib(2,0) -0,830921 0,960043 -0,821939 0,957323 -0,820714 0,956929 
Weib(I,5) Weib(2,5) -0,938714 0,985191 -0,935726 0,984522 -0,935335 0,984433 

The results presented in Table 6 and Table 7 show undoubtedly that the evaluation of the 

strength of dependence using Pearson's r in the case of skewed distributions may be highly 

misleading. In extreme cases the absolute values of r may be really small even in the case of 

very strong dependence. Therefore, in such cases Pearson's r cannot be used for finding 

characteristics that can be used as good predictors of life-times. It is extremely important 

when observed life-times come from highly accelerated life tests (HAL T). In these tests early 

failures of "weak" elements are frequently observed with the consequence of observing highly 

skewed life-time distributions. 

The results of the simulation experiments have shown another unwanted property of 

Pearson's r. The estimator of r seems to be highly biased even for large sample sizes. In the 

Table 6 and Table 7 we see this pheno~enon for the extreme values of Pearson's r. However, 

in practice we are more interested in the analysis of this bias for smaller grades of 



dependence. In Table 8 we present the comparison of the estimated values of r for different 

copulas, different marginal distributions, and different sample sizes. 

Table 8. Expected values of the estimator ofr. 

Copula X y 1 n=20 n=lOO n=500 n=IOOO 

Clavton N(0,I) Weib(0,5) 0,8 0,652802 0,55909 0,52084 0,513599 
0,5 0,414688 0,35028 0,32491 0,32020 
-0,5 -0,44616 -0,39468 -0,37105 -0,36645 
-0,8 -0,66799 -0,60190 -0,57096 -0,56473 

Frank N(0,1) Weib(0,5) 0,8 0,71270 0,62183 0,58206 0,574378 
0,5 0,50179 0,43408 0,40502 0,399476 
-0,5 -0,50208 -0,43421 -0,40497 -0,39943 
-0,8 -0,71270 -0,62187 -0,58203 -0,57423 

Gauss Exp Exp 0,8 0,93886 0,94148 0,94205 0,942104 
0,5 0,66083 0,66647 0,66775 0,667828 
-O 5 -0,53688 -0,50238 -0,49300 -0,49175 
-0,8 -0,69748 -0,63947 -0,62491 -0,62299 

From the Table 8 one can see that the bias of the estimator of r depends not only on the 

sample size n, but on the type of dependence (type of the copula), and type of the marginal 

distributions as we!!. 

4. Approximate relationships between the values of different measures of dependence 

Unknown relationship between Pearson's r and Kendall's r we will estimate from the 

simulation data using a polynomial 

k 

r.{r)= ~:W;r1 , (28) 
;. o 

with additional conditions r.{-1)= L, r0 (0)= O, andr0 (I)= U. When we take k=6 after some 

simple algebra we obtain the following regression equation 

where ao= 1, and 

4 

r0 (r)= ~:;a,f,(r), 
; .. o 

fo(r)=r' [Wr+(U-LXI-r)]l2, 

J;(r)=r(l-r4 ), 

/2(r)=r2(1-r4 ), 

(29) 

(30) 

(31) 

(32) 



/2 (r) = , 3(1 - , 2 ), 

J.(r)=,4(1-,2). 

(33) 

(34) 

Coefficients a 1, a2, a3, and a4 of (29) have been obtained for different copulas, and different 

marginal distributions using a standard linear regression methodology for simulated samples 

of n elements. They are presented in Tables 10 - 12 for n=lOO, and the case of the norma! 

N(O,l) distribution for one random variable, and the Weibull(b) distribution, where ais the 

shape parameter, for the second one. 

Table 10. Coefficients of the polynomial approximation. Clayton copula, n=IOO 

Coefficient Weibull(0,5) Exponential Weibull(l ,5) Weibull(2,0) Weibull(2,5) 
a1 0,7630 1,155342 1,33729 1,420882 1,473745 
a2 -0,1367 -0,0766 -0,02122 0,029073 0,059246 
a3 -0,08325 -0,34399 -0,55061 -0,64906 -0,7292 
a4 0,206633 0,182692 0,105321 0,007765 -0,05032 

Approximate relationship between Pearson's r and Kendall's det us analyze the impact of 

the type of a marginal distribution on r. Figure 1 presents functions r( r) for the Clayton 

copula when the marginal distribution of the first random variableXis norma! N(O,l) and the 

marginal of the second variable Y are those represented in Table I O. 

Figure 1. Approximate relationship r( r) - Clayton copula 
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Table 13. Coefficients of the polynomial approximation. Gumbel copula, n=l00 

Coefficient Weibull(0,5) Exponential Weibull(l,5) Weibull(2,0) Weibull(2,5) 
a1 1,676811443 1, 790188156 1, 763614843 1,727108377 1,695654409 
a2 -1,153926307 -0,827359406 -0,642773387 -0,540317764 -0,477612328 
a3 0,378567463 0,054532776 -0,082513834 -0,133359319 -0,151628861 
04 -o, 703818956 -0,348164896 -0,153403961 -0,084205969 -0,063509321 
as 0,847882638 0,357739181 0,107779315 0,016341698 -0,014938649 

Function r( -r) for the case of the Gumbel copula is presented on Figure 4. For all considered 

copulas in this case this function is definitely the most non-linear ( concave ), even in the case 

of the most skewed Weibull distribution. The relationship between Pearson's rand Kendall's 

-r is approximately linear only in the case of weak dependency between considered random 

variables. 

Figure 4. Approximate relationship r(-r) - Gumbel copula 
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The approximations given by (29) and (35) are very accurate, as their accuracy measured 

using the R2 statistic is close to 1. However, they do not guarantee in every case that the 

function r a(-r) is monotonically increasing, as it should be. Therefore, it is possible to find a 



better approximation solving the problem of quadratic programming with linear constraints. 

This can be dane using specialized optimization software. 

The impact of the type of copula on the relationship between Pearson's rand Kendall's -ris 

presented on Figures 5 and 6. On Figure 5 we present this relationship when one of the two 

dependent variables is symmetric, N(0,l), and the second one is highly asymmetric, 

Weibull(0,5). On Figure 6 we present the similar relationship when the second variable is 

characterized by only weak asymmetry, Weibull(2,5). In both Figures we present the results 

of I 000000 simulations of the samples of I 00 elements. 

Figure 5. Approximate relationship r( -r) -X- norma!, Y - Weibull(0,5). 
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Figure 6. Approximate relationship r( r)-X- norma!, Y- Weibull(2,5). 
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From these Figures one can see that in the case of highly asymmetric distributions the type of 

copula plays an important role. For the Clayton copula the function r( r) is nearly linear. For 

the Frank copula it is not so far from being linear. However, for the Gauss (norma!) copula, 

and especially for the Gum bel copula r( r) is visibly non-linear. However, in the case of 

weakly asymmetric distributions this role is visible to a certain rather low degree only in the 

case of strong negative dependency. For all considered copulas the function r( r) is non-linear, 

but this non-Iinearity is not very strong. 

One of the most important characteristic of any statistical measure is its variability, measured 

by its variance or standard deviation. When the value of a statistical measure is bounded the 

comparison of variability of different measures is not so straightforward, as for the same data, 

i.e. the data dependent in the same way, the values of the measures of dependence may be 

quite different. Because of the bounds on these values the variance of the measures whose 

values are closer to the bounds should be smaller. When we analyze the relationship between 

Pearson's r and Kendall's r we can see that for highly skewed marginal distributions the 

values of rthan the values of r estimated from the same sample. Therefore, the observed 

variability of rshould be smaller than the observed variability of r. However, in the case of 



the more symmetric marginal distributions the values of r should be greater than the values of 

r. Therefore, in the case of similar variability of both measures of dependence the observed 

variability of r should be smaller than the observed values of r. In order to verify this 

supposition we calculated the average values of standard deviations of the estimated values of 

rand r, respectively. In Table 14 we present this comparison for two cases. In the first one the 

marginal distribution of X is norma!, and the marginal distribution of Y is the Weibull 

distribution with the shape parameter equal to 0,5. This is the case ofhighly skewed marginal. 

In the second case the marginal distribution of X is also norma!, but the marginal distribution 

of Y is the Weibull distribution with the shape parameter equal to 2,5. Thus, this case 

represents the situation when both marginal are nearly symmetric. The results presented in 

Table 14 have been observed for the sample size n=l00, and the averages have been 

calculated for the sets of differently dependent samples .. 

Table 14. Comparison of the average values of standard deviations ofr and r(n=lOO) 

Copula N(0,l) + Weibull (0,5) N(0,1) + Weibull (2,5) 
u, Ur u, o;. 

Clayton 0,022642 0,066985 0,047049 0,061169 
Frank 0,040049 0,085868 0,040058 0,051757 

Gauss (norma!) 0,041423 0,071539 0,041423 0,049027 
Gumbel 0,048311 0,07789 0,048311 0,064361 

From Table 14 one can see that the observed variability of Kendall's ds smaller than the 

variability of Pearson's r not only, as it has been expected, in the case of highly skewed 

variables, but also, in contrast to our supposition, in the case of nearly symmetric variables. 

Therefore, one can say that the variability of Kendall's ds smaller than the variability of 

Pearson's r. This finding has been confirmed in another experiment in which standard 

deviations of both measures of dependence have been calculated from the samples for which 

the numerical values of both measures were the same. In Table 15 we present the results of 

such experiment where samples of n=20 elements were generated from the Gumbel copula 

with the norma! and exponential marginal distributions. 



Table 15. Comparison of observed values of standard deviations of rand -r (same values of r 
and -r) 

r=-r er, err 
0,924983 0,034367 0,028979 
0,91753 0,036602 0,029645 

0,887326 0,045321 0,038427 
0,836815 0,059091 0,061777 
0,766665 0,076846 0,095548 
0,677651 0,10082 0,134077 
0,57147 0,118242 0,172431 
0,44923 0,13792 0,206378 

0,312261 0,15365 0,231068 
0,162145 0,162801 0,241422 
0,082468 0,163901 0,238912 

The average value of er, is in this case equal to 0,09905, and the average value of err is equal 

to 0,13442. Thus, the results presented in Table 15 are in the perfect agreement with our 

previous findings. 

The whole analysis presented so far shows undoubtedly that in the considered cases of the 

marginal distributions that may be used in the problems of reliability prediction non­

parametric measures of dependence, such as Kendall's -rhave better properties than Pearson's 

coefficient of linear correlation r. This is not only because of the possible values of r which 

may be highly misleading for practitioners, but also because of observed smaller variability. 

However, the question about the choice of such non-parametric measure remains open. 

The relationship between the most popular, and both considered in this paper, measures of 

dependence, namely Kendall's -rand Spearman's p have been analyzed by many authors. 

Some important results, and references to other important papers, can be found in the paper by 

Fredricks and Nelsen [4]. The authors who considered this problem were interested rather in 

the cases of weak and moderate dependence than in the cases of strong dependence, more 

important in the context of the problem of reliability prediction. For example, Fredricks and 

Nelsen [4] proved the assertion previously formulated, in different versions, by other 

statisticians that Kendall's -r will be about two-thirds of the value of Spearman's p when the 

sample size n is large. 



The results of our simulation experiments in which we have calculated not only the values of 

Kendall 's i; but the values of Spearman's pas well, Jet us analyze both measures in the whole 

spectrum of their possible values. For doing this we can use the same approximation 

methodology as that described in this section, and to find the approximate relationship fi...-r) . 

This relationship does not depend upon the types of the marginal distributions, but only on the 

type of the copula that describes the dependence. In Table 16 we present the coefficients in 

the expansion according to (29). 

Table 16. Coefficients of the polynomial approximation of fi...-r) for samples of n=l 00 

Coefficient Clavton Frank Gauss 
a1 1,466021 1,496795 1,4891 

a2 0,069209 -0,00018 -0,00051 

a3 -0,60101 -0,48078 -0,48166 

a4 0,001862 0,000489 0,001283 

Similar coefficients for the expansion of fi... -r) calculated from (35) for the Gumbel copula are 

presented in Table 17. 

Table 17. Coefficients of the polynomial approximation of fi...-r) for samples of n=IOO 
(Gumbel copula) 

Coefficient Gumbel 
a1 1,48496 

a2 -0,09709 

a3 -0,33526 

G4 0,14299 
a, -0,34429 

The impact of the type of copula on the relationship between Spearman's pand Kendall's -ris 
presented on Figure 7. 



Figure 7. Approximate relationship ff... -r) 
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From Figure 7 one can see that the function ff...-r) is nearly linear, for small and moderate 

absolute values of i; and slightly non-Iinear in the case of strong dependence. The slope of the 

function ff...-r) is for small and moderate values of -rfully determined by the first coefficient a, 
which is very close do 1,5. This gives a nurnerical confirmation of the theoretical results 

mentioned above. Moreover, the influence of the type of dependence is visible only in the 

case of the Clayton copula and the negative dependence of considered random variables. 

Therefore, in the case of the considered four copulas the function ff...-r) is nearly the same. 

Because the values of p are greater than the respective values of -r one can think, using the 

same way of thinking as it has been already used in this paper, that the observed variability of 

p should be smaller than the variability of r: The results of the analysis presented in Table 18 

do not confirm this claim. 



Table I 8. Comparison of the average values of standard deviations of pand r(n=l 00) 

Copula (J"T a;. 
Clayton 0,047049 0,059035 
Frank 0,040058 0,05053 

Gauss (norma!) 0,041423 0,05147 

Gumbel 0,048311 0,060327 

In contrast to our supposition the average standard deviations of r are visible small er than the 

standard deviations of p. Moreover, it seems that their numerical value do not depend upon 

the type of the copula. Therefore, one can arrive at the conclusion that the empirical values of 

Kendall's rare less variable than the respective values ofSperman's p. This is also confirmed 

in the results of the analysis presented in Table 19 for the case of the Gum bel copula, and the 

sample size equal to 20. 

Table 19. Comparison of observed values of standard deviations of pand r (same values of p 
and r) 

p=r (J"T O"o 

0,973269 0,018296 0,017962 
0,922716 0,035034 0,045827 
0,850858 0,055372 0,079796 
0,760838 0,078261 0,115379 
0,655911 0,101829 0,149192 
0,539128 0,123897 0,178623 
0,412939 0,142671 0,202589 
0,279648 0,156311 0,219521 
0,141375 0,16336 0,228719 
0,070883 0,163837 0,230153 

The average value of aT is in this case equal to 0,103887, and the average value of a;. is equal 

to 0,146776. Thus, the results presented in Table 18 confirm our claim that Kendall's r is 

from a practical point of view a more accurate (i.e. less variable) measure of dependence than 

Spearman's p. 

5. Conclusions 

Pearson's coefficient of linear correlation r is the most popular among practitioners measure 

of dependence despite the fact that its weaknesses are known for more than one hundred 

years. In this paper we have investigated its applicability in the case of reliability prediction. 



In this particular practical problem the assumptions necessary for a good behavior of 

Pearson's r are obviously not fulfilled. However, it is not well known how the lack of the 

fulfillment of these assumptions influences the results of the analysis. Using some simple 

analytical methods and comprehensive computer simulations we have arrived at the following 

conclusions: 

a) The observed values of Pearson's r may be completely misleading in the evaluation of 

the strength of dependence when the dependent variables are highly skewed, as it is 

frequently the case in the reliability context; 

b) When considered distributions are not very skewed Pearson's r can be used for the 

evaluation of the strength of dependence. 

c) The same values of Pearson's r may describe different levels of the strength of 

dependence depending upon the type of dependence defined by the type of the copula 

that describes the dependent random variables. 

d) Non-parametric measures of dependence such as Spearman's pand Kendall's -r are 

better than Pearson's r when applied in the analysis of dependence of life-times. 

e) Kendall's -r is be better than a better known Spearman's pas its variability seems to 

be !ower. 

Therefore, in searching the most informative variables that can be used for the prediction of 

reliability one should use Kendall's -r as the measure of dependence. 

Bibliography 

(I] Clayton G,G, (1978) A model for Association in Bivariate Life Tables and its 

Applications in Epidemiological Studies of Familia! Tendency in Chronic Disease 

Incidence, Biometrika, 65, 141 - 151. 

[2] Embrechts P„ Lindskog F„ McNeil A, (2003) Modelling Dependence with Copulas and 

Applications to Risk Management, In: Handbook of Heavy Tailed Distributions in 

Finance, ed, S, Rachev, Elsevier, Chapter 8, pp. 329-384 (also available as the ETHZ 

Report, Zurich, 2001). 

(3] Frank M,J, (1979) On the Simultaneous Associativity of F(x,y) and x+y-F(x,y), 

Aiquationes Mathematicre, 19, 194 - 226. 



[4) Fredricks G,A„ Nelsen R,B, (2007) On the relationship between Spearman's rho and 

Kendall 's tau for pairs of continuous random variables, Journal of Statistical Planning 

and lnference, 137, 2143-2150. 

[5] Genest C„ MacKay J, (1986) Copules archimediennes et families de Iois 

bidimensionelles dont !es marges sont donnees, Canadian Journal of Statistics, 14, 145 

-159. 

[6] Genest C„ Rivest L-P, (1993) Statistical Inference Procedures for Bivariate 

Archimedean Copulas, Journal of the American Statistical Association, 88, 1034 -

1043, 

[7] Gumbel E,J, (1960) Distributions des valeurs extremes en plusieurs dimensions, 

Publications de !'Institut statstique de l'Universite de Paris, 9, 171-173, 

[8] Nelsen R,B, (2006) lntroduction to Capu/as, Springer, New York, 

[9] Scarsini, M, (1984) On measures of concordance, Stochastica, 8, 201-218, 

[IO] Sklar A, (1959) Fonctions de repartitions a n dimensions et leur marges, Publications 

de !'Institut de statistique de l'Universite de Paris, 8, 229-23 I. 

[li] US MIL-HDBK-217 „Reliability Prediction for Electronic Systems" National 

Technical lnformation Service, Springfield, Virginia. 












