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NOTE ON THE MAXIMUM NUMBER OF ARBI 
TRARY POINTS WHICH CAN BE DOUBLE

POINTS ON A CURVE, OR SURFACE,
OF ANY DEGREE.

By J. E. Campbell, Hertford College, Oxford.

If  a curve of the wth degree be given by r double points, 
and t ordinary points, the usual rule connecting these numbers 
is 3r + t = ⅛ {n (n + 3)}.

Suppose n = 2; then 3r + i=5, so we might conclude 
that a conic could not have two double points chosen 
arbitrarily. But the square of the line, joining any two 
points, is a case of a conic with two double points chosen 
arbitrarily, and an infinite number of double points depending 
on these two.

Suppose n = 4; then 3r-t-i=14, so we might conclude 
that a quartic could not have five double points. But the 
square of the conic, through any five points, is a quartic 
with five double points chosen arbitrarily, and an infinite 
number of double points depending on these five.

I propose to shew that these are the only cases of exception 
to the usual rule for plane curves; and that there are, for 
surfaces of the second and fourth degrees only, similar 
exceptions to the rule 4r + t = ⅜ {n (w2+ Qn 4- 11)}. Having 
proved these propositions, it will be easy to deduce some 
theorems (mostly well-known), regarding certain canonical 
forms of algebraical curves and surfaces.

To be given that a curve passes through t points is to 
be given t independent linear conditions; I have now to 
shew that (with the exceptions stated) to be given m double 
points, and s ordinary points, is equivalent to 3zn + s 
independent linear conditions. Assuming the rule to hold 
for m = r- 1, it may be shewn to hold for vι = r. Suppose 
it was only equivalent to 3r + s-1 independent conditions. 
Add a sufficient number of ordinary points, to be also passed 
through, so as to make

3r + t — 1 = ∣ {w (n + 3)} or 3 (r — 1) + t = ⅜ {n (n + 3)j — 2.

By what we have assumed, a system of curve3 having r — 1 
given double points, and t ordinary points, satisfies 3 (r — 1) + t 
independent linear conditions; and therefore the system must 
take the form λf∕+ μV+ v Hz = 0, where U, F, W are 
particular curves of the system, and λ, μ,, v parameters.
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The curve which hag r double points, and t ordinary points 
given, is therefore a particular member of this system.

Now the double points, of such a system, lie on the 
Jacobian

K, wl
v2, Fa, wa =0,
⅞ n, w3

and therefore the rth double point, belonging to the particular 
curve must lie on this locus; but that double point was 
supposed arbitrary, therefore the Jacobian must vanish 
identically.

If to every point P on a curve a near point P' also on 
the curve can be found, such that PP' is not the tangent 
at P, it can only be because the curve ultimately breaks up 
into the square of a curve of half its degree. Let now 
P, P', P" be any three points very near to one another. 
One curve of the system can be drawn through P, P', and 
another through P, P", and the polar lines of P with regard 
to these are the tangents PP' and PP" respectively, which 
intersect in P. The polar of P, with regard to every other 
curve, must therefore also pass through P, (since this is 
the geometrical interpretation of the Jacobian vanishing 
identically) ; that is, every other curve must pass through P, 
which is impossible, P being an arbitrary point. PP' cannot 
therefore be a tangent, and the curvee of the system must 
break up into curves of degree ⅛w; that is λ P + μV + vW = 0 
takes the form ($+ λ>S") ($+ μS') = 0; and any other point 
may be considered a double point, for that curve (>S + XS')i = 0 
which passes through it.

The curve S + λS, = 0, which is of degree ∣n, contains 
r + t points arbitrarily chosen ; therefore r + i = ⅜ {⅛rc (⅜w+ 3)J, 
and we had also 3r + t = ⅜ {n (n + 3)} + 1. Of these two 
equations, it is easily seen that the only solutions are

w = 2, Cn = 4f
. r = 2, an^ , r = 5,

’ (γ =o, u =o.
We have therefore proved by induction that, except when 

n is 2 or 4, to be given m double points and s ordinary 
points is equivalent to 3wι 4 s independent conditions; and 
the conditions being independent, it is obvious that they are 
also linear.

So, to be given that a surface has m double points and s
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ordinary points is 4m + s independent conditions. Suppose 
it less; then we can prove, as before, that the Jacobian of 
Cζ F, IF, P, four particular surfaces of a system, must vanish 
identically. Let now P, P', P", P"' be any four near points, 
and yet such that the angles of the tetrahedron formed by 
them are finite. Then four surfaces of the system can be 
described through PP'P'', PP"P"', PP'''P', and P'P''P"' 
respectively; and (neglecting the case of the surfaces being 
cones with a common vertex, which need not be considered, 
as it falls under the rule for plane curves) these are typical 
surfaces of the system. As in the corresponding proof for 
plane curves, we see that, since these four planes have not 
a common point, and yet the Jacobians must vanish 
identically, each surface must break up. That iβ

λΓ+μF+rTF+δΓ=0

must take the form

(£+λ£' + μS") (5+ vS' + δ£") = ο.

In the latter form λ, μ, v, 8 are connected by a linear relation 
a∖ + bμ + cr + d8 = 0, so that there are really only three free 
parameters. Any other point may be considered a double 
point for the surface (jS+^λ>S'+ μS'r)2= 0 which passes 
through it.

Now 8 + λS' + μS" = 0 can be described through one 
arbitrary point only, since (α + c) λ + (δ + d) μ = 0 ; therefore 
a surface of degree ∣n can be described through r + t points. 
We conclude that n must be an even integer, and

r + i<⅛{izl (⅛wa + 3w + ll)};

and therefore, since 4r + t > ⅞ {rc (n2 + 6n + 11), we must 
have either

-w = 2, in = 4,
• r = 3, or ■ r = 9,
«=0, U=0.

If w = 2, the square of the plane passing through three 
given points is a quadric with the three points as double 
points; and the rule giving the number of conditions which 
can be satisfied is too small by three.

If n = 4, a quadric can be described through nine points, 
and the square of this a quartic surface with nine double 
points; the rule giving too small a number of free conditions 
by two.
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T h e  f a ct t h at c u r v e 3 a n d s u rf a c e s of  t h e s e c o n d d e g r e e  
a n d  of  t h e f o u rt h d e g r e e  h a v e  a n  a b n o r m al  n u m b e r  of  d o u bl e  
p oi nt s gi v e s s o m e d et e r mi n a nt s  a n d m at ri c e s  w hi c h  v a ni s h  
i d e nti c all y. T h u s

α ι}α aj θ) θj θ} θ  

^l)  ̂ 2) α D  a j} θ } θ

7 1 , 7 i, 0  5  0  , a 1 , a 2 = θ

0 , 0  , ∕3 1 , ∕3 2 , 0  , 0

θ  >  0  >  7,,  7 a , β 1 , β t

0  , 0  , θ  , 0  , 7 l, 7 s

si n c e a  c o ni c c a n h a v e  t w o d o u bl e  p oi nt s  ∙ a n d

α 1 , α2 , α3 , 0, 0,  0, 0,  0, 0,  0, 0, 0  

⅛,  ∕ ‰ α ι j a j > a 3 j θ  ) θ  1  θ  ) θ  j θ  j θ

7,,  7„  7 s >  0  j θ  1  θ , a 1 , a a , a 3 , θ  >  θ  , 0

5  , δ 3 , 0  , 0  , 0 , 0  , 0  , 0  , a 1 , a 2 , a 3

0  , 0  , 0  , ∕ 31 , β i, ∕ 31 , 0  , 0  , 0  , 0  , 0  , 0

θ  j θ  >  θ  >  7ι >  7j)  7 si  ^ 3 1  θ  j θ  j θ ,

0  , 0  , 0  , δ 1 , δ 2 , δ 3 , θ  , 0  , 0  , ∕ 31 , β 3 , β 3  

O, O, O, O, O, O, 7 1 , 7 2 , 7 3 , 0, 0, 0  

0  , 0  , 0  , 0  , 0  , 0  , δ 1 , δ 2 , δ 3 , 7 1 , 7 2 , 7 3
0  , 0 , 0  , 0  , 0  , 0 , 0  , 0  , o',  δ 1 , δ 2 , δ 3

si n c e a q u a d ri c  c a n h a v e  t h r e e d o u bl e  p oi nt s. T h e  r e s ult s  
w h e n  n  =∙  4  a r e al s o si m pl e, b ut  t a k e u p t o o m u c h  s p a c e t o 
w rit e  d o w n.

It i s n oti c e d  i n S al m o n ’s Hi g h e r  Pl a n e  C u r v es  ( 3 r d e diti o n,  
A rt.  4 5),  t h at if a  c u r v e of  t h e si xt h d e g r e e  h a v e  it s m a xi m u m  
n u m b e r  of  a r bit r a r y d o u bl e p oi nt s,  t h at i s ni n e,  it m u st  b e  
t h e s q u a r e of  a  c u bi c. T hi s  i s t h e o nl y  c a s e e x c e pti n g t h o s e 
al r e a d y di s c u s s e d w h e r e  a c u r v e wit h  it s m a xi m u m  n u m b e r  
of  a r bit r a r y  d o u bl e  p oi nt s  c a n d e g e n e r at e.

S u p p o s e a c u r v e of  d e g r e e  m  +  n b r e a k s  u p i nt o a n wι i o 
a n d  w i c; a n d  l et it s d o u bl e  p oi nt s  b e  m a d e  u p  of  t i nt e r s e cti o n s 
of  t h e τ n i c a n d  n i c ; p  d o u bl e  p oi nt s  o n t h e τ n i c a n d q  o n t h e 
w i o; it s o r di n a r y p oi nt s  b y  tl p oi nt s  o n  t h e z n i θ a n d t2 p oi nt s  
o n  t h e n ι c.
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Then we have

t + 3p + i1 = ∣ {m (m + 3)}, 

t + 3q + t3 = ⅜ {n(w + 3)},

3p + 3j + 3i ÷ tl + t3 = ⅜ {(m + n) (in + n + 3) j;

therefore t = mn.

But the number of arbitrary points of intersection of an 
τnιc and wιc if (w n) cannot be greater than ⅜ {m (m + 3)}; 
therefore mn ⅜ [in (m + 3)}, that is 2n 3,of which the 
only solution is ∕n = w = 3.

If an exceptional case were to arise through m being 
equal to four, the 9nic would be determined completely, and 
we should have

jp = 5, i = i1 = 0, 3^+ij = ⅜ {w(zz + 3)},

15 + 32 + ia = ⅛{(w + 4)(n+7)},

which gives 4w = 1. A similar absurdity would result from 
the supposition m = 2.

I have now to prove that any wic can be written 

U≡ (α1ar + βly + γ12)" + (aatf + β3y + γ2z)n +...

+ (ar« + βry + 7r*)",

(where 3r = ⅛ {(w + 1) (n + 2)j + i, and t is 0, or 2) with 
t degrees of freedom, except when n is 2, or 4.

First consider t = 0; that is, when n is not a multiple of 3.
The only cases of exception to the theorem must be when 

∑αn, ∑al~1β, ∑αn-,γ, ..., ∑βn, ∑βn~'y, ..., ∑yn

are not independent functions of the ⅜ {(w +1) (n + 2)} variables

α1, ft, 7l> a3, ⅞, 7j , ∙∙∙> a r ∙> 7r>

for any relation between these functions would be a relation 
between the coefficients of the given ∕210.

The condition for a relationship is the vanishing of the 
Jacobian of the functions.

Forming the Jacobian we get the determinant, which 
expresses that α, β, 7, and the other r— 1 points should be 
arbitrary double points on some wic.

Supposing this determinant were to vanish identically, we
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should have r double points on an nic where 3r=⅜{w (w + 3)} 4-1; 
and this we saw was impossible unless n were 2, or 4.

The only cases of exception are then when n is 2, or 4.
Thus a conic cannot be thrown into the form of the sum of 

two squares, though we have apparently five constants at our 
disposal; nor can a quartic be thrown into the form of the 
sum of five fourth powers, which is Clebsch’s theorem.

Consider now i = 2; that is, n is a multiple of three.
Choose for βr and γr arbitrarily; then there will be left 

3r — 2 variables, that is, ⅜ {(w + 1) (« + 2)}.
The vanishing of the Jacobian would express that an 

wic could have r— 1 double points, aud one ordinary point 
arbitrarily selected, where 3 (r — 1) + 1 = ⅜ {(n + 1) (n + 2j}; 
and this we saw was impossible.

It is not difficult to see that in the cases of exception 
a conic could be reduced to the sum of three squares, with 
three degrees of freedom, providing we do not choose α3, β3, 
and 73, arbitrarily; that is, we might take α1, β3, and y3, at 
choice, but not α1, β1, and 71, or α3, β3, and 73.

Now also a quartic can be reduced to the sum of six fourth 
powers, with three degrees of freedom, subject to the same 
restrictions.

In the same manner it is deduced that any surface of the 
nth degree may be written

U≡ (αlx + βiy + 71s + δ1w)n +...+ (arx + βry + 7/ + διfw)n,

(where 4r = ⅞; {(w + 1) (n 4- 2) (n + 3)j + t; t being 0, 1, 2, 
or 3); and the degrees of freedom with which this may be 
done is t; but if n is 2 or 4 the theorem is not true.

Thus a quadric cannot be thrown into the form of the sum 
of three squares, though there are two more constants at our 
disposal than appear sufficient; nor a quartic into the form 
of the sum of nine fourth powers, though there is one more 
constant than appears sufficient.

A cubic surface can, however, be expressed as the sum of 
five cubes; this is Sylvester’s theorem.

A surface of the fifth degree can be expressed as the sum 
of fourteen fifth powers, and so in general.

In the exceptional cases, and subject to the same restric-
tions, as in the case of plane curves, a quadric can be 
expressed as the sum of four squares, with six degrees of 
freedom; and a quartic surface as the sum of ten fourth 
powers with five degrees of freedom.

A plane quartic can, we have seen, he expressed as the 
sum of six fourth powers.

m2
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Let α1, 3i, 71, a2, β2, ‰ ∙∙∙, aβ, β , 7β 
be the coordinates of the lines, forming the hexagon of refer-
ence ; then the invariant, called B in Salmon’s Higher Plane 
Curves is the square of the determinant

2 2 2 2 2 2 
αι , αa , a3, a4, afi, a6 .

aΛ) «Α,.................................
aι7u a272 ,.................................
βl2 , β,2 ,..................................
∕⅛ ∕⅛.................................
7? , 7? ,..............................

This invariant (the catalecticant of the quartic) vanishes 
then, not only if the quartic can be expressed as the sum of 
five fourth powers but, also if the sides of the hexagon of 
reference touch a conic, and this includes the first theorem.

The corresponding theorem for a quartic surface is that its 
catalecticant vanishes, if the faces of the dekahedron of re-
ference touch a quadric.

The curve of the sixth degree can be expressed as the sum 
of ten sixth powers; and if the sides of this decagon touch 
a curve of the third class, the catalecticant of the sextiα 
vanishes.

ON THE APPLICATION OF ABEL’S THEOREM 
TO ELLIPTIC INTEGRALS OF THE FIRST 

KIND.

By W. Burnside.

Ta ke as the fixed curve for an application of Abel’s 
theorem the quartic

. ax, + 2‰r + c N ...
y = M√ + 2√⅛+G7 - 2ζ9ay........................

and for the variable curve the hyperbola 
τnrc + n

y =—------->............................................ l∏).∙7 m x + n k
Then if NxDr = A, a general quartic function,

4 dx∑⅛=0........................................... (iii),
ι V-4-r

where ic1, a jj, x3, xi are the abscissa?, of the points of intersection 
of (i) and (ii), when the constants w, w, m } n vary in any way.
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