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Abstract 

The paper deals with the well known set packing problem. lt is as

sumed that some of the problem coefficients are realizations of mutually 
independent random variables. Probabilistic properties of selected prob
lem characteristics are investigated for the variety of possible instances 
of the problem. The main result of the paper states that, but trivia! 
cases, there is no feasible solution, with probability approaching 1, for the 
considered class of the random set packing problems in the asymptotical 
case. 

1 Introduction 

Let us consider a set packing problem consisting in packing m element set M 
into n separate subsets M;, i= 1, ... ,n, where M; nMj = 0 for every i, j, 
i# j, i,j E {1, ... ,n}. Set packing problem maybe formulated as the binary 
multiconstraint knapsack problem, see Nemhauser and Wolsey [5] : 

zopr(n) = max f c, · x, 
i=l 
n 

subject to E aj, · x, ,;;; l 
i=l 

where j=l, ... ,m, x,= O or 1 

It is assumed that: 

Ci > O, aji = O or 1, i= 1, .. . , n , j = 1, . .. 1 m. 

(1) 

In fact aj,, i= 1, . .. ,n, j = 1, .. . ,m aredefiningcertain set ofsubsets of M, 
namely M,, i = 1, . .. , n in the following way 

{ 1 ifjEM'; 
aj, = o if i rf. M, ' 
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where c; is the certain value expressing the preference assigned to M;. Choice 
of x;, fulfilling the constraints imposed in (1) is defining the packing of the set 
Minto subsets Mi, Mi~ M,, i= 1, ... ,n where 

j EM; if and only if a3; · x; = 1,j = 1, . .. ,m. 

Each of the constraints E?=l a;; • x; ~ 1, j = 1, ... , m is guaranteeing that 
each of the iterns of the set M is assigned to maximum one of the subsets 
M;. Optimisation criteria in (1) is securing the choice of best possible packing 
according to preferences expressed by c;, i = 1, . . . , n . 

Set packing problem (1) is weU known to be NP hard combinatorial opti
misation problem, see Garey and Johnson [2]. Although set packing problem 
may be formulated as the binary multiconstraint knapsack problem, it is rather 
special case of it, see Martello and Toth [3]. Its peculiarity consists in 2 facts : 

• AU the constraints left hand sides coefficients are equal either to 1 or to 
O, i.e. 

aji =Oor 1, i= 1, ... ,n, j = 1, ... ,m. 

• AU of the constraints right hand sides coefficients are equal to 1. 

In the generał formulation of the binary multiconstraint knapsack problem it 
is only required that all of the knapsack problem coefficients, i.e. goal function, 
constraints left and right hand sides, are non-negative or, in order to avoid 
unclear interpretations, strictly positive. It especiaUy applies to goal function 
and constraints right hand sides coefficients. 

2 Definitions 

The foUowing definitions are necessary for the further presentation: 

Definltlon 1 We denote Vn "" Yn, where n --+ oo, if 

Yn · (l-o(l)) ~ Vn ~ Yn· (l+o(l)) 

when Vn, Yn are sequences of numbers, or 

when Vn is a sequence of random variables and Yn is a sequence of numbers or 
random variables, where lirun- 00 o(l) = O as usual. 

Definltlon 2 We denote Vn ::5 Yn(Vn t: W.,) if 

V,, ~ (1 + o(l)) · Y„ (V.,;,?: (1 - o(l)) · W,,) 

when Vn, Yn {IVn) are sequences of numbers, or 

lim P{Vn ~ (1 + o(l)) · Yn} = 1 ( lim P{V.,;,?: (1 - o(l)) · Wn} = 1} 
n-oo n-oo 

when V„ is a sequence of random variables and Yn {IV.,) is a sequence of numbers 
or random variables, where limn-oo o(l) = O. 
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Definltion 3 We denote Vn ~ Yn i/ there exist constants c" ;;,, c' > O such that 

where Yn, Vn are sequences of numbers or random variables. 

The following random model of (1) will be considered in the paper: 

• m, n are arbitrary positive integers, n-+ ex>, i = 1, . . . , n, j = 1, . .. , m . 

• e;, a;, are realizations of mutually independent random variables and 
moreover e;, are uniformly distributed over (O, 1] and P{ a;, = 1} = p, 
where O < p ś 1. 

Under the assumptions made about c,, a;,, and taking into account (1) the 
following always hold 

n 

O~ zopr(n) ~ I>• ~ n , (2) 
i=l 

Moreover, from the strong law of large numbers it follows that 

Le; "' E( c1) · n = n/2, La;, "'p · n. 
i=l i=I 

Therefore, it is justified to enhance formula (2) in the following way: 

n 1 n 1 
O~ zoPT(n) ~ n/2, LaJ, ~ 1, if p < - or La;, t: 1 when p > -. (3) 

i=l n i=l n 

Formula (3) shows that random model of set packing problem (1) is complete 
in the sense that nearly all possible instances of the problem are considered. 

The growth of zopr(n) - value of the optima! solution of the problem (1) 
may be influenced by the problem coeflicients, namely: 

n, m, Ci, a;i, where i= 1, ... ,n, j = 1, ... ,m. 

We have assumed that e;, a;, are realizations of the random variables and there
fore their impact on the zopr(n) growth is in this case indirect. Moreover, we 
have also assumed that m, n are arbitrary fixed positive integers and n -+ oo. 

The main aim of the present paper is to perform probabilistic analysis of the 
considered class of random set packing problems in the asymptotical case, i.e. 
when n-+ oo. Probabilistic analysis has 2 strategie goals, namely: 

• To exmine existence of the feasible solutions. 

• To investigate asymptotic behaviour of ZoPr(n) . 
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3 Lagrange and dual estimations 

When the knapsackLagrange and dual estimations problem, with one or many 
constraints, is considered then Lagrange function and the problem dual to it, 
see Averbakh (1], Meanti, Rinnooy Kan, Stougie and Vercellis (4], Szkatuła (6] 
and (7] is very useful tool to perform various kind of analyses. In the case of 
set packing problem Lagrange function of the problem (1) may be formulated 
as follows: 

Ln(x) 

where x = [xi, ... ,xn] and A= (.>-1 , .•• ,>-m] - vector of Lagrange multipliers. 
Moreover, Jet for every A, Aj 2: O, j = 1, ... , m : 

<l>n(A) = max Ln(x,A) = max {f Aj+ t (c, -I:>-jaj,) x,}. 
xE{O,l}·n xE{O,l}n j=l i=l j=l 

Taking the following notation: 

{ 
m 

x,(A) 
1 if c, - E Aj · aj, > O 

= j=l 

o otherwise. 

{: 
m 

c,(A) 
if e; - E Aj · aj, > O 

j=l 

otherwise. 

{ a~, 

m 

a;,(A) = 
if e; - E Aj · aj, > O 

j=l 
otherwise. 

we have for every A, Aj 2: O, j = 1, ... , m: 

Obviously 

</>n(A) = t,Aj+t,(c.-t,>-;-aj,)•x;(A)= 

t,>-j+ t, (c.(A)-t,>-j-aj,(A)) 

c,(A) = e; · x,(A), aj,(A) =aj,· x,(A). 

Problem dual to set packing problem (1) maybe formulated as follows : 
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(5) 

For every A 2: O the following holds: 

ZoPT(n) Ś <1.>;. Ś ef>n(A) = z..(A) + L .\;(1 - s;(A)). (6) 
j=l 

Let us denote: 

n n n n 

z,.(A) LCi · x;(A) = L c;(A), s;(A) =La;;· x;(A) = I:a;;(A), 
i=l i=l i=l i=l 

Bnm(A) = L-'i · s;(A), A(m) = L-'i· 
j=l j=l 

By definition of c;(A) and a;;(A), see also (4), we have: 

m 

c;(A) 2: L-'i • a;;(A) 
j=l 

and therefore 

z,.(A) 2: Bnm(A). (7) 

For certain A, x;(A) given by (4) may provide feasible solution of (1), i.e. : 

s;(A) ś 1 for every j = 1, ... , m. (8) 

Then: 

z,.(A) ś zoPT(n) ś <1.>;_ ś c/>n(A) = z,.(A) + A(m) - Bnm(A). (9) 

If (8) holds, then the below inequality also holds: 

A(m) - Bnm(A) 2: O. 

From (7) we get: 

ef>n(A) = z,.(A) + A(m) - Bnm(A) < l + A(m) - Bnm(A) . 
z,.(A) z,.(A) z,.(A) - Bnm(A) 

Therefore if (8) holds, then the following inequality also holds: 

1 < ZoPT(n) < <1.>;. < c/>n(A) < A(m) . 
- z,.(A) - z,.(A) - z,.(A) - Bnm(A) 

(10) 

Formula (10) shows, that if there exits sucha set of Lagrange multipliers A(n) 
which is fulfilling the formula (8) and if the formula below holds: 
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lim A(m) = 1 
n-oo Snm(A(n)) 

(11) 

then x,(A(n)), i = 1, ... ,n, given by (4), is the asymtotically sub-optima! 
solution of the set packing problem (1). Moreover the value of z,. ( A( n)) is an 
asymptotical approximation of the optima! solution value of the set packing 
problem i.e. zoPT(n) . 

4 Probabilistic analysis 

In the present section of the paper some probablistic properties of the set packing 
problem (1) will be investigated. Let us observe that due to the assumptions 
made the following holds, for i = 1, ... , n, j = 1, ... , m: 

P{a;, 1} =p, P{a;, =0} = 1-p, P{a;,(A) = 1} = 1-P{a;,(A) =0}, 

{ 
O when x ~ O 

P(c; < x) = x when O< x ~ 1 . 
1 when x;;, 1 

(12) 

Moreover for the random variable E;;'=l,k;lj a;;, due to the binomial distribu
tion, the following holds for every r - integer, O~ r ~ m - 1: 

p{ f _ak;=r}=(m;l)-pr·(l-p)m-r- 1_ (13) 
k=l,k#J 

Let us also assume that 

A={>.,··· , >.}, i.e. >-; = >., j = 1, · · · ,m. 

Lemma 1 If a;, are realizations of mutually independent random variables 
where P{a;, = 1} = p, O< p ś 1, then 

m-1 ( 1) 
P{a;,(A) = 1} = p - p ~ m; · pr · (1-p)m-r- l min{l,>.(r + 1)}. 

If, moreover, >. ~ 1 / m the n: 

P{a;,(A) = 1} =p · (1-\ - (m • p+l-p)). 

Proof. :&om ( 4), (12) and (13) and taking into account that random vari
able E;:'=l,k#j a;, may take any integer value r from the range [O, m - 1] with 
the probability given in (13) it follows that: 

P{a;,(A)=O} = P{a;;=OUa;,=lnc;<A · ( f _a;,+1)}= 
k=l,k#J 

1-p+p · P{e;<>-· ( f _a;,+1)}= 
k=l,k#J 

m-1 ( ) 1 - P + P ~ m; 1 . Pr . (1 - p)m-r-1 min{!, >.(r + 1)}. 
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Due to the (12) it proves the first formula of the Lemma. When >.. <;;; 1/m then 
the following holds 

P{a;;(A) =0} = 1-p+>.. I: (m-1)!-(r+l) ·pr+l .(1-pr- r-l (14) 
r=O r! · (m - 1 - r)! 

Let us ohserve that for every integers !, m, !, > 1, m ;;, 2, and O <;;; p <;;; 1 the 
following hold 

r+l = m-(m-1-r). 

Using the above mentioned formulas (14) may be rewritten as: 

P{a;;(A) = O} = (
m- l (m-1)! •m 

1-p+>.. -p I::~~~~ ·pr · (l-pr-1-r_ 
r=O r! · (m - 1 - r)! 

- ~~~~-~~ - p. 1-p -mL-l (m - 1)! · (m - 1 - r) r ( )m-l- r) _ 
r=O r! · (m - 1 - r)! 

( m- l (m- 1) r m 1 r 1-p+>.. -p m~ r ·p · (1-p) - - -

-p · (m-1)· (1-p) ~ (m;2) · Pr. (1-pr- 2- r) = 

l-p+>.. •p • (m-(m-1) • (1-p)) = 
1-p+>.. • p · (m• p+ 1-p). 

Finally above formulas can be summarized as: 

P{a;;(A) =O}= 1-p + >.. -p · (m · p + 1- p) . (15) 

Due to the formulas (12) and (15) we have 

P{a;;(A) = 1} 1- P{a;;(A) =O}= 
= p->..-p-(m •p+l-p)=p·(l->.. -(m•p+l-p)). 

• 
AE the direct consequence of the above formulas we have 

E(a;;(A)) = 1 · P{a;;(A) = 1} +O · P{a;;(A) =O}= P{a;;(A) = l}. (16) 

Now instead of A we will consider A(n). It does mean that for every value of 
integer n, we may consider different vector A(n) = {>..(n),·· · ,>..(n)}. 
For every j, j = l, • • • , m, we have: 

n 

E(s;(A(n))) I:;E(a;;(A(n))) =n• P{ a;;(A(n)) = 1} = (17) 

n · p(l ->..(n)· (m · p + 1-p)). 
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Lemma 2 For every <>, <> > O there exists m' n', m', n' >, 1 such that for every 
m;;;, m' and n;;;, n', the following choice of >.(n) : 

1-a/(n·p) 
>.(n) = -~~~ is solving the lllJuations E(s;(A(n))) = <>. 

m•p+l-p 

Corollary 1 If E(s;(A(n))) = <>, then P{a;;(A(n)) = l} = a/n. 

Proof. Proof of Lemma and Corollary follows immediately from formulas 
{16) and {17) and following fact that for all m;;;, m' and n;;;, n': 

1 
>.(n),;;;;;:· 

• 
Solution of the set packing problem {l) given by formula ( 4) is feasible if 

and only if the formula (8) holds. 

Theorem 1 For every <>, <> > O there exists m' n', m', n' >, 1 such that for 
A(n), providing E(s;(A(n))) = <>, the following hold 

( °')n-1 O< P{s;(A(n)),;;1}= 1-;;: ·(1+<>-;;:) 

Moreover for every fixed value of<>,<> > O, we have 

. 1 +<> J~ P{s;(A(n)),;; 1} = ~ 
Proof. AB it was already mentioned solution of problem {l) given by formula 

(4) is feasible if and only if formula (8) holds i.e. s;(A(n)) = O or s;(A(n)) = 
l. For every A(n), random variable s;(A(n)) = E7=1 a;;(A(n)) may take any 
integer value r from the range [O, n] with the probability given by the following 
formula: 

P {ta;;(A(n)) = r} = (;) · jir · {1- p)n-r, where ii= P{a;,(A(n)) = l}. 

From the above formula and Corollary 1 it follows that 

P{ s;(A(n)) ,;; l} = P {t a;,(A(n)) = O Ut a;,(A(n)) = 1} = {18) 

(1-;f +<>(l-;r-1 = (1-;f-l ·(l+<>-;) 

The proof is finished by observing that lim (1 - fl)"- 1 = e- 0 • 
n-oo n 

Corollary 2 P{s;(A(n)),;; l} = 1 ifandonlyifn= l. Whena-+0 asn-+oo 
then 

lim P{s;(A(n)),;; l} = l. 
n-oo 

However if a, a > O, is a constant then: 

J~~ P{s;(A(n)),;; l} < 1 {19) 
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Proof. Formula (19) foliowa immediately from the Theorem 1. • 
The above Theorem 1 and Corollary 2 to it have interesting interpretation, 

which is may be visible on few examples below: 

Example 1 

When a= O.Ol then J~ P{sj(A(n)),;; l} 

When a= 0.1 then J.!.'! P{sj(A(n)),;; l} 

When a= 0.5 then J~ P{sj(A(n)) ,;; l} 

When a= 1 then ni!.'! P{sj(A(n)),;; 1} 

0.999 

0.995 

0.9098 

~ =0.736 
e 

Interpretation of the above examples is fol!owing. The closer the value of 
a is to 1, i.e. set packing problem (1) right-hand-side values the better ap
proximation of the optima! solution values may be provided, however with less 
satisfactory value of the limn-oo P{sj(A(n)),;; l}. Due approximations of the 
optima! solution values are provided in the next section. 

5 Estimations of the optima! solution values 

In order to analyse the behaviour of the optima! solution value of the set packing 
problem (1) one may need to exploit the probablistic properties of the random 
variables e;(A(n)), i = 1, • • • , n . The construction of the random variables 
e;(A(n)) is defined by formulas (4) and (12) respectively. Distribution func
tions of the random variables e;(A(n)), i= 1, • • • , n are given by the fol!owing 
formulas, where O < x :,; 1: 

P{c,(A(n))<x} = P{c,<xUc,;:,:xnc,:SA(n) · 2>i•}= (20) 
j=l 

x+P{x:,; c,::; A(n) · I>j,}-
i=I 

Let us observe that P{x :,; e; ::; A(n) · E~=l aj,} is by definition equal to zero 
if c, < x or c, > A(n) · E~=l a;,. Therefore (20) may be rewritten as 

P{c,(A(n))<x} = x+LP{x:s;e;:s;A(n) •rnLai,=r}= (21) 
r=l j=l 

m 

x+ L(rA(n)-x)+P{Laii = r}. {22) 
r=l j=l 
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The above formula may enable us to calculate the mean value of the random 
variables c;(A(n)), i= 1, · · · , n . Namely: 

E(c;(A(n))) = [ x · d(P{c;(A(n)) < x}) = (23) 

1 A(n) ·m ( m m ) 

2 + J X · ~)rA(n)-x)~ · P{La;, =r} = 
O r=l J=l 

1 m A(n)•k ( m m ) 
2 + L J x l::(rA(n) - x)~ · P{L a;, = r} dx = 

k=1A(n)•(k- l) r=k j-1 

1 m A(n)•k m 

2 - L J x · P{La;, = r}dx 
k=l A(n) •(k- 1) j=l 

Let us observe that, similiarly to the formula (13), the random variable E;:1 a;,, 
due to its binomial distribution, has the following distribution function for every 
r - integer, O ~ r ~ m: 

Therefore the formula (23) could be further simplified as follows: 

1 m ( A(n)·k ) ( m ( ) ) E(c;(A(n))) = 2 - L J xdx . L ; . pr . (1 _ p)m-r = 
k=l A(n),(k-1) r=k 

½- (A(;)) 2 t?2k-1) · (~ (;) •pr . (1-p)m-r) = 

½ - (A(;))2 t (t(2k-1)). ( (;) ·pr. (1-p)m- r) = 

½- (A(;»2 tr2. ( (;)-pr. (1-p)m-r) . 

Let us observe that the following formula holds for O < p :-,; 1 and m = 1, 2, ... 

tr2· ((;)-pr · (l-pr-r) =m ·p · (l+p·(m-1)) 

From Lemma 2 (where E(s;(A(n))) = a, and >.(n)= ';:.;0;~w) and due to the 
formula ( 6) we will therefore receive 

E(z,.(A)) = - 1- -~~~ · m·p · (m·p+l-p) = n ( (1-a/(n·p)) 2 
) 

2 m · p+l-p 

n n -p n n •p 
( 

m . p . (1 - ~ )2 ) ( (1 - ~ )2 ) 

2 l- m·p+l-p =2 l-1+(1-p)/(m•p) · 
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If (8) holds then due to the formulas (9) and (10), where A(m, n) = f .X;(n) = 
;~1 

m •n• .X(n), E(Snm(A(n))) = a• m •n• .X(n), we may receive much stronger 
results for O < a ~ 1, namely: 

( zopr(n)) 1 ( A(m,n) ) 1 
1 ~ E z,,(A(n)) ~ 0 , where E S„m(A(n)) = 0 and (24) 

n ( (1 - a/(n. p))2 ) 
E(z,,(A(n))) = 2 1 - 1 + (1 - p)/(m. p) . (25) 

Formula (24) may provide some estimations of the set packing problem (1) 
optima! solution value zopr(n) growth, when n-+ oo. Corresponding to Exam-

ple 1 estimations of the E ( ::{Ic,,"i) for the different values of a are provided 

in the below Example, where appropriate value of E(z,,(A(n))) is given in the 
formula (25): 

Example 2 

Whena 

Whena 

Whena 

Whena 

O.Ol then 1 ~ E ( ::r:c ~ )~) ~ 100 with approx. probablity O. 999 

0.1 then 1 ~ E ( :r:c~)~) ~ 10 with approx. probablity 0.995 

( zopr(n)) . . 
0.5 then 1 ~ E z,,(A(n)) ~ 2 w,th approx. probablzty 0.9098 

1 then E (:r:c~'iD = 1 with approx. probablity ! "'0.736. 

6 Concluding remarks 

In the present paper some results describing probabilities properties of the set 
packing problem (1) are summarized. 

In the paper distribution functions of the various random variables repre
senting important problems characteristics are presented. Moreover some re
sults concerning the feasibility of the received solutions and estimations of the 
set packing problem (1) optima! solution value Zopr(n) growth, when n-+ oo 
are provided. 

Examples 1 and 2 shows that the higher is accuracy of approximation of the 
optima] solution value the !ower is probability of the feasibility of corresponding 
solution. However when a = 0.5 the quality of approximation is tolerable, with 
pretty high probability of the feasibility of the solution. Moreover when a = 1 
the quality of approximation is very good with reasonabe probability of the 
feasibility of the solution. 

Some of the important avenues for the future research is convergence of the 
approximate solutions to the optima! solution and possibility of investigating 
realistic approximations of their values. 
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