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Abstract

The paper deals with the well known set packing problem. It is as-
sumed that somze of the problem coefficients are realizations of mutually
independent random variables. Probabilistic properties of selected prob-
lem characteristics are investigated for the variety of possible instances
of the problem. The main result of the paper states that, but trivial
cases, there is no feasible solution, with probability approaching 1, for the
considered class of the random set packing problems in the asymptotical
case.

1 Introduction

Let us consider a set packing problem consisting in packing m element set M
into n separate subsets M;, i = 1,...,n, where M; N M; = 0 for every i, j,
i#j,4,j € {1,...,n»}. Set packing problem maybe formulated as the binary
multiconstraint knapsack problem, see Nemhauser and Wolsey [5]:

n
ZopT(’n.) = max E Ci~ T
i=1
; e ()
subject to Saj-ri<1
i=1
where j=1,..,m, z;=0or 1

It is assumed that:

¢>0,a;3=00rl,i=1,...,n, j=1,..., m
In fact aji, i=1,...,n, j=1,... ,m are defining certain set of subsets of M,
namely M;, i=1,... ,n in the following way
NG F 1P
Tl o0 ifjéM;




where ¢; is the certain value expressing the preference assigned to M;. Choice
of z;, fulfilling the constraints imposed in (1) is defining the packing of the set
M into subsets M;, M; C M;,i=1,... ,n where

jeM;ifandonly ifa;-z;=1,j=1,...,m

Each of the constraints 3% aji-z; < 1, § = 1,...,m is guaranteeing that
each of the items of the set M is assigned to maximum one of the subsets
M;. Optimisation criteria in (1) is securing the choice of best possible packing
according to preferences expressed by ¢;, i =1,... ,n.

Set packing problem (1) is well known to be N ‘P hard combinatorial opti-
misation problem, see Garey and Johnson [2]. Although set packing problem
may be formulated as the binary multiconstraint knapsack problem, it is rather
special case of it, see Martello and Toth {3]. Its peculiarity consists in 2 facts:

e All the constraints left hand sides coefficients are equal either to 1 or to
0, ie.

e;=0o0rl,i=1,...,n, j=1,...,m.
e All of the constraints right hand sides coefficients are equal to 1.

In the general formulation of the binary multiconstraint knapsack problem it
is only required that all of the knapsack problem coefficients, i.e. goal function,
constraints left and right hand sides, are non-negative or, in order to avoid
unclear interpretations, strictly positive. It especially applies to goal function
and constraints right hand sides coefficients.

2 Definitions
The following definitions are necessary for the further presentation:
Definltion 1 We denote V,, &~ Y, where n — o0, if
Yo (1= 0(1)) < Va < Ya- (140(1))
when V,, Y, are sequences of numbers, or
Jim P{Y, - (1-0o(1)) S Vo <Y, (L40()} =1

when V, is a sequence of random variables and Yy, is a sequence of numbers or
random variables, where lim,_,o, 0(1) = 0 as usual.

Definition 2 We denote V,, <X Yy (V, = W) if
Va < (140(1) Yo (Vo 2 (1—-0(1))- W)
when Vy, Yo (W,) are sequences of numbers, or
Jim P{Va < (14+0(1) - Ya} = 1 ( Jim P(Va > (1—o(1))- Wa} = 1)

when V,, is a sequence of random variables and Y,, (W, ) is a sequence of numbers
or random variables, where limp...oo 0(1) =0




Definition 3 We denote V,, @Y, if there ezist constants ¢” > ¢’ > 0 such that

¢ YntVp 2" Y,

where Y,, Vi, are seq of bers or random variables.
The following random model of (1) will be considered in the paper:
e m, n are arbitrary positive integers, n —co,i1=1,... ,n, j=1,... ,m.
® cj, aj are realizations of mutually independent random variables and

moreover c;, are uniformly distributed over (0,1] and P{a; = 1} = p,
where 0 << p < 1.

Under the assumptions made about c;, a;;, and taking into account (1) the
following always hold

n

0< zopr(n) < Zci <, 2

i=1
Moreover, from the strong law of large numbers it follows that

n

Zq ~ E(cy) -n=n/2, iaj,-ksp-n.

i=1 i=1

Therefore, it is justified to enhance formula (2) in the following way:

~ . 1 u 1
0 < zopr(n) < n/2, Zaﬂ <1, ifp< = or gl:aji > 1 when p > o (3)

i=1

Formula (3) shows that random model of set packing problem (1) is complete
in the sense that nearly all possible instances of the problem are considered.

The growth of zopr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, m, ¢, &5, wherei=1,... ,m, j=1,... ,m.

We have assumed that ¢;, a;; are realizations of the random variables and there-
fore their impact on the zopr(n) growth is in this case indirect. Moreover, we
have also assumed that m, n are arbitrary fixed positive integers and n — oo.

The main aim of the present paper is to perform probabilistic analysis of the
considered class of random set packing problems in the asymptotical case, i.e.
when n — co. Probabilistic analysis has 2 strategic goals, namely:

e To exmine existence of the feasible solutions.

e To investigate asymptotic behaviour of zo pT(n).




3 Lagrange and dual estimations

When the knapsackLagrange and dual estimations problem, with one or many
constraints, is considered then Lagrange function and the problem dual to it,
see Averbakh [1], Meanti, Rinnooy Kan, Stougie and Vercellis {4], Szkatula [6]
and [7] is very useful tool to perform various kind of analyses. In the case of
set packing problem Lagrange function of the problem (1) may be formulated

as follows:

Lo(z) = Zc, :c.+ZA (l—znzaji-a:;)=

J=1 i=1

Il

m
z/\J+Z ZA,waji - T
=1

j=1

where z = [z,... ,%,] and A = [A\y,... ,An] - vector of Lagrange multipliers.
Moreover, let for every A, X; >0,j=1,... ,m:

T A 53 A 1
$u(A) = max Ln(zA)=_ mox Z+; g Z jag | @i

Taking the following notation:

m
1 ifci—zf\j'aji>0

o) = P2 @
0 otherwise.
foi— 30 A
N H — P Qs > 0
a(h) = ¢ e ng YR
(¢} otherwise.
fei— 3
a; ifei— > Xj-au>0
ai(A) = ” =1

o otherwise.
we have for every A, X; 2 0,j=1,... ,m:
n m

f:)\j+z C.'—Z/\j‘aji czi(A) =

j=1 i=1 j=1

|

$a(4)

i

ZA +Z Ci(A) - Z/\j'dj,'(A)

4==1 =1
Obviously
ci(A) = ¢ -zi(A), a;i(A) = a;; - z:(A).

Problem dual to set packing problem (1) maybe formulated as follows:




@ = i g, (). ®)
For every A > 0 the following holds:

sopr(n) S B < 6. (8) = 2m(A) + 351 — 55(A). ©)

j=1

Let us denote:

m(h) = Ya-m(h) =Y alh), s ()= ai-zi(A) =Y aji(A),
i=1 i=1 i=1 i=1
Sam(A) = 3 2;-85(A), A(m) = ixj.
=1 =1

By definition of ¢;(A) and a;i(A), see also (4), we have:
a(h) =Y A ai(A)
=1

and therefore

Zn(A) 2 S'nm(A)- (7)

For certain A, z;(A) given by (4) may provide feasible solution of (1), i.e.:

s;(A) <1 forevery j=1,...,m. (8)
Then:
() < zopr(n) < @5, < ¢ (A) = 2 (A) + A(m) — Sam(A).  (9)
If (8) holds, then the below inequality also holds:
A(m) — Spm(A) > 0.
From (7) we get:

$n(A) _ zm(d) A(m) — Spm(A)
z(A) T z(4) 2.(A)

Therefore if (8) holds, then the following inequality also holds:

N A(m) — s,‘,,.(A).

<1 Som(A)

zopr(n) _ & _ ¢a(8) _ A(m)
1< < < < . 10
w®) = 2 = w(®) = Bam®) to
Formula (10) shows, that if there exits such a set of Lagrange multipliers A(n)
which is fulfilling the formula (8) and if the formula below holds:




A(m)
lim s =
n—00 Snm(A(n))
then z;(A(n)), i = 1,...,n, given by (4), is the asymtotically sub-optimal
solution of the set packing problem (1). Moreover the value of z,{A(n)) is an
asymptotical approximation of the optimal solution value of the set packing
problem ie. zopr(n).

1 (11)

4 Probabilistic analysis

In the present section of the paper some probablistic properties of the set packing
problem (1) will be investigated. Let us observe that due to the assumptions
made the following holds, fori =1,... ,n,j=1,... ,m:

Plaji = 1}=p, Plaj;=0}=1~p, P{a;i(A) = 1} =1- P{az(A) =0},
0 when £ <0

Pleg < )=¢ = whenO<z<1 . (12)
1 whenz > 1

Moreover for the random variable 21;;1,1:;&]‘ aji, due to the binomial distribu-
tion, the following holds for every 7 - integer, 0 < 7 < m — 1:

P i Q=7 =(mr_1)-p'-(1_p)m—'-1. (13)

k=1,k#]
Let us also assume that
A={xr-- 2}, ie A=A =1 ,m

Lemma 1 If aj; are realizations of mutually independent random wariables
where P{aj; =1} =p, 0<p <1, then

Plaj(A)=1}=p—-p Z_ (m; 1) " (1~ p)™ " min{1, Afr + 1)}

=0

If, moreover, X < 1/m then:
Plaji(A)=1}=p- (1= X-(m-p+1—p)).
Proof. From (4), (12) and (13) and taking into account that random vari-
able 377, 12, a5 may take any integer value 7 from the range [0, m — 1] with
the probability given in (13) it follows that:

I

m
P{aj;=0Ug;=1N¢; < A- Z aj +1 =
k=1,k#j

P{aji(A) =0}

1—-p+p-PLci<A- Z aji+ 1 =

k=1,k:t
m~1
m—1 ]
= 1opre ) ("77) a6+ D)
r=0



























