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Abstract. In the paper we present the most important, from theoretical
and practical points of view, applications of fuzzy sets in the evaluation
of reliability. We discuss fuzzy probabilistic reliability models that can
be used for the unified analysis of probabilistic randomness and fuzzy
vagueness which are both present in reliability data. We also present
an alternative possibilistic approach that is based on the theory of pos-
sibility proposed by L.A.Zadeh. Large part of the paper is devoted to
the problem of the statistical analysis of imprecisely reported (fuzzy)
reliability data.

1 Introduction

Theory of reliability is more than fifty years old. Its basic concepts were estab-
lished in the 1950s as useful tools for the analysis of complex technical systems.
The rapid developinent of the theory of reliability was closely related to the im-
portance of its main field of applications - military and space. For this reason the
origins of the research in the area of reliability are still not well known. Ralph
A .Evans, one of the founders of thie IEEE Transactions on Reliability, wrote in
an Editorial i this journal that all important theoretical results published in
the 1960s and 1970s had been already obtained even in the 1950s, and for many
years renained classified. The authors of the most important publications on
reliability from those years belouged to the group of the most important scien-
tists working in theory of probability, mathematical statistics, electronics and
coniputer sciences.

When we look at the theory of reliability as the application of a basic math-
ematical theory, we could see without any doubt that it should be reagarded as
one of the most iportant applications of the theory of probability. All impor-
tant events which are of interest for the theory and practice of reliability have
undoubtedly stochastic character, and all processes that lead to failures can be
described by stochastic processes. Therefore, the theory of probability has been
for many years used as the only tool for description, prediction and optimiza-
tion of reliability. As the consequence of applying that approach, mathematical
statistics has been used for the analysis reliability data.

In its initial phase of development, statistical methods used in the area of
reliability were based on a classical approach to statistics. Classical concepts of
statistics, such as estimnators, confidence intervals and tests of hypotheses, that
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have their interpretations in terms of frequencies, were widely used in the analysis .
of reliability data. However, together with a continuous improvement of relia-

bility of components and systems these classical methods became not sufficient

for practical applications. Therefore, new statistical methods that were based on

the Bayesian paradigm found their applications both in theory and practice of
reliability. It is worthy noting that in that time the Bayesian approach to statis-

tics was heavily attacked by the majority of the statistical community. However,

practical successes of this approach have resulted nowdays with common accep-

tance of the Bayesian methodology in the area of reliability.

During the last fifteen years we have wittnessed a similar situation in the
case of the application of the theory of fuzzy sets in the area of reliability.
First, in the early 1980s the quality of components used mainly in the aerospace
industry became so high that the probabilities of their failures had the order
of magnitude close to 10~7 and less. Classical statistical methods of estimation,
based on the observation of a random sample, are not applicable in that case.
On the other hand, the methods based on the Bayesian approach are usually too
complicated to be used in practice. As the result of these difficulties researchers
and practitioners working in the area of reliability were able to provide only
imprecisely defined values of probabilities of failures. In order to describe those
imprecise values of probabilities they proposed to use the theory of fuzzy sets
introduced by Lotfi A. Zadeh in the 1960s. Moreover, this new methodology
appeared to be very usefull in all cases where the information related to reliability
were based on imprecise expert opinions, imprecisely reported reliability data,
etc. Another impulse for the development of the fuzzy reliability methodology
was given in the investigation of complex man-machine systems, and complex
multistate systems with imprecise definitions of failures. New methods for the
reliability analysis that are based on the theory of fuzzy sets (and the related
theory of possibility) and its mixture with the theory of probability have been
proposed during last fifteen years, and are now ready for practical applications.
An excellent overview of the problems mentioned above can be found in the
paper by Cai [5].

The number of papers devoted to the applications of fuzzy sets in the analy-
sis of reliability has become quite large, and it is rather iinpossible to present
a comprehensive review of all of them in one paper. The readers who are inter-
ested in a broad introduction to the problem are encouraged to read collections
of papers on that topic edited by Onisawa and Kacprzyk [43] and Misra [33].
Therefore, we have decided to give a rather general overview of the main results
in this area. In the second section of the paper we consider problems related
to the reliability analysis of systems with the usage of imprecise probabilities.
In the third section of the paper we present the most important applications of
the theory of possibility in the area of reliability. The fourth section is devoted
to another very important from a practical point of view problem: statistical
analysis of imprecise reliability data in both classical and Bayesian frameworks.
Throughout the paper we present only main ideas and results that have been
published in a few selected papers. The reader is encouraged, however, tc ad
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other related results that have been already published in the papers referenced
by the papers that are listed iu the bibliograply to this paper.

2 Evaluation of reliability in case of imprecise
probabilities

The methodology for the evaluation of reliability of systems characterized by
binary states of its elements and binary states of the whole system was proposed
in the early 1960s. Its detailed description can be found in fundamental books
by Barlow and Proschan [1],[2]. We recall now only some basic notions of this

theory.
Let x = (21, Z2,...,&n) be a vector that describes the state of nn elements of

the system such that

v = 1 if the elemeut 7 is functioning i=1
7 1 0if the element 1 is failed T

and ¢ describes a binary state of the whole system, i.e.

b= 1 if the system is functioning
"1 0if the system is failed

We assume that the state of the whole system is completely determined by the
states of its elements, i.e. ¢ = ¢(x1, 22, ..., T, ). Function ¢(z;, x4, ..., ) is called
the structure function of the system, or, simply, the structure. It is possible to
show that every structure can be expressed by the following general formula:

g0 = [[a¥ (-2 "vly) (1)

y j=1

where the suminnation is taken over all n-dimensional binary vectors y (0° = 1).
Ilence, every structure can be expressed as a polynomial of binary functions z;
that describe eleinents of the system.

Now, let us introduce the following notation:

= (1}1,‘...'131‘_1, 1,CEi+1,...,l‘")
(04, %) = (21, - Ti-1, 0, iy 1, ooy Tni)
= ("Ely~-~Ii—1:*yli+17"'vzn)

The ith element of the system is irrelevant if ¢(1;, x) = ¢(0;,x) for all (#;, x); oth-
erwise such element is relevant. The system is called coherent if (a) its structure
functon ¢ is increasing in every component, and (b) all its elements are relevant.
For the coherent systems there exist many algorithms for efficient calculations
of their reliability defined as the probability that the system is functioning.
One of the fundamental concepts of reliability of systems is the notion of a
minimal path. A minimal path is a subset of system’s elements such that if all
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these elements work, the whole system works. A dual concept to the minimal
path is that of a minimal cut. A minimal set of system’s elements is called a
minimal cut if the failures of all its elements cause the failure of the whole system.
Suppose that the considered system has n, minimal cuts, and n, minimal paths.
Denote by Cy, s € {1, ..., 7.} a minimal cut of a system, and by P,.,r € {1,...,n,}
its minimal path. According to the fundamental result of Birnbaum et al. {3] the
structure of any binary system can be decomposed using either minimal paths
or minimal cuts, and the following formula holds:

G(z1, T2y, ) = \/ /\931': /\ \/Iz (2)

1<r<n, i€ P, 1<s<nc 1€C,

Therefore, the knowledge of all minimal cuts and/or minimal paths is sufficient
for the full reliability description of a system.

Let us now recall basic results that are used in the calculation of reliability of a
system. The reliability state of a system X, and of each of its elements(X;, ¢ =
1,...,n) is a random variable distributed according to a two-point probability
distribution. Let ¢;, 7 = 1,...,n be the reliability of the ith element of a systein,
and ¢, the reliability of the whole system. Then, the following general expression
holds:

ds :E(XS) :h‘(ql:(h"'-)q") (3)
When the system is coherent and failures of its elements are statistically indepen-
dent, then h(gi, g2, .., ¢n), technically, is constructed by replacing z,, z2, ..., Tn
in (2) with q1, g2, ..., gn; next by changing \/ to a product operator on [0, 1], and
A\ to a probabilistic sum on [0, 1], and finally replacing the powers like ¢, m > 2
(if exist) with respective values of g;. Thus, the knowledge of ¢(x) and the val-
ues of q1, q2, ..., Gn, In case of coherent binary structures and independent failures
of elements, is fully sufficient for the calculation of the reliability of the whole
system.

Reliability analysis of complex systems can be divided into two phases: deter-
mination of the structure function and evaluation of the reliabilities of system’s
elements. The sets of minimal cuts and minimal paths can be obtained using dif-
ferent methods. However, the most efficient, and thus the most frequently used,
method is the fault tree analysis. This method was introduced more than forty
years ago, and since that time has been successfuly used in many areas, such as
aerospace industry, nuclear power plants, etc. The method consists in defining a
structure of physical events related to failures of system’s elements. There exist
methods for the extraction of minimal paths and minimal cuts from the infor-
mation contained in a fault tree when its events are precisely defined. However,
it is much more difficult to evaluate probabilities of specific failures, and thus
the reliabilities of systems components. In a classical approach to a fault tree
analysis it is assummed that all these probabilities are precisely known. However,
in many practical situation, especially in case of reliable components, the knowl-
edge of probabilities of failures (or reliabilities) is hardly precise. Even if we use
statistical data for the evaluation of those probabilities, we cannot be sure that
these data have been obtained in exactly same conditions. Usnally, we use data
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from reliability tests of similar objects conducted in similar conditious, but very
often our data come from: tests conducted in completely different conditions, e.g.
from accelerated life tests. In all these cases there is a need to recalculate the
results of reliability tests to the case of the considered systeni. Such recalculation
very often needs opinious of experts, and these opiunions are usually expressed in
a natural language using vague and imprecise expressions. The formal descrip-
tion of this lack of precision is one of the most important practical problems of
reliability analysis. Soie researchers claim that the language of the probability
theory is the ounly one that can be used for the description of uncertainty. How-
ever, there exist multitude counterexamples that indicate a necessity to apply
other approaches. Moreover, the application of the theory of probability for the
description of all imprecise inforination in the case of the reliability analysis of
complex systems will make this analysis impossible to do due to an extremely
high complexity of necessary computations. Therefore, the theory of fuzzy sets
introduced by Lotfi A. Zadeh seeins to be much better suited for this purpose.

In this paper we assume that the theory of fuzzy sets gives us tools appropri-
ate for modeling and handling vague data such as imprecisely defined probabili-
ties of failures. In the theory of fuzzy sets all objects of interest (events, numbers,
etc.) have associated values of the so called membership function . The value of
tlie membership function can be interpreted in different ways depending on the
context. In the context of the evaluation of imprecise probabilities the value of
the membership function u(p) can be inerpreted a a possibility that the unknown
probability adopts thie value of p.

Let us now recall some basic notions of the theory of fuzzy sets that will be
used in this paper. We start with the definition of a fuzzy number.

Definition 1. The fuzzy subset A of the real line R, with the membership func-
tion pa: R — [0,1], is a fuzzy number iff

(a) A is normal, i.e. there exists an element zo such that pa(ze) =1;

(b) A is fuzzy convez, t.e. pa(Azy + (1 — A)zz) > paler) A palza),
Vei,az € R, VA€o, 1]

(c) wa is upper semicontinuous;

(d) suppA is bounded.

This definition is due to Dubois and Prade (see [13]). It is easily seen from
this definition that if A is a fuzzy number then its membership function has the

following general form:

0 dlaz < a;
ri(z) dlaa; <z <ay

palz)=4(1 dlaag <z <ag (4)
ru(T) dlaag <z <aq

0 dla z > ay4,
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where ai, aq, a3, a4 € R, a1 < az < as < aq, 7 : [a1,a2] = [0,1] is a nondecreas-
ing upper semicontinuous and r, : [aa,a4) — [0,1] — is a nonincreasing upper
semicontinuous function. Functions r; and r, are called sometimes the left and
the right arms (or sides) of the fuzzy number, respectively.

By analogy to classical arithmetic we can add, subtract, multiply and divide
fuzzy numbers (for more details we refer the reader to [13] or [35]). In a general
case all these operations become rather complicated, especially if the sides of
fuzzy numbers are not described by simple functions. Thus, only simple fuzzy
numbers - e.g. with linear or piecewise linear sides - are preferred in practice.
Such fuzzy numbers with simple membership functions have more natural in-
terpretation. Therefore the most often used fuzzy numbers are trapezoidal fuzzy
numbers, i.e. fuzzy numbers whose both sides are linear. Trapezoidal fuzzy num-
bers can be used for the representation of such expressions as, e.g., "more or
less between 6 and 77, "approximately between 12 and 14”, etc. Trapezoidal
fuzzy numbers with as = a3 are called triangular fuzzy numbers and are often
used for modeling such expressions as, e.g., "about 5”7, "more or less 8”, etc.
Triangular fuzzy numbers with only one side may be useful for the description
of opinions like " just before 50” (agz = ag = a4) or "just after 30” (a; = as = a3).
If a; = a2 and az = a4 then we get, so called, rectangular fuzzy numbers which
may represent such expressions as, e.g., "between 20 and 25”. It is easy to notice
that rectangular fuzzy numbers are equivalent to well known interval numbers.
In a special case of a; = aa = a3 = a4 = a we get a crisp (non-fuzzy) number,
i.e. a number which is no longer vague but represents precise value and can be
identified with the proper real number a.

An useful tool for dealing with fuzzy numbers is the concept of a-—-cut or
a—level set . The a—cut of a fuzzy number A is a nonfuzzy set defined as

Ao ={z € R:pa(x) > a}. ()

A family {4, : @ € [0,1]} is a set representation of the fuzzy number A. Basing
on the resolution identity introduced by L.Zadeh, we get:

talz) = sup{ala, (z) : o € 0,1}, (6)

where T4, (z) denotes the characteristic function of A,. Irom Definition 1 we
can see that every a—cut of a fuzzy number is a closed interval. Hence we have
Aq = [AL, AY], where

AL =inf{x € R: pa(z) > o}, 7
Al =sup{z € R: pa(z) > o}

Hence, by (4) we get AL =r71, AV =71,
In the analysis of fuzzy numbers and their functions we use the eztension
principle introduced by Zadeh [61}, and described by Dubois and Prade [15] as

follows:

Definition 2. Let X be a Cartesian product of universes, X = X} x Xa x ... x
Xoyand Ay, ..., A ber fuzzy setsin Xy, ..., X,, respectively. Let f be a mapping
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Jrom X = X x X3 x ... x X, to a universe Y such that y = f(z1,z2,...,%,).
The extension principle allows us {o induce from r fuzzy sets A; a fuzzy set B
on Y through f such that

pply) = sup min (g, (%1), pa, (22), - pa, (2] (8)

1y rt y=f (21,0 30)

us(y) =0, fHy) =0 (9)

Using the extension principle we can calculate membership functions of fuzzy
sebts that are defined as functions of other fuzzy sets.

Iu their pioneering work Tanaka et al. [51] used the concept of fuzzy numbers
for the description of imprecise probabilities in the context of fault tree analysis.
They assumed that probabilities of events of a fault tree are described by the
mentioned above trapezoidal fuzzy numbers. Iu such a case it is easy to show that
the fuzzy probability of the failure (or fuzzy reliability) of a whole system is also a
fuzzy number, but its membership function does not preserve trapezoidal shape.
However, we can use tlie concept of a-cuts for relatively simple computations.

Let us assume that the reliabilities of systems components are described by
fuzzy numbers defined by tlieir a-cuts: (q;’,L, qf”U), i =1,...,,n. Then, the a-cut
(g5 1, 45.y) for a coherent system can be calculated from (3) as follows:

gs,L = h(‘]fu‘ﬁ,u “'vqg,L) (10)

gs,Uu = h(QiI,Uvanx"'vqg,U) (11)

This relatively simple way of calculations can be used only in the case of a
known function h(x,...,*). Formal description of the geueral procedure for the
calculation of fuzzy system reliability can be also found in Wu [58]. However,
when the calculations have to be made using directly the information from a
fault tree, the methodology proposed in [{51] has some drawbacks as it cannot be
used for the fault trees with repeated events, and fault trees that contain events
and their complementary events at the same tree. These drawbacks have been
resolved by Misra and Soman who in [34] proposed a more general methodology
for dealing with multistate systems and vectors of dependent fuzzy probabilities.
The general methodology described above is valid for any fuzzy description
of fuzzy reliabilities §;,§Ga, ..., §,. However, for practical calculations it is rec-
ommended to select several values of «, and to calculate a-cuts of the fuzzy
reliability of the system §, for these values of a. Then, the membership function
of §; may be approximated by a piecewise linear function that counects the ends
of consecutive a-cuts. More precise results can be obtained if for the description
of imprecise probabilities we use the so called L-R fuzzy munbers introduced by
Dubois and Prade [14]. For this case Singer [49] has presented recursive formulae
that caun be used for the calculation of the fuzzy reliability of a system.
Interesting application of fuzzy sets in the analysis of fault trees can be found
in the paper by Lin and Wang [31], who considered the problem of elicitating
fuzzy probabilities of events using imprecise linguistic assessients for human
performance and vague events. Fuzzy measures of importance of the elemnents
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of a fault tree described by fuzzy probabilities were considered in the paper by
Suresh et al. [50]. Practical example of the fault tree analysis with fuzzy failure
rates can be found in the paper by Huang et al. [24].

The general approach presented in this section can be used for solving any
well defined problem of reliability analysis with imprecisely defined parmeters.
For example, Cheng [9] used fuzzy sets to describe reliability of repairable sys-
tems using a fuzzy GERT methodology. In all such cases the extension principle
and the concept of a-cuts is quite sufficient for making necessary computations.
However, if in these computations non-monotonic functions are involved, then it
may be necessary to solve non-linear programming problems in order to arrive
at required solutions.

3 Possibilistic approach to the evaluation of reliability

In the previous section we have described the results of research in the area of
system reliability for the case of imprecise (linguistic) description of probabilities
of failures (or probabilities of survival, i.e. reliabilities). In all these papers life
times were assumed to have probabilistic nature, but their distribution were
imprecisely defined, resulting with imprecise probabilities of failures. Imprecise
values in these models were described by fuzzy sets, and this description was
often interpreted in terms of the theory of possibility introduced by L.A.Zadeh
[62].

Zadeh [62] introduced the notion of possibility for the description of vaguely
defined events whose interpretation in terms of probabilities is at least question-
able. He introduced the notion of the possibilily diséribution, and showed that
it can be formally described by fuzzy sets. This theory was further developed
by many authors in the framework of the theory of fuzzy sets, and in the late
1980s found its applications in the area of reliability. The distinctive feature of
the theory of possibility is not the way it describes vaguely defined concepts, but
how it is used for merging uncertainties of possibilistic nature. In this respect it
is basically different from the theory of probability, as it is not additive, and is
governed by fuzzy logic.

For the readers who are not familiar with fuzzy logic we recall now two its
most important features. Suppose we have two fuzzy sets A and B described by
the membership functions 14 (x) and sg(x), respectively. Then, the membership
function of the logical sum (union) of A and B is given by

ta| (7)) = maz(na(@), up(z)), (12)

and the the membership function of the logical product (intersection) of A and
B is given by
ra s(@) = min(ua(z), up(z)). (13)

Thus, possibility measures are rather 'maxitive’ in contrast to the ’additivity’ of
their probabilistic counterparts.
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Possibilistic approach to reliability was iutroduced in works of Cai and his
collaborators (for references see [4], [6], [5]) and Onisawa( see [41}, [42]). Cai in his
papers has given practical examples which let him conclude that in many cases
life times have no probabilistic meaning but should be described by possibilistic
(fuzzy) variables. The rationale behind that reasoning was the following: in many
cages failures such as, e.g. software failures, cannot happen more than once. In
such cases, Cai claims, probabilistic approach with its interpretation in terms of
frequencies is not appropriate. Thus, times to such singular failures should be
rather described by possibility distributions than by probability distributions.
Introduction of possibilistic models of reliability from a purely mathematical
point of view can be found in [8] and [12].

The agreement to possibilistic assumptions has many far reaching conse-
quences for the analysis of system reliability. Let us deline the system (or its
component) life time X as a fuzzy variable [6]:

X =u:lUx =u:mx{u), ue R" =[0,+00), (14)

where mx (u) is the possibility distribution of X. In such a case possibilistic relia-
bility ("posbist’ reliability in Cai’s terminology) is defined as the possibility that
for given conditions the system performs its assigned functions, and is calculated
from the following formula [6}:

R(t) = a(X > 1) = supldx(u), (15)

where ¢ is a possibility measure.
Now, let us present two important theorems (formal definitions of some con-

cepts used in these theorems are given in [6]).

Theorem 1. (Cai et al. [6]) Suppose a series system has two components. Let
X1, X3 be the component lifetimes, respectively. Further we assume X, Xz are
both normed unrelated fuzzy variables, defined on (I, G, o), with continuous pos-
sthility distribution functions and induce strictly conver fuzzy sets, X| = u :
Ux,(u), X2 = u : Ux,(u). Let X be the system lifetime. Then there exists o
unique pair (ay,ay), a1,az € RY, such that the possibility distrbution function

of X, denoted by Ux (z), is given by

max(Ux, (u), Xz = u:Ux,(u)) fz <a; <ag
Ux(z) = ¢ Ux, (u) fag <z<ag (16)
min(lx, (w), Xz = w:Ux,(v)) ifar <az <w

Theorem 2. (Cai et al. [6]) Suppose a parallel system has two components.
Let Xp, X2 be the component lifetimes, respectively. Further we assume Xy, X
are both normed unrelated fuzzy variables, defined on (I',G, o), with continuous
possibility distribution functions and induce strictly convex fuzzy sets, X1 = w :
Ux, (u), Xy = u : Ux,(u). Let X be the system lifetime. Then there exists a
unigue pair (a1, az), ai,az € R, such that the possibility distrbution function
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of X, denoted by Ux (), is given by

min(Ux, (u), Xo = u:Ux,(u)) fz <oy <ay
Ux (z) = § Ux,(u) ifay <z <ay (17
Hlax(qu(u), XZ =u: sz(u)) ifal S as < T

Similar results have been also given in [6] for other reliability systems like a
k-out-of-n system, and for the most general case of a binary coherent system.

The cosequences of both theorems (and their extensions) are somewhat strange.
Cali et al. [6] already noticed: ”the reliability of a paralle] system with an arbi-
trary number of unrelated components coincides with the reliability of a series
system with another arbitrary number of unrelated components, provided that
all of the components contained in the systems are identical”. This feature, in
our opinion, indicates that the notion of the possibilistic reliability of systems
should be used very cautiously.

In the possibilistic model described above it has been assumed that reliabil-
ity states of the system and its components are binary. However, in many real
cases, especially for large and complex systems, this assumption is not true. In
the classical (probabilistic) theory of reliability the notion of 'multistate systems’
is used in order to cope with this problem. Unfortunately, the existing reliabil-
ity data is usually not sufficient for the proper identification of such systems.
Moreover, for multistate components and systems it is usually very difficult to
define precisely the failures, especially in the case of failures made by human
(operator) errors. Therefore, some researchers proposed to use fuzzy sets for the
description of vaguely defined failures.

The importance of the problem of vaguely defined failures was recognized
for the first time in the papers by Nowakowski [39], Nishiwaki {38], Nishiwaki
and Onisawa [44], and Onisawa [40], [42] devoted to the problem of reliability
analysis of man-machine systems. Interesting approach to that problem, both
from probabilistic and fuzzy point of view, was also proposed by Rotshtein [48].
Similar problems have been also noticed in the analysis of fault trees constructed
for complex systems. Fault trees, or more general event trees, are used for the
description of the relationships betwwen physical states of a system and its
reliability states. In the classical case of binary systems this relationship is well
defined, and described using logical gates AND, OR, and NOT. However, in
many practical cases we do not have enough information to establish sure links
between particular pliysical states of a system and its particular failures.

Different approaches have been used to model imprecise relationships be-
tween physical and reliability states of a system. Pan and Yun [45] proposed to
use fuzzy gates with outputs described by triangular fuzzy numbers instead of
crisp values 0 or 1. Another generalization of fault tree gates was proposed by
Onisawa (see [42]) who considered parametric operations called Dombi t-norm
and Dombi t-conorm instead of AND and OR operators, respectively. Full appli-
cation of the theory of possiblity in the analysis of fault trees has been proposed
by Nahman [37] and Huang et al. [25] who used possibility measures for the
description of transition between states of a fault tree, and fuzzy logic for the
description of its gates.
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One of the most challenging problems of the reliability of complex systeimns is
the multistate nature of their behaviour. Structure function describing the be-
haviour of systems composed of multistate elements could be extremely difficult
to find and very often even impossible to be precisely identified. An attempt to
describe such complex situation with the usage of fuzzy sets has been proposed
by Montero et al. {36] aud Cutello et al. [11].

Possibilistic approach to reliability has been also used for the analysis of re-
pairable systems. Utkin and Gurov [52], (53] presented a mathematical model
for the description of exploitation processes of systems using functional equa-
tions that describe transition processes between different states of a systemn. In
a probability context these equatious describe a stochastic process of the ran-
domi behaviour of the system. However, the same equations can be used for
that description in the possibilistic context. The resulting formulae look very
awkwardly, but rather surprisingly they are easier to solve.

4 Statistical inference with imprecise reliability data

4.1 Fuzzy estimation of reliability characteristics

In the previous sections we have assumed that all probabilities, crisp or fuzzy,
that are 1ecessary for the computations of reliability are known. However, in
practice they have to be estimated [rom statistical data. One of the most im-
portant problem of reliability analysis is the estimation of the mean lifet ime
of the item under study (system or component). In technical applications this
parameter is also called mean time to failure (MTTF) and is often included
in a technical specification of a product. For example, producers are interested
whether this time is sufficiently large, as large MTTF allows them to extend a
warranty time. Classical estimators require precise data obtained from strictly
controlled reliability tests (for example, those performed by a producer at his
laboratory). I such a case a failure should be precisely defined, and all tested
items should be continuously monitored. However, in real situation tliese require-
ments might not be [ulfilled. In the extreme case, the reliability data come from
users whose reports are expressed in a vague way. The vagueness of the data has
many different sources: it might be caused by subjective and imprecise percep-
tion of failures by a user, by imprecise records of reliability data, by imprecise
records of the rate of usage, etc. The discussion concerning different sources of
vagueness of reliability data can be found in Grzegorzewski and Hryniewicz [18].
Therefore we require different tools appropriate for modeling vague data aud
suitable statistical methodology to handle these data as well.

To cope with the formal description of data that are both random and im-
precise (fuzzy) it is convenient to use the notion of a fuzzy random variable. It
was introduced by Kwakernaak [30]. There exist also definitions of fuzzy random
variables that have been proposed by other authors, for example by Kruse [27]
or by Puri and Ralescu [47]. The definition, we present below, was proposed in
[19], and is similar to those of Kwakernaak and Kruse (see {17] ). Suppose that a
random experiment is described as usual by a probability space (§2, 4, P), where
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12 is a set of all possible outcomes of the experiment, A is a o—algebra of subsets
of £2 (the set of all possible events) and P is a probability measure

Definition 3. 4 mapping X : 2 — FN is called a fuzzy random variable if it
satisfies the following properties:

(a) {Xa(w):a€0,1]} is a set representation of X(w) for allw € 2,
(b)  for each a € [0,1) both X2 = X2 (w) = inf Xp(w) and XY = XY (w) =
= sup X (w), are usual real-valued random variables on (2, A, P).

Thus a fuzzy random variable X is considered as a perception of an unknown
usual random variable V : £2 — R, called an original of X. Let V denote a set
of all possible originals of X. If only vague data are available, it is of course
impossible to show which of the possible originals is the true one. Therefore, we
can define a fuzzy set on V, with a membership function ¢ : V — [0, 1] given as
follows:

AV) = inf{px@w)(V(w)) : w € 2}, (18)

which corresponds to the grade of acceptability that a fixed random variable V
is the original of the fuzzy random variable in question (see Kruse and Meyer

[28]).
Similarly n—~dimensional fuzzy random sample Xy,. .., X,, may be considered
as a fuzzy perception of the usual random sample V4,...,V, (where Vi,...,V,

are independent and identically distributed crisp random variables). A set V™ of
all possible originals of that fuzzy random sample is, in fact, a fuzzy set with a
membership function

(Vi,...,Vu) = i:nlnj?ninf{pxi(w)(Vi(w)) twe N} (19)

Random variables are completely characterized by their probability distribu-
tions. However, in many practical cases we are interested only in some parameters
of a probability distribution, such as expected value or standard deviation. Let
# = A(V) be a parameter of a random variable V. This parameter may be viewed
as an image of a mapping I' : P — R, which assigns each random vartable V
having distribution Py € P the considered parameter 8, where P = {Fp : § € O}
is a family of distributions. However, in case of fuzzy random variables we can-
not observe parameter 8 but only its vague image. Using this reasoning together
with Zadel's extension principle Kruse and Meyer [28] introduced the notion
of a fuzzy parameter of a fuzzy random variable which may be considered as a
fuzzy perception of the unknown parameter 8. It is defined as a fuzzy set with
the following membership function:

pay() =sup {(V): VeV, 8(V)=1}, te€R, (20)













































