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Abstract. In the paper we present the most important, from theoretical 
and practical points of view, applications of fuzzy sets in the evaluation 
of reliability. We discuss fuzzy probabilistic reliability models that can 
be used for the unified analysis of probabilistic randomness and fuzzy 
vagueness which are both present in reliability data. We also present 
an alternative possibilistic approach that is based on the theory of pos­
sibility proposed by L.A.Zadeh. Large part of the paper is devoted to 
the problem of the statistical analysis of imprecisely reported (fuzzy) 
reliability data. 

1 Introduction 

Theory of reliability is more than fifty years old. lts basie concepts were estab­
lished in the 1950s as useful tools for the analysis of complex technical systems. 
The rapid development of the theory of reliability was closely related to the im­
portance of its main field of applications - mili tary and space. For this reason the 
origins of the research in the area of reliability are stili not well known. Ralph 
A.Evans, one of the founders of the IEEE Transactions on Reliability, wrote in 
an Editorial in this journal that all important theoretical results published in 
the 1960s and 1970s had been already obtained even in the 1950s, and for many 
years remained classified. The authors of the most important publications on 
reliability from those years belonged to the group of the most important scien­
tists working in theory of probability, mathematical statistics, electronics and 
computer sciences. 

When we look at the theory of reliability as the application of a basie math­
ematical theory, we could see without auy doubt that it should be reagarded as 
one of the most important applications of the theory of probability. All impor­
tant events which are of interest for the theory and practice of reliability have 
undoubtedly stochastic character, and all processes that lead to failures can be 
described by stochastic processes. Therefore, the theory of probability has been 
for many years used as the only tool for description, prediction and optimiza­
tion of reliability. As the consequence of applying that approach, mathematical 
statistics has been used for the analysis reliability data. 

In its initial phase of development, statistical methods used in the area of 
reliability were based on a classical approach to statistics. Classical concepts of 
statistics, such as estimators, confidence intervals and tests of hypotheses, that 



have their interpretations in terms of frequencies, were widely used in the analysis . 
of reliability data. However, together with a continuous improvement of relia­
bility of components and systems these classical methods became not sufficient 
for practical applications. Therefore, new statistical methods that were based on 
the Bayesian paradigm found their applications both in theory and practice of 
reliability. It is worthy noting that in that time the Bayesian approach to statis­
tics was heavily attacked by the majority of the statistical community. However, 
practical successes of this approach have resulted nowdays with common accep­
tance of the Bayesian methodology in the area of reliability. 

During the last fifteen years we have wittnessed a similar situation in the 
case of the application of the theory of fuzzy sets in the area of reliability. 
First, in the early 1980s the quality of components used mainly in the aerospace 
industry became so high that the probabilities of their failures bad the order 
of magnitude close to 10-7 and less. Classical statistical methods of estimation, 
based on the observation of a random sample, are not applicable in that case. 
On the other hand, the methods based on the Bayesian approach are usually too 
complicated to be used in practice. As the result of these difficulties researchers 
and practitioners working in the area of reliability were able to provide only 
imprecisely defined values of probabilities of failures. In order to describe those 
imprecise values of probabilities they proposed to use the theory of fuzzy sets 
introduced by Lotfi A. Zadeh in the 1960s. Moreover, this new methodology 
appeared to be very usefull in all cases where the information related to reliability 
were based on imprecise expert opinions, imprecisely reported reliability data, 
etc. Another impulse for the development of the fuzzy reliability methodology 
was given in the investigation of complex man- machine systems, and complex 
multistate systems with imprecise definitions of failures. New methods for the 
reliability analysis that are based on the theory of fuzzy sets (and the related 
theory of possibility) and its mixture with the theory of probability have been 
proposed during last fifteen years, and are now ready for practical applications. 
An excellent overview of the problems mentioned above can be found in the 
paper by Cai [5]. 

The number of papers devoted to the applications of fuzzy sets in the analy­
sis of reliability has become quite large, and it is rather impossible to present 
a comprehensive review of all of them in one paper. The readers who are inter­
ested in a broad introduction to the problem are encouraged to read collections 
of papers on that topie edited by Onisawa and Kacprzyk [43] and Misra [33]. 
Therefore, we have decided to give a rather generał overview of the main results 
in this area. In the second section of the paper we consider problems related 
to the reliability analysis of systems with the usage of imprecise probabilities. 
In the third section of the paper we present the most important applications of 
the theory of possibility in the area of reliability. The fourth section is devoted 
to another very important from a practical point of view problem: statistical 
analysis of imprecise reliability data in both classical and Bayesian frameworks. 
Throughout the paper we present only main ideas and results that have been 
published in a few selected papers. The reader is encouraged, however, to find 



other related results that have been already published in the papers referenced 
by the papers that are listed in the bibliography to this paper. 

2 Evaluation of reliability in case of imprecise 
probabilities 

The methodology for the evaluation of reliability of systems characterized by 
binary states of its elements and binary states of the whole system was proposed 
in the early 1960s. Its detailed description can be found in fundamental books 
by Barlow and Proschan [l],[2]. We recall now only some basie notions of this 
theory. 

Let x = (x 1 , x2 , .•• , x,,) be a vector that describes the state of n elements of 
the system such that 

. _ { 1 if the element i is functioning 
x, - O if the ele1nent i is failed 1 i == I, ... , n, 

and r/J describes a binary state of the whole system, i.e. 

</i = { 1 if the system is functioning 
O if the system is failed 

We assume that the state of the whole system is completely determined by the 
states of its elements, i.e. </i= </!(x1, x2, ... , Xn)- Function rp(x1, x2, ... , Xn) is called 
the structure function of the system, or, simply, the structure. It is possible to 
show that every structure can be expressed by the following generał formula: 

rp(x) = L II x;; (1 - Xj )1-y; rp(y) (1) 
y j=l 

where the summmation is taken over all n-dimensional binary vectors y (0° = 1). 
Hence, every structure can be expressed as a polynomial of binary functions x; 

that describe elements of the system. 
Now, !et us introduce the following notation: 

(li, x) = (x1, ... Xi-1, 1, Xi+l, ... , Xn) 

(Oi,x) = (x1,••-Xi-1,0,xi+l,··•,xn) 
(*i,X)::;: (x1i ... Xi-1, *,Xi+l, ... 1 Xn) 

The ith element of the system is irrelevant if r/J(l;, x) = rp(Oi, x) for all (*i, x); oth­
erwise such element is relevant. The system is called coherent if (a) its structure 
functon rp is increasing in every component, and (b) all its elements are relevant. 
For the coherent systems there exist many algorithms for efficient calculations 
of their reliability defined as the probability that the system is functioning. 

One of the fundamental concepts of reliability of systems is the notion of a 
minimal path. A minimal path is a subset of system's elements such that if all 
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these elements work, the whole system works. A dual concept to the minimal 
path is that of a minimal cut . A minimal set of system's elements is called a 
minimal cut if the failures of all its elements cause the failure of the w hole system. 
Suppose that the considered system has n c minimal cuts, and np minimal paths. 
Denote by C„ s E {l, .. . , nc} a minimal cut of a system, and by Pr, r E {l, ... , np} 
its minimal path. According to the fundamental result of Birnbaum et al. [3] the 
structure of any binary system can be decomposed using either minimal paths 
or minimal cuts, and the following formula holds: 

</J(x1,x2, •• ·,xn)= V /\ x;= I\ Vx; (2) 

Therefore, the knowledge of all minimal cuts and/or minimal paths is sufficient 
for the full reliability description of a system. 

Let us now recall basie results that are used in the calculation of reliability of a 
system. The reliability state of a system X, and of each of its elements(X;, i= 
1, .. . , n) is a random variable distributed according to a two-point probability 
distribution. Let ą;, i= 1, ... , n be the reliability of the ith element of a system, 
and ą, the reliability of the whole system. Then, the following generał expression 
holds: 

(3) 

When the system is coherent and failures of its elements are statistically indepen­
dent, then h(ą1 , ą2, ... , qn), technically, is constructed by replacing x1, x2, ... , Xn 
in (2) with ą1 , ą2 , . . • , Qni next by changing V to a product operator on [O, l], and 
/\ to a probabilistic sum on [O, l], and finally replacing the powers like ą;;', m 2: 2 
(if exist) with respective values of Qk • Thus, the knowledge of </J(x) and the val­
ues of ą1 , ą2 , . . . , qn, in case of coherent binary structures and independent failures 
of elements, is fully sufficient for the calculation of the reliability of the whole 
system. 

Reliability analysis of complex systems can be divided into two phases: deter­
mination of the structure function and evaluation of the reliabilities of system's 
elements. The sets of minimal cuts and minimal paths can be obtained using dif­
ferent methods. However, the most efficient, and thus the most frequently used, 
method is the fault tree analysis. This method was introduced more than forty 
years ago, and since that time has been successfuly used in many areas, such as 
aerospace industry, nuclear power plants, etc. The method consists in defining a 
structure of physical events related to failures of system's elements. There exist 
methods for the extraction of minimal paths and minimal cuts from the infor­
mation contained in a fault tree when its events are precisely defined. However, 
it is much more difficult to evaluate probabilities of specific failures, and thus 
the reliabilities of systems components. In a classical approach to a fault tree 
analysis it is assummed that all these probabilities are precisely known. However, 
in many practical situation, especially in case of reliable components, the knowl­
edge of probabilities of failures (or reliabilities) is hardly precise. Even if we use 
statistical data for the evaluation of those probabilities, we cannot be sure that 
these data have been obtained in exactly same conditions. Usually, we use data 



from reliability tests of similar objects conducted in similar conditions, but very 
often our data come from tests conducted in completely different conditions, e.g. 
from accelerated life tests. In all these cases there is a need to recalculate the 
results of reliability tests to the case of the considered system. Such recalculation 
very often needs opinions of experts, and these opinions are usually expressed in 
a natura! language using vague and imprecise expressions. The forma! descrip­
tion of this lack of precision is one of the most important practical problems of 
reliability analysis. Some researchers claim that the language of the probability 
theory is the only one that can be used for the description of uncertainty. How­
ever, there exist multitude counterexamples that indicate a necessity to apply 
other approaches. Moreover, the application of the theory of probability for the 
description of all imprecise information in the case of the reliability analysis of 
complex systems will make this analysis impossible to do due to an extremely 
high complexity of necessary computations. Therefore, the theory of fuzzy sets 
introduced by Lotfi A. Zadeh seems to be much better suited for this purpose. 

In this paper we assume that the theory of fuzzy sets gives us tools appropri­
ate for modeling and handling vague data such as imprecisely defined probabili­
ties of failures. In the theory of fuzzy sets all objects of interest ( events, numbers, 
etc.) have associated values of the so called membership Junction µ. The value of 
the membership function can be interpreted in different ways depending on the 
context. In the context of the evaluation of imprecise probabilities the value of 
the membership function µ(p) can be inerpreted a a possibility that the unknown 
probability adopts the value of p. 

Let us now recall some basie notions of the theory of fuzzy sets that will be 
used in this paper. We start with the definition of a fuzzy number. 

Definition 1. The fuzzy subset A of the real line R, with the membership Junc­
tion µA : R--; [O, 1], is a fuzzy number iff 

(a) A is norma/, i.e. there exists an element Xo such that µA(xo) = 1; 

Vx1,x2 ER, V>. E [O, l]; 

(c) µA is upper semicontinuous; 

(d) suppA is bounded. 

This definition is due to Dubois and Prade (see [13]). It is easily seen from 
this definition that if A is a fuzzy number then its membership function has the 
following generał form: 

{

o 
r1(x) 

µA(x) = 1 
r .. (x) 
o 

dla x < a1 

dla a1 ś x < a2 

dla a2 ś x ś a3 
dla a3 < x ś a4 
dla x > a4, 

( 4) 
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where a1, a2, a3, a4 En, a1 ::; a2 ::; a3 ::; a4, Tt : [a1, a2]--+ [O, lj is a nondecreas­
ing upper semicontinuous and Tu: [a3,a4 ]--+ [O, 1] - is a nonincreasing upper 
semicontinuous function. Functions T/ and Tu are callecl sometimes the left and 
the right arms (or sides) of the fuzzy number, respectively. 

By analogy to classical arithmetic we can acid, subtract, multiply and divide 
fuzzy numbers (for mare details we refer the reader to [13] or [35]). In a generał 
case all these operations become rather complicated, especially if the sicles of 
fuzzy numbers are not described by simple functions. Thus, only simple fuzzy 
numbers - e.g. with linear or piecewise linear sicles - are preferred in practice. 
Such fuzzy numbers with simple membership functions have mare natura! in­
terpretation. Therefore the most often usecl fuzzy numbers are trapezoidal fuzzy 
numbeTS, i.e. fuzzy numbers whose both sicles are linear. Trapezoidal fuzzy num­
bers can be used for the representation of such expressions as, e.g., "more or 
less between 6 and 7", "approximately between 12 and 14", etc. Trapezoidal 
fuzzy numbers with a2 = a3 are called triangulaT fuzzy numbeTs and are often 
used for modeling such expressions as, e.g., "about 5", "mare or less 8", etc. 
Triangular fuzzy numbers with only one side may be useful for the description 
of opinions like "just before 50" (a2 = a3 = a4) or "just after 30" (a1 = a2 = a3). 
If a1 = a2 and a3 = a4 then we get, so called, TectangulaT fuzzy numbeTs which 
may represent such expressions as, e.g., "between 20 and 25". It is easy to notice 
that rectangular fuzzy numbers are equivalent to well known interval numbeTs. 
In a special case of a1 = a2 = a3 = a4 = a we get a crisp (non-fuzzy) number, 
i.e. a number which is no longer vague but represents precise value and can be 
identified with the proper real number a. 

An useful tool for dealing with fuzzy numbers is the concept of a-cut or 
a-level set . The a-cut of a fuzzy number A is a nonfuzzy set clefined as 

Aa= {x ER: µA(x) 2: a} . (5) 

A family {Aa: a E [O, 1]} is a set representation of the fuzzy number A. Basing 
on the resolution identity introduced by L.Zadeh, we get: 

(6) 

where lA 0 (x) denotes the characteristic function of Aa. From Definition 1 we 
can see that every a-cut of a fuzzy number is a closecl interval. Hence we have 
Aa = [A~, A;'], where 

At= inf{x En: µA(x) 2: a}, 
A~= sup{x En: µA(x) 2: a}. 

Hence, by ( 4) we get At = T1- 1, A;' = r;;- 1 . 

(7) 

In the analysis of fuzzy numbers and their functions we use the extension 
principle introcluced by Zadeh [61], and described by Dubois and Prade [15] as 
follows: 

Definition 2. Let X be a Cartesian product of universes, X = X1 x X2 x ... x 
Xr, and A 1 , ... , A,. ber fuzzy sets in X 1 , .•• , Xr, Tespectively. Let f be a mapping 



from X = X 1 x X2 x ... x X, to a universe Y such that y = J(x1, X2, ... , x,.). 
The extension principle allows us to induce from r fuzzy sets A; a fuzzy set B 
on Y through f such that 

µB(Y) = sup min[µA 1 (x1),µA 2 (x2), ... ,µAr(x,.)] (8) 
Xt, .. ,xr: y=f(x1, .. ,xr) 

µB(Y) = 0, r 1(y) = 0 (9) 

Using the extension principle we can calculate membership functions of fuzzy 
sets that are defined as functions of other fuzzy sets. 

In their pioneering work Tanaka et al. [51] used the concept of fuzzy numbers 
for the description of imprecise probabilities in the context of fault tree analysis. 
They assumed that probabilities of events of a fault tree are described by the 
mentioned above trapezoidal fuzzy numbers. In sucha case it is easy to show that 
the fuzzy probability of the failure ( or fuzzy reliability) of a w hole system is also a 
fuzzy number, but its membership function does not preserve trapezoidal shape. 
However, we can use the concept of a-cuts for relatively simple computations. 

Let us assume that the reliabilities of systems components are described by 
fuzzy numbers defined by their a-cuts: ( ąf.L, ąf.u), i = 1, ... , n. Then, the a-cut 
(q~L• q~u) for a coherent system can be calculated from (3) as follows: 

ą,,u = h(ą1,u,ą{u, ... ,q~_u) 

(10) 

(11) 

This relatively simple way of calculations can be used only in the case of a 
known function h(*, ... ,*). Forma! description of the generał procedure for the 
calculation of fuzzy system reliability can be also found in Wu [58] . However, 
when the calculations have to be made using directly the information from a 
fault tree, the methodology proposed in [51] has some drawbacks as it cannot be 
used for the fault trees with repeated events, and fault trees that contain events 
and their complementary events at the same tree. These drawbacks have been 
resolved by Misra and Soman who in [34] proposed a more generał methodology 
for dealing with multistate systems and vectors of dependent fuzzy probabilities. 

The generał methodology described above is valid for any fuzzy description 
of fuzzy reliabilities ih, ą2 , .. . , ij,,. However, for practical calculations it is rec­
ommended to select severa! values of a, and to calculate a-cuts of the fuzzy 
reliability of the system ij, for these values of a. Then, the membership function 
of ij, may be approximated by a piecewise linear function that connects the ends 
of consecutive a-cuts. More precise results can be obtained if for the description 
of imprecise probabilities we use the so called L-R fuzzy numbers introduced by 
Dubois and Prade [14]. For this case Singer [49] has presented recursive formulae 
that can be used for the calculation of the fuzzy reliability of a system. 

lnteresting application of fuzzy sets in the analysis of fault trees can be found 
in the paper by Lin and Wang [31], who considered the problem of elicitating 
fuzzy probabilities of events using imprecise linguistic assessments for human 
performance and vague events. Fuzzy measures of importance of the elements 



- 10-

of a fault tree described by fuzzy probabilities were considered in the paper by 
Suresh et al. [50]. Practical example of the fault tree analysis with fuzzy failure 
rates can be found in the paper by Huang et al. [24]. 

The generał approach presented in this section can be used for solving any 
well defined problem of reliability analysis with imprecisely defined parmeters. 
For example, Cheng [9] used fuzzy sets to describe reliability of repairable sys­
tems using a fuzzy GERT methodology. In all such cases the extension principle 
and the concept of a-cuts is quite sufficient for making necessary computations. 
However, if in these computations non-monotonie functions are involved, then it 
may be necessary to solve non-linear programming problems in order to arrive 
at required solutions. 

3 Possibilistic approach to the evaluation of reliability 

In the previous section we have described the results of research in the area of 
system reliability for the case of imprecise (linguistic) description of probabilities 
of failures (or probabilities of survival, i.e. reliabilities). In all these papers life 
times were assumed to have probabilistic nature, but their distribution were 
imprecisely defined, resulting with imprecise probabilities of failures. Imprecise 
values in these models were described by fuzzy sets, and this description was 
often interpreted in terms of the theory of possibility introduced by L.A.Zadeh 
[62]. 

Zadeh [62] introduced the notion of possibility for the description of vaguely 
defined events whose interpretation in terms of probabilities is at least question­
able. He introduced the notion of the possibility distribution, and showed that 
it can be formally described by fuzzy sets. This theory was further developed 
by many authors in the framework of the theory of fuzzy sets, and in the late 
1980s found its applications in the area of reliability. The distinctive feature of 
the theory of possibility is not the way it describes vaguely defined concepts, but 
how it is used for merging uncertainties of possibilistic nature. In this respect it 
is basically different from the theory of probability, as it is not additive, and is 
governed by fuzzy logic. 

For the readers who are not familiar with fuzzy Iogic we recall now two its 
most important features. Suppose we have two fuzzy sets .ii and iJ described by 
the membership functions tLA(x) and µs(x), respectively. Then, the membership 
function of the logical sum (union) of .ii and iJ is given by 

(12) 

and the the membership function of the logical product (intersection) of .ii and 
iJ is given by 

(13) 

Thus, possibility measures are rather 'maxitive' in contrast to the 'additivity' of 
their probabilistic counterparts. 
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Possibilistic approach to reliability was introduced in works of Cai and his 
collaborators (for references see [4], [6], [5]) and Onisawa( see [41], [42]). Cai in his 
papers has given practical examples which !et him conclude that in many cases 
life times have no probabilistic meaning but should be described by possibilistic 
(fuzzy) variables. The rationale behind that reasoning was the following: in many 
cases failures such as, e.g. software failures, cannot happen more than once. In 
such cases, Cai claims, probabilistic approach with its interpretation in terms of 
frequencies is not appropriate. Thus, times to such singular failures should be 
rather described by possibility distributions than by probability distributions. 
Introduction of possibilistic models of reliability from a purely mathematical 
point of view can be found in [8] and [12]. 

The agreement to possibilistic assumptions has many far reaching conse­
quences for the analysis of system reliability. Let us define the system ( or its 
component) life time X as a fuzzy variable [6]: 

X= u: Ux =u: 7rx(u), u En+= [O, +oo), (14) 

where 7rx(u) is the possibility distribution of X. In sucha case possibilistic relia­
bility ('posbist' reliability in Cai's terminology) is defined as the possibility that 
for given conditions the system performs its assigned functions, and is calculated 
from the following formula [6] : 

R(t) = O'(X > t) = supUx(u), (15) 
u>t 

where O' is a possibility measure. 
Now, Jet us present two important theorems (forma! definitions of some con­

cepts used in these theorems are given in [6]). 

Theorem 1. (Cai et al. [6]) Suppose a series system has two components. Let 
X1 , X2 be the component lifetimes, respectively. Further we assume Xi, X2 are 
both normed unrelated fuzzy variables, defined on (I', 9, O'), with continuous pos­
sibility distribution functions and induce strictly convex fuzzy sets, X i = u : 
Ux1 (u),X2 =u: Ux,(u). Let X be the system lifetime. Then there exists a 
unique pair (a1 , a 2 ), a 1 , a2 E n+, such that the possibility distrbution Junction 
of X, denoted by Ux(x), is given by 

{ 
max(Ux1 (u), X2 =u: Ux, (u)) 

Ux(x) = Ux 1 (u) 
min(Ux1 (u), X2 =u: Ux,(u)) 

if x :'::'. a1 ::::'. a2 

if a1 < x :'::'. a2 

if a1 ::::'. a2 < x 
(16) 

Theorem 2. (Cai et al. [6]) Suppose a parallel system has two components. 
Let X 1 , X2 be the component lifetimes, respectively. Further we assume Xi, X2 

are both normed unrelated fuzzy variables, defined on (I', 9, O'), with continuous 
possibility distribution functions and induce strictly convex fuzzy sets, Xi = u : 
Ux,(u),X2 = u : Ux2 (u). Let X be the system lifetime. Then there exists a 
unique pair (a1 ,a2 ), a 1 ,a2 En+, such that the possibility distrbution Junction 
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of X, denoted by Ux(x), is given by 

{ 
min(Ux1 (u),X2 =u: Ux,(u)) ifx :S a1 :S a2 

Ux(x) = Ux,(u) if a1 < x :S a2 
max(Ux 1 (u),X2 = u :Ux 2 (u)) ifa1 :S a2 < x 

(17) 

Similar results have been also given in [6] for other reliability systems like a 
k-out-of-n system, and for the most generał case of a binary coherent system. 

The cosequences ofboth theorems (and their extensions) are somewhat strange. 
Cai et al. [6] already noticed: "the reliability of a parallel system with an arbi­
trary number of unrelated components coincides with the reliability of a series 
system with another arbitrary number of unrelated components, provided that 
all of the components contained in the systems are identical" . This feature, in 
our opinion, indicates that the notion of the possibilistic reliability of systems 
should be used very cautiously. 

In the possibilistic model described above it has been assumed that reliabil­
ity states of the system and its components are binary. However, in many real 
cases, especially for large and complex systems, this assumption is not true. In 
the classical (probabilistic) theory ofreliability the notion of 'multistate systems' 
is used in order to cope with this problem. Unfortunately, the existing reliabil­
ity data is usually not sufficient for the proper identification of such systems. 
Moreover, for multistate components and systems it is usually very difficult to 
define precisely the failures, especially in the case of failures made by human 
( operator) errors. Therefore, some researchers proposed to use fuzzy sets for the 
description of vaguely defined failures. 

The importance of the problem of vaguely defined failures was recognized 
for the first time in the papers by Nowakowski [39], Nishiwaki [38], Nishiwaki 
and Onisawa [44), and Onisawa [40), [42] devoted to the problem of reliability 
analysis of man-machine systems. Interesting approach to that problem, both 
from probabilistic and fuzzy point of view, was also proposed by Rotshtein [48]. 
Similar problems have been also noticed in the analysis of fault trees constructed 
for complex systems. Fault trees, or more generał event trees, are used for the 
description of the relationships betwwen physical states of a system and its 
reliability states. In the classical case of binary systems this relationship is well 
defined, and described using logical gates AND, OR, and NOT. However, in 
many practical cases we do not have enough information to establish sure links 
between particular physical states of a system and its particular failures. 

Different approaches have been used to model imprecise relationships be­
tween physical and reliability states of a system. Pan and Yun [45] proposed to 
use fuzzy gates with outputs described by triangular fuzzy numbers instead of 
crisp values O or 1. Another generalization of fault tree gates was proposed by 
Onisawa (see [42]) who considered parametric operations called Dombi t-norm 
and Dombi t-conorm instead of AND and OR operators, respectively. Full appli­
cation of the theory of possiblity in the analysis of fault trees has been proposed 
by Nahman [37] and Huang et al. [25] who used possibility measures for the 
description of transition between states of a fault tree, and fuzzy logic for the 
description of its gates. 
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One of the most challenging problems of the reliability of complex systems is 
the multistate nature of their behaviour. Structure function describing the be­
haviour of systems composed of multistate elements could be extremely difficult 
to find and very often even impossible to be precisely identified. An attempt to 
describe such complex situation with the usage of fuzzy sets has been proposed 
by Montera et al. [36] and Cutello et al. [ll] . 

Possibilistic approach to reliability has been also used for the analysis of re­
pairable systems. Utkin and Gurov [52], [53] presented a mathematical model 
for the description of exploitation processes of systems using functional equa­
tions that describe transition processes between different states of a system. In 
a probability context these equations describe a stochastic process of the ran­
dom behaviour of the system. However, the same equations can be used for 
that description in the possibilistic context. The resulting formulae look very 
awkwardly, but rather surprisingly they are easier to solve. 

4 Statistical inference with imprecise reliability data 

4.1 Fuzzy estimation of reliability characteristics 

In the previous sections we have assumed that all probabilities, crisp or fuzzy, 
that are necessary for the computations of reliability are known. However, in 
practice they have to be estimated from statistical data. One of the most im­
portant problem of reliability analysis is the estimation of the mean li/et ime 
of the item under study (system or component). In technical applications this 
parameter is also called mean time to failure (MTTF) and is often included 
in a technical specification of a product. For example, producers are interested 
whether this time is sufficiently large, as large MTTF allows them to extend a 
warranty time. Classical estimators require precise data obtained from strictly 
contro Ued reliability tests ( for example, those performed by a producer at his 
laboratory). In such a case a failure should be precisely defined, and all tested 
items should be continuously monitored. However, in real situation these require­
ments might not be fulfilled. In the extreme case, the reliability data come from 
users whose reports are expressed in a vague way. The vagueness of the data has 
many different sources: it might be caused by subjective and imprecise percep­
tion of failures by a user, by imprecise records of reliability data, by imprecise 
records of the rate of usage, etc. The discussion concerning different sources of 
vagueness of reliability data can be found in Grzegorzewski and Hryniewicz [18]. 
Therefore we require different tools appropriate for modeling vague data and 
suitable statistical methodology to handle these data as well . 

To cope with the forma! description of data that are both random and im­
precise (fuzzy) it is convenient to use the notion of a fuzzy random variable. It 
was introduced by I<wakernaak [30]. There exist also definitions of fuzzy random 
variables that have been proposed by other authors, for example by I<ruse [27] 
or by Puri and Ralescu (47] . The definition, we present below, was proposed in 
[19], and is similar to those of K wakernaak and I<ruse (see [17] ). Suppose that a 
random experiment is described as usual by a probability space (St, A, P), where 
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[2 is a set of all possible outcomes of the experiment, A is a u-algebra of subsets 
of [2 (the set of all possible events) and Pis a probability measure 

Definition 3. A mapping X : [2 --t :F N is called a fuzzy random variable if it 
satisfies the following properties: 

(a} {X0 (w): a E [O, 1]} is a set representation of X(w) for all w E f2, 

(b} for each a E [O, 1] both X[;= X[;(w) = inf X 0 (w) and X[! = X[! (w)= 

= supX0 (w), are usual real-va/ued random variables on (f2,A, P). 

Thus a fuzzy random variable X is considered as a perception of an unknown 
usual random variable V : f2 --t R, called an original of X. Let V denote a set 
of all possible originals of X. If only vague data are available, it is of course 
impossible to show which of the possible originals is the true one. Therefore, we 
can define a fuzzy set on V, with a membership function L : V • [O, 1] given as 
follows: 

L(V) = inf{l,x(w)(V(w)): w E f2}, (18) 

which corresponds to the grade of acceptability that a fixed random variable V 
is the original of the fuzzy random variable in question (see Kruse and Meyer 
[28]). 

Similarly n-dimensional fuzzy random sample X 1 , ... , Xn may be considered 
as a fuzzy perception of the usual random sample Vi, . . . , Vn (where Vi, ... , Vn 
are independent and identically distributed crisp random variables). A set V" of 
all possible originals of that fuzzy random sample is, in fact, a fuzzy set with a 
membership function 

L(Vi, ... , Vn) =. min inf{µx,(w)(v;(w)): w E f2}. 
t=l, ... ,n 

(19) 

Random variables are completely characterized by their probability distribu­
tions. However, in many practical cases we are interested only in some parameters 
of a probability distribution, such as expected value or standard deviation. Let 
0 = 0(V) be a parameter of a random variable V. This parameter may be viewed 
as an image of a mapping I' : P • R, which assigns· each random variable V 
having distribution Po EP the considered parameter 0, where P = { Po : 0 E 8} 
is a family of distributions. However, in case of fuzzy random variables we can­
not observe parameter 0 but only its vague image. Using this reasoning together 
with Zadeh's extension principle Kruse and Meyer [28] introduced the notion 
of a fuzzy parameter of a fuzzy random variable which may be considered as a 
fuzzy perception of the unknown parameter 0. It is defined as a fuzzy set with 
the following membership function: 

µA(O)(t) = Slip {L(V) : V EV, 0(V) = t}, t ER, (20) 

r 

1 



- i 5-

where i(V) is given by (18). This notion is well defined because if our data are 
crisp, i.e. X= V, we get A(0) = 0. Similarly, for a random sample of size n we 
get 

µA(B)(t)=sup{i(Vi,---,Vn) : (Vi, ---,Vn)E Vn,0(Vi)=t}, t E R. (21) 

One can easily obtain a-cuts of A(O): 

A0 (0) = {t ER: 3(Vi, ... , Vn) E vn,O(Vi) = t, such that 
v;(w) E (X;(w))a for w E !1 and for i= 1, .. . ,n}. 

For more information we refer the reader to Kruse, Meyer [28] . 

(22) 

First papers devoted to the analysis of fuzzy reliability data did not use ex­
plicitly the concept of a fuzzy random variable. Pioneering works in this field 
can be attributed to Viertl [54],[55], who founcl appropriate formulae for impor­
tant reliability characteristics by fuzzifying formulae well known from classical 
statistics of reliability data. The results of those and other works have been pre­
sentecl in the paper by Viertl and Gurker (56], who considered such problems as 
estimation of the mean life-time, estimation of the reliability function, and esti­
mation in the acceleratecl life testing (with a fuzzy acceleration factor) . Original 
approach has been proposecl in Hryniewicz [21] who clid not model fuzzy time 
to failures, but fuzzy survival times. In his moclels only the right-hand sicie of 
the fuzzy numbers has been considered, but this approach Jet him consicler in 
a one mathematical model such phenomena like censored life times and partia! 
failures. 

One of the first attempts to propose a comprehensive mathematical model 
of fuzzy life times as fuzzy random variables was given in Grzegorzewski and 
Hryniewicz [18]. Grzegorzewski and Hryniewicz considered the case of exponen­
tially distributed fuzzy life time data, and proposed the methoclology for point 
estimation, interval estimation, and statistical hypothesis testing for the fuzzy 
mean life time. These results have been further extended in [19] where they also 
considerecl the case of vague censoring times and vague failures. In the case of 
vague failures the number of failures observed during the life time test is also 
fuzzy. The methodology for the clescription of a fuzzy number of failures in the 
context of the life time estimation was considered in [16]. 

Let us now present a summary of the results given in [19]. To begin with, 
!et us recall some basie results from a classical theory of the statistical analysis 
of life time data. The mean lifetime may be efficiently estimated by the sample 
average from the sample of the times to failure W1 , . .. , Wn of n tested items, 
i.e. 

MTT F = Wi + ... + Wn (23) 
n 

However, in the majority of practical cases the lifetimes of all testecl items are 
not known, as the test is usually terminatecl before the failure of all items. It 
means that exact lifetimes are known for only a portion of the items under 
study, while remaining life times are known only to exceed certain values. This 
feature of lifetime data is callecl censoring. More formally, a fixecl censoring time 
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Z; > O, i = 1, ... , n is associated with each item. We observe W, only if W; :-:; Z;. 
Therefore our lifetime data consist of pairs (Ti, Yi), ... , (Tn, Yn), where 

T; = min{W,, Zi}, (24) 

y; _ { 1, if W, = T, 
' - O, if W; = Z;. 

(25) 

There are many probability distributions that are used in the lifetime data 
analysis. In [19] the exponential distribution has been used for modeling the 
lifetime T. The probability density function in this case is given by 

(26) 

where 0 > O is the mean lifetime. Let 

n 

(27) 
i=l i ED iEC 

be the total survival time (sometimes called a total time on test), where D and 
C denote the sets of items for whom exact life times and censoring times are 
observed, respectively. Moreover, Jet 

(28) 

be the number of observed failures. In the considered exponential model the 
statistic (r, T) is minimally sufficient statistic for 0 and the maximum likelihood 
estimator of the mean lifetime 0 is (assuming r > O) 

0 = !... 
r 

(29) 

Now suppose that the life times (times to failure) and censoring times may 
be imprecisely reported. In case of precisely known failures we assume that the 
values of the indicators Y1 , Y2 , •.. , Yn defined above are either equal to O or equal 
to 1, i.e. in every case we know if the test has been terminated by censoring or 
as a result of failure . In order to describe the vagueness of life data we use the 
previously defined notion of a fuzzy number. 

Now we consider fuzzy life times 'I'1 , .. . , 'I'n described by their membership 
functions µi(t), . . . ,µn(t) E NFN. Thus applying the extension principle to 
(27) we get a fuzzy total survival lifetime 'I' (which is also a fuzzy number) 

(30) 

with a membership function 

µT(t) = sup {µ1 (t1) i\ .. . i\ µ,.(t,.)}. (31) 
lt,·· · •tnE R.+: f1+ . . . +tn=f 



Using operations on a-cuts we may find a set representation of T given as 
follows 

Tc, = (Tt) 0 + ... + (Tn)cx = 
= {t En+: t = t1 + ... + tn, where ti E (T;) 0 , i= 1, ... , n}, 

(32) 

where a E (O, 1]. 
In the special case of trapezoidal fuzzy numbers that describe both life times 

and censoring times the total time on test calculated accorcling to (30) is also 
trapezoidal. 

If the number of observed failures r is known we can use the extension prin­
ciple once mare, and define a fuzzy estimator of the mean lifetime 8 in the 
presence of vague life times as 

0 = !.__ 
r 

(33) 

Since r E N we can easily find the following set representation of 8: 

~ { X - } Ba = t E n+ : t = :;, where X E Tc, . (34) 

For mare details and the discussion on fuzzy confidence intervals we refer the 
reader to [18]. 

However, in many practical situations the number of failures r cannot be 
precisely defined. Especially in case of non-critical failures the lifetime data may 
not be reported in a precise way. In order to take into account such non-critical 
failures Grzegorzewski and Hryniewicz [19] consider the state of each observed 
item at the time Zi. Let G denote a set of all items which are functioning at 
their censoring times Zi. Therefore we can assign to each item i = 1, ... , n its 
degree of belongingness 9i = µa(i) to G, where g; E [O, 1]. When the item hasn't 
failed before the censoring time Zi, i.e. it works perfectly at Z;, we set g; = 1. 
On the other hand, if a precisely defined failure has occured before or exactly at 
time moment Zi, we set g; = O. If g; E (O, 1) then the item uncler study neither 
works perfectly nor is completely failecl. This situation we may consider as a 
partia/ failure of the consiclered item. Let us notice that in the clescribed above 
case G can be consiclered as a fuzzy set with a finite support. 

There are clifferent ways to clefine the values of g; clepencling upon consicl­
ered applications. However, in the majority of practical situations we may cle­
scribe partia! failures linguistically using such notions as, e.g. "slightly possible", 
"highly possible", "nearly sure", etc. In such a case we may assign arbitrary 
weights g; E (O, 1) to such imprecise expressions. Alternatively, one can consider 
a set D of faulty items and, in the simplest case, the degree of belongingness to 
D equals d; = µv(i) = 1- 9i· Further on we'll call g; and d; as clegrees of the up 
state and down state, respectively. Having observed the degrees of down states 
it is possible to count the number of failures with the clegrees of down states 
exceeding certain rejection limit. Hence, we get a following (fuzzy) number of 
failures: 

(35) 



where IDl 1 denotes fuzzy cardinality of fuzzy set D. We may also start from up 
states. Therefore 

(36) 

where IGl 1 denotes fuzzy cardinality of fuzzy set G. However, contrary to the 
crisp counting IDl 1 fe n - jGj1. It is seen that such fuzzy number of observed 
failures is a finite fuzzy set. Moreover, if we assume that at least one crisp failure 
is observed it is also a norma! fuzzy set. 

Using _!:he extension principle, we may define a fuzzy estimator of the mean 

lifet ime 0 in the presence of fuzzy life times and vague number of failures. 
Namely, for crisp failure counting methods we get a following formula 

::: f 
0 = -::::, 

1' 
(37) 

where f is the fuzzy total survival time and r denotes the number of vaguely 
defined failures . Actually (37) provides a family of estimators that depend on 
the choice of r. However, in the case of a fuzzy failure number we have 

::: T 
0--­

- conv(r)' 
(38) 

where conv(r) is the convex hull of the fuzzy set rand is defined as follows 

conv(r) = inf{A E N:FN: r <:;; A}. (39) 

Since now the denominator of (38) is a fuzzy number, our estimator of the mean 
life time is a fuzzy numbers whose membership function can be calculated using 
the extension principle. 

First look at the results presented above gives impression that even in the 
simplest case of the estimation of the mean life time for the exponential distribu­
tion the analysis of fuzzy data is not simple. It becomes much more complicated 
in the case of other life time distributions, such as the Weibull distribution, and 
in the case of such characteristics like the reliability function. Further complica­
tions will be encountered if we have to evaluate the reliability of a system using 
fuzzy data obtained for its components. In these and similar cases there is an 
urgent need to find approximate solutions that will be useful for practitioners. 
An example of such attempt can be found in the paper by Hryniewicz [23]. In 
this paper Hryniewicz considers the problem of the estimation of reliability of 
a coherent system R,(t) consisted of independent components having expone­
nentialy distributed life times when available observed life times for components 
are fuzzy. He assumes that observed life times (and censoring times) of inivid­
ual components are described by trapezoidal fuzzy numbers. Then, he finds the 
membership function for the probability of failure 

P(t) = I - e-t/o, t > O. (40) 

The obtained formulae are too complicated for the further usage in the calcu­
lation of the reliability of complex systems. Therefore, Hryniewicz [23] proposes 



to approximate fuzzy total time on test by shadowed sets intoduced by Pedrycz 
[46] who proposes to approximate a fuzzy number by a set defined by four pa­
rameters: a 1 , a 2 , a3, a4. The interpretation of the shadowed set is the following: 
for values of the fuzzy number that are smaller than a 1 and greater than a4 the 
value of the membership function is reduced to zero, in the interval (a2 , a3 ) this 
value is elevated to 1, and in the remaining intervals, i.e. (a1 , a2) and (a3, a4) 
the value of the membership function is not defined. It is easy to see that all 
arithmetic operations on so defined shadowed sets are simple operations on in­
tervals, and their resuU i~ also a shadowed set . Thus, calculations of imprecise 
reliability of a system using (3) is quite straightforward. 

4.2 Fuzzy Bayes estimation of reliability characteristics 

In statistical analysis of reliability data the amount of information from life 
tests and field data is usually not sufficient for precise evaluation of reliability. 
Therefore, there is a need to merge existing information from different sources 
in order to obtain plausible results. Bayesian methods, such as Bayes estimators 
and Bayes statistical tests, provide a mathematical framework for processing 
information of a different kind. Thus, they are frequently used in the reliability 
analysis, especially in such fielcls as reliability and safety analysis of nuclear 
power plants and reliability evaluation of the products of an aerospace industry. 
There are two main sources of imprecise information in the Bayesian approach 
to reliability. First source is related to imprecise reliability data, and second is 
connected with imprecise formulation of prior information. First papers on the 
application of fuzzy methodology in the Bayesian analysis of reliability can be 
traced to the middle of 1980s. For example, Hryniewicz [20] used the concept 
of a fuzzy set to model the prior distribution of the failure risk in the Bayes 
estimation of reliability characteristics in the exponential model. He proposed 
a method for building a membership function using experts opinions. However, 
in his model the membership function is interpreted as a kind of an improper 
prior probability distribution. Thus he finally arrived at non-fuzzy Bayes point 
estimators. At the same time Viertl (see [56] and [57]) used fuzzy numbers in 
order to model imprecise life times in the context of Bayes estimators. 

Despite the significant progress in the development of fuzzy Bayesian method­
ology important practical results in reliability applications have been publishecl 
only recently. Wu [59] considered Bayes estimators of clifferent reliability char­
acteristics. For example, he found Bayes estimators of the survival probability 
(reliability) using the results of binomial sampling and Pascal sampling experi­
ments. In the Binomial sampling experiment n items are testecl, and the number 
of survivors x is recorded. Reparameterized beta distribution is then used for 
the description of the prior information about the estimated survival probability 
(reliability) q. The parameters of the prior distribution have the following inter­
pretation: n 0 is a 'pseudo' sample size, and x 0 is a 'pseudo' number of survivors 
in an imaginary experiment whose results subsume our prior information about 
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q. Then, the Bayes point estimator of q is given by 

• X+ Xo 
QB = ---. 

n+no 
{41) 

Wu [59] considers now the situation when the parameter x0 is known imprecisely, 
and is described by a fuzzy number. Straightforward application of the extension 
principle leads to formulae for the limits of a-cuts of ij B: 

x+x" ij" ____ O,_L 
B,L - n+no {42) 

and 
•a X+ Xo,U 
Qa,u = n+ no • { 43) 

In the case of Pascal sampling the number of failures s is fixed, and the 
number of tested items N is a random variable. The parameters of the prior 
distribution of q have the same interpretation as in the case of Binomial sampling. 
Then, the Bayes point estimator of q is given by 

n+ xo - s 
iia=---­

n+no 
( 44) 

where n is the observed value of N . When x0 is known imprecisely, and describecl 
by a fuzzy number, the limits of a-cuts of iia are given by [59]: 

n - s + x0 L 
cr.x - ' 

B,L - n+ no {45) 

and 
• a n - S + Xo,U 
ąB,U = n+ no (46) 

Wu [59] presents also Bayes estimators for the failure rate A and reliability 
function e - ,\t in the exponential model. In his paper Wu [59] also proposes an 
algorithm for the calculation of the membership value µ(q) of ij. 

The Bayes estimator of A has been independently investigated by Hryniewicz 
[22] who considered the case of the crisp number of observed failures d, the fuzzy 
total time on test i', and gamma prior distribution of A reparameterized in such 
a way that one of its parameters (scale) had the interpretation either of the 
expected value of >., denoted by E,\, or its mode, denoted by D,\ . He also 
assumed that the shape parameter ó of the prior gamma distribution is known, 
but the values of E" (D,\) are fuzzy. Now the fuzzy Bayes estimators of A are 
given by the following formulae [22]: 

• d + ó 
AE=i'+ó/E/ (47) 

and 
. d+ó 
>-o = - - , ó > 1. 

T+(ó-1)/D" 
(48) 
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The a-cuts for these estimators can be calculated straightforwardly using the 
extension principle. 

In his recent paper Wu [60] considers the case of Bayes estimators for the 
reliability of series, parallel, and k-out-of-n reliability systems in the case of the 
available results or reliability tests conducted according to the binomial sampling 
scheme. By applying the Mellin transform he finds the posterior distribution for 
the system reliability, and then fuzzifies its expected value arriving at the fuzzy 
Bayes point estimators. 

5 Conclusions 

Evaluation of reliability of complex systems seems to be much more difficult 
than it appeared to be even twenty years ago. At that time probabilistic mod­
eis developed by mathematicians and statisticians were offered with the aim to 
solve all important problems. However, reliability practitioners asked questions 
that could have not beeen successfuly answered using the probabilistic para­
digm. The usage of fuzzy sets in the description of reliability of complex systems 
opened areas of research in that field. This work has not been completed yet. In 
this paper we have presented only some results that seem to be important both 
from a theoretical and practical points of view. We focused our attention on 
probabilistic- possibilistic models whose aim is to combine probabilistic uncer­
tainty (risk) with possibilistic Jack of precision (vagueness) . We believe that this 
approach is the most promising for solving complex practical problems. It has 
to be stressed, however, that we have not presented all the applications of fuzzy 
sets to reliability. For example, we have not presented interesting applications of 
fuzzy sets for the strength- stress reliability analysis or for a more generał prob­
lem the reliability analysis of structural systems. The readers are encouraged 
to look for the references to papers devoted to these problems in the papers by 
Jiang and Chen [26] and Liu et al. [32]. Another important problem that has not 
been considered in this paper is the construction of possibility measures from the 
information given by experts. Interesting practical example of the application of 
fuzzy 'IF-THEN' rules for the solution of this problem has been presented by 
Cizelj et al. [10]. To sum up the presentation of the application of fuzzy sets in 
reliability we have to conclude that the problem of the appropriate description 
and analysis of complex reliability systems is stili far from being solved. 
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