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Abstract: In this paper I focus on an evaluation of maintenance costs of a water distribution 

system (WDS), if a concept of a value of money in time is taken into account. Contrary to 

more classical approaches, instead of a constant yield, a strictly stochastic process (i.e., the 

one-factor Vasicek model) of an interest rate is assumed. Such an assumption presents 

uncertain, future behaviour of the yield in a more correct, realistic way. Moments of failures 

of connections in a WDS are generated using the Monte Carlo simulations via a new kind of a 

convex hazard rate function (HRF), which is proposed in this paper. Moreover, quality of a 

pipeline and a number of previous failures have direct influence on statistical properties of 

this introduced HRF. Apart from an analysis of the simulated output (like the maintenance 

costs), the Kiefer-Wolfowitz method is used for a better adjustment of one of parameters of a 

WDS - deterministic and unconditional replacement (i.e. , planned replacement) time of each 

pipe. Algorithms, for both the simulations of the failure moments for the introduced HRF and 

the optimization step, are also provided. Additionally, some examples of a WDS for a crisp 

and a fuzzified settings are statistically analysed. 

Abstrakt: W niniejszej publikacji skupiam si1y na obliczeniu koszt6w eksploatacji wodoci<jgu 

(water distribution system - WDS), jesli pod uwag1y zostanie wzi1yta wartosc pieni<jdza w 

czasie. W przeciwienstwie do klasycznego podejscia, zamiast stalej wartosci stopy 

procentowej, zakladam stochastyczny proces stopy procentowej (w postaci 

jednoczynnikowego modelu Yasicka). Zalozenie to przedstawia niepewne, przyszle 

zachowanie stopy procentowej w bardziej dokladny i realistyczny spos6b. Momenty awarii 

pol<jczen w WDS generowane S<) z wykorzystaniem metody Monte Carlo poprzez 

zastosowanie nowego typu funkcji intensywnosci uszkodzen (hazard rate function - HRF), 

kt6ry zaproponowany zostal w niniejszej publikacji. Ponadto, jakosc pol<jczenia oraz ilosc 

wczesniejszych uszkodzen ma bezposredni wplyw na statystyczne wlasciwosci 



wprowadzonej HRF. Opr6cz analizy wygenerowanych za pomocq symulacji wynik6w (takich 

jak koszty eksploatacji), u:i:yta zostala metoda Kiefera-Wolfowitza w celu lepszego 

dopasowania jednego z parametr6w WDS - deterministycznego i bezwarunkowego momentu 

wymiany ka:i:dego z polqczen (czyli wymiany planowanej). Zaprezentowane zostaly r6wnie:i: 

algorytmy zar6wno dla symulowania moment6w uszkodzen przy u:i:yciu zaproponowanej 

HRF, jak i dla kroku optymalizacyjnego. Ponadto, wykonana zostala analiza statystyczna 

kilku przyklad6w WDS dla dokladnych (,,crisp") i rozmytych (,,fuzzy") wartosci parametr6w. 

1. Introduction 

From the customers' point of view, the main aim ofa water distribution system (which 

is further abbreviated as WDS) is to deliver water, moreover - water of desirable quality and 

in necessary quantity. Therefore, different maintenance services have to be performed, e.g., 

broken or simply malfunctioned pipes or other parts of a WDS should be repaired or replaced. 

Because water is an indispensable good for humans, therefore also scientific literature devoted 

to reliability of water distribution systems is abundant. Firstly, let us mention reviews of 

various methods, approaches and literature, which can be found in, e.g. , (15 ,28,29). The 

papers themselves are very varied - some of them concern hydraulic and physical 

characteristics of parts of a WDS (see, e.g. , (4, 17)), other discuss rather a "macro

management" of a WDS rehabilitation problem (see, e.g. , [12,221) or only a "micro

management" scale (e.g., for a single building, see (!)). Even some monitoring systems for 

failures detection in a WDS are proposed (see, e.g., (23)). 

Usually, if maintenance costs for a WDS are considered, planning for a relatively 

long-time horizon should be taken into account. Such a time interval covers 20, 50 or even 60 

years (see, e.g., (12)). Of course, one unit of money, which is paid now, and the same unit in 



50-60 years, are not equal. Therefore, an influence of a future / present value of the money 

onto a calculation of the maintenance costs should be taken into account. However, most of 

the authors apply only a constant interest rate, as a discount factor, to calculate a present value 

of future cash flows. Such an assumption is, of course, too strong and unrealistic in practical 

situations. Therefore, in this paper I adopt a more realistic and complex model - a variable 

interest rate, which is described by the widely known one-factor Vasicek model. 

Moreover, some model for intensities of malfunctions of parts of a WDS has to be 

assumed. As it is proposed in literature, it can be based on selected physical aspects of a pipe 

and numerical equations (like the Hazen-Williams equation, see, e.g. , [12]), it can be 

described with some type of Markov or semi-Markov process (see, e.g. , [13 , 16,26]) or 

malfunctions are randomly generated using a hazard rate function (HRF). A multilateral 

review of various HRFs can be found in [29]. ln this paper I propose a new kind of a HRF, 

which can be easily adapted to real-life data and which is very efficient during the Monte 

Carlo simulations. 

Very often in literature, some optimization procedure for minimization of the 

maintenance costs of a WDS is proposed. For example, the total costs of a renewal , risk and 

an unavailability of a WDS is given as one function of time and then minimised (see, e.g. , 

[24]), different scenarios with and without replacement of pipes for the installation and repair 

costs with a damage and inconvenience cost multiplier are considered (see, e.g., [18]) etc. In 

the following, I also propose an optimization approach. During this procedure, the Kiefer

Wolfowitz algorithm is applied to find a minimum of the maintenance costs, if an 

unconditional replacement age of a pipe is our variable parameter. 

Also some model of the previously mentioned maintenance costs has to be adopted. In 

literature, these costs are related to various sources and models, like a rehabilitation of a pipe 

and breakage repair costs (see, e.g. , [ 12]), an extra energy, water losses and a loss of revenues 



(see, e.g. , [ 11]) etc. In this paper the costs are modelled using their constant and variable part. 

This second element is related to time, which is necessary to conduct a repair or a replacement 

of a malfunctioned pipe. However, in some papers such a concept (i.e., time of a service) is 

completely neglected. Such a simplification is possible (see, e.g. , [29] for a more detailed 

discussion), but usually the relevant period is modelled by some random variable (like the 

exponential distribution, see, e.g. , [ 11 ]). In the following, I also assume, that a time, which is 

necessary for a repair or a replacement, is given by some random distribution. 

This paper can be seen as a further development of some ideas, which were previously 

discussed in [25,26], but it is also a proposition of completely new ones. Hence, my current 

contribution is fourfold. 

Firstly, I propose a new kind of a hazard rate function, which describes the intensities 

of malfunctions of pipes in a WDS. Many different HRFs were discussed in literature, 

however, each of them has some significant disadvantages (see, e.g. , [29] for a comprehensive 

review). The HRF, which is introduced in this paper, has some appealing features. It is V

shaped, so it models two different states of a connection: a starting bum-in period 

(immediately after a repair or an installation of a pipe) and a later wear-out period (when an 

intensity of malfunctions for a connection is higher than during its starting phase). This HRF 

also depends on a number of previous repairs of the given pipeline, so an increasing 

deterioration of a material, which is caused by recurring stresses of repairs, can be taken into 

account. Moreover, a relevant algorithm for a random generation of intervals of times 

between malfunctions is numerically very efficient and straightforward. Therefore, the Monte 

Carlo simulations, which are then based on this HRF, can be directly applied to simulate 

behaviour of a whole WDS. Furtherrnore, the parameters of this HRF can be easily fuzzified, 

which enables us to introduce an additional source of an imprecision and an uncertainty, other 



than a strictly probabilistic one. These features should be highlighted, as important ones, 

when the introduced hazard rate function is compared to other HRFs. 

Secondly, I adapt the Kiefer-Wolfowitz algorithm to find a minimum of the total 

maintenance costs. This method allows me to decide about an optimal value of a deterministic 

and unconditional replacement age, i.e., when it is better to replace a connection instead of its 

next, future repair. Because the mentioned algorithm directly utilizes stochastic nature of 

simulations, the Monte Carlo method can be directly used to calculate necessary estimators in 

this approach. In this paper, I focus on the unconditional replacement age as a variable, which 

is considered in the optimization problem, but the presented approach can be extended to 

other parameters, which are important for decision makers. Because an output, which is 

simulated in the analysis, behaves in a very varied and unpredictable way, I propose some 

practical alternation of the standard Kiefer-Wolfowitz algorithm. As it is pointed out in 

presented numerical exan1ples, this optimization procedure can significantly lower the 

maintenance costs. 

Thirdly, apart from a crisp case, I discuss a possible fuzzifaction of the paran1eters of 

the introduced HRF and of a model of the costs. As it is known (see, e.g. , [3 ,6]), data can be 

imprecise and uncertain in real life situations. Moreover, sometimes it can not be 

appropriately modelled, if only a probabilistic approach is used. Therefore, I further develop 

an idea, which was discussed in [26], and some parameters of the assumed models are 

described by fuzzy numbers. It means, that they are not completely precise (i.e. , "crisp") but 

they are, in some way, imprecise ("near to / about") and can be given as experts' opinions 

(even in a form of linguistic variables). For example, a cost of a repair is rather stated as 

"about 50 thousand (some unit of money)", than as a total and accurate value before this 

repair will take place. And a fuzzy setting is widely used in an analysis of possible financial 

decisions (see, e.g. , [20,21 ]). 



Fourthly, in contrary to (25,26], a more sophisticated model of time intervals of 

transitions between the states of a pipeline is proposed now. The intervals between the 

malfunctions are generated using the introduced HRF, and the times of repairs and 

replacements can be drawn from various probabilistic distributions. For a simplicity of the 

analysis, l focus on the exponential distribution, but other densities can be easily applied in 

the proposed simulation approach. Moreover, this model of the states is directly related to a 

model of costs of maintenance services. I distinguish two types of these costs (separately for a 

repair and a replacement) with two parts for each of them - a constant part (which is 

independent of length of time of a service) and a variable part (which depends on a random 

value of time of a repair or a replacement). Therefore, the considered model is closer to 

practical situations. 

It should be pointed out, that the stochastic model of the interest rate (i.e., the one 

factor-Vasicek model , which is assumed in this paper) is directly embedded into the Monte 

Carlo simulations, as in (26]. To the best knowledge of the author, such an approach is still a 

new idea, which is not even considered in other papers. Whereas, there are significant 

differences in estimated values of costs and in other important results between models with a 

constant yield and with a variable discount factor, which is, of course, a more realistic 

assumption. Some of these discrepancies were already highlighted in [26]. Now I continue 

this analysis and show, that a simplified approach (i.e. , with a constant yield) leads to 

different solutions and statistical results for the calculated maintenance costs. Therefore, 

future decisions can be also invalid, if such a too simplified model is assumed. 

This paper is organized as follows. In Section 2, a new type of a hazard rate function, 

which describes times of the failures of a connection, is presented. A random generation 

procedure for a relevant density, which is based on this HRF, is also discussed. In Section 3, a 

model of possible states of an each connection with an additional parameter - deterministic 



and unconditional replacement age - is introduced. Section 4 is devoted to a description of 

maintenance costs, which are divided into constant and variable parts. Section 5 presents the 

Kiefer-Wolfowitz algorithm, which is then applied to optimize the discounted value of the 

maintenance costs in examples in Section 6. Apart from a numerical analysis ofan example in 

a crisp case, a proposition of fuzzification of some parameters of the model is also examined 

using the Monte Carlo simulations. Results, which are obtained in these examples, are 

statistically summarized then. The paper is concluded in Section 7 with some final remarks. 

2. Model of failure intensities 

Let us suppose, that a WDS is modelled by a graph of connections G. In this graph, 

each connection (i.e. a pipeline which is a part of the whole WDS) is represented as an edge, 

and possible sources or outflows are denoted by nodes. In the following, I focus only on the 

edges of the graph G, i.e. the connections of the considered WDS. Let us assume, that these 

connections behave in a statistically independent way, i.e. there is no " information flow" 

between the connections and time of a malfunction of one pipe does not influence on quality 

and possible malfunctions of other connections. 

Firstly, l assume that times of the failures for an each connection are described by a 

hazard rate function (HRF or simply a hazard function) A (x lnr) , given by the formula 

where a0 > 0, a 1 > 0, x' > 0, y' > 0, ar > 0 are parameters, which are related to the 

given type of a connection. Strictly speaking, such a HRF has a Y-curve, linear shape (see 

Figure I), for which: 



• -a0 is a directional component of a descending, linear part of the HRF (i .e. , a left 

hand side of the function, for which x E [O, x' ) ), 

• a 1 is a directional component ofan ascending, linear part of the HRF (i.e. , a right hand 

side of the function, for which x 2'. x ' ), 

• (x ' , y ' ) is a point, where the HRF becomes an ascending linear function, instead of 

being a descending one, 

• ar is a parameter of deterioration of the connection related to a single, previous 

malfunction, 

• nr is a number of previous malfunctions of the connection, if there were repairs 

afterwards. 

It is assumed that, when some connection is replaced with a completely new component, then 

nr = 0 is set for such a part. Hence, the parameter ar reflects a level of fatigue, which is 

caused by previous malfunctions and repairs, without a replacement of such a connection. It 

directly increases a value of the hazard function A (x lnr)- The point (x ' ,y'), and especially 

the value x', depends on time, when the HRF (I) changes its behaviour. In this point, instead 

of a burn-in period after some repair ( or an installation of a new pipe), the connection reaches 

its wear-out period (see also, e.g., [5] for a more detailed descriptions of such states). It 

means, that for the first part of (I) an intensity of the malfunctions decreases, and for the 

second part this value increases with passing time, which approximates real-life situations in 

better way. Hence, the proposed function (I) can be used in straightforward manner to 

describe the intensity of malfunctions, taking into account two completely different quality 

states and progress of connection fatigue, which is also related to the number of previous 

repairs nr, Therefore, this HRF can be better adjusted to real-life data. 
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Figure l. Exemplary plot of the introduced HRF. 

From now on, for a simplicity of formulas, I use abbreviations 

For a HRF, we have a general formula 

,1 (x) = f(x) 
R(x)' 

where f (x) is a pdf (probability density function) , R(x) = 1 - F(x) and F(x) is a cdf 

(cumulative density function) , then in the case of(!), we get 

{ 
( -ao x + b0 ) exp (2. a0 x 2 - b0 x) 

f~)= : 2 
(a1 x + b1 ) exp (- 2 a1 x - b1 x -

where 

if XE [0,x*) 

c1) if x2: x' 
(2) 



An exemplary plot of this density can be found in Figure 2. As it is seen, f(x) is a continuous 

function with a visible point of a change of its behaviour (which is given by the parameters 

x' = 0.5,y' = 1 in this case). 
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Figure 2. Exemplary plot of the introduced density. 

In Section 6, an analysis of a simulated output for times of malfunctions given by the 

density (2) is presented. Therefore, it is necessary to provide an efficient algorithm for a 

generation of random variables for such a pdf. It can be done using the composition method 

and the inversion method (see, e.g. , [27] for an introduction and a review). In the composition 

method, a pdf f(x) is decomposed as 

f(x) = Li=1fi (x)p; , 



where, for an each i = 1,2, .. . , /; (x) ~ 0 is some density and Pi ~ 0 is a discrete probability. 

In the case of(2), we have 

p1 = P (XE [O,x')) = 1 - exp (½a 0 (x') 2 - b0 x•), 

Pz = P ( X ~ x') = 1 - P1 (3) 

and the pdfs f1 (x) (for x E [O,x ')) , f 2 (x) (for x ~ x') lead to relevant inversions of their 

cdfs, which are equal to 

b0 - ✓b5 + 2a0 ln(l - p1 y) 

ao 

-b1 +J(a 1 x' +b1)'- 2 a 1 ln(l-y) 

a, (4) 

Therefore, a simulation of random times of the failures is straightforward (see Algorithm 1 ). 

Moreover, because the inversion method is applied, the whole algorithm is numerically very 

efficient. None of the randomly generated points are rejected, as it is commonly seen in, e.g., 

the ROU (ratio-of-uniforms) method. 

Algorithm I (Generation procedure for the HRF) 

Input: A set of the parameters of the HRF (!). 

Output: A random time of a failure X. 

Calculate PvPz, which are given by (3); 

Generate independent random values U, Y from the uniform standard distribution U[O; l] ; 

if U:,; p1 



X F1- 1 (Y) (see (4)) ; 

else 

X F2- 1 (Y) (see (4)) ; 

end 

returnX 

Because of a few parameters, which describe the formula ( 1 ), the introduced model of 

time ofa failure can be applied in many various cases. Exemplary plots of the expected values 

for the relevant density (2) can be found in Figure 3, Figure 4 and Figure 5. As it is seen, the 

expected value of time of a failure is both a linear and non-linear function, which simplifies 

an adjustment to complex real-life data. 

Figure 3. Plot of the expected value (EX) for the introduced density as a function of a0 and 



Figure 4. Plot of the expected value (EX) for the introduced density as a function of ar and 

f ~-.! '·, 
EX 0.4~ 

O? · ·-o 
l 

Figure 5. Plot of the expected value (EX) for the introduced density as a function of x• and 

y'. 



3. States of a connection 

An each connection in time t can be in one of the following states: working, under 

repair, under replacement, It means, that immediately after some failure , a connection is 

repaired or replaced by a new one. 

A random length of working time WTi, after a repair or a replacement of the pipe and 

before a next malfunction, is given by (2). A length of repairing time RTi (after a malfunction, 

when a connection is being repaired) can be modelled by various random distributions, e.g. 

the exponential distribution or the lognormal one. Of course, this distribution and its 

parameters should be fitted to real-life data, e.g. using statistical methods. The same applies 

for a length of replacement time PT; (i.e. , after a malfunction, when a connection is being 

replaced with a new one). 

As in [26], I introduce a deterministic and unconditional replacement age P'. This 

value is used to decide, if instead of one more repair, the connection in question should be 

rather replaced. It means that, when 

I{=l WT; + RTi > p• (5) 

where WT1 , ... , WTj and RTi, ... , R'0 are working and repairing times after the last 

replacement of a connection, then this connection is replaced with a new one. Afterwards, 

nr = 0 is set in (1), so such a replacement "restarts" a deterioration process. 

4. Maintenance costs 

As it was noted in Section 2, it is possible to directly simulate the periods of the 

working times WT; of the considered connection for the pdf given by (2). Also, if numerically 

feasible distributions for the repairing times RT; and the replacement times PT; are selected 

(like, e.g., the lognormal distribution), then the Monte Carlo approach can be applied. 



Furthennore, the replacement condition (5) can be easily embedded in such a setup, without a 

necessity of conducting of complex theoretical probabilistic calculations. 

Hence, the MC approach can be applied to generate the subsequent states of each 

connection;, and then, in a similar way, to simulate behaviour of the whole WDS . From now 

on, I assume, that these connections behave in a statistically independent way. However, if 

there is some kind of dependency, the MC procedure can be also used. Easily seen, apart from 

WTt, RT; and PT; , exact times of the malfunctions can be found, when the necessary 

maintenance services (i .e. , replacements or repairs) begin. In the following, these times are 

denoted by t 1 , t2 , ••• • 

In this paper I focus only on the maintenance costs related to the replacements and the 

repairs. Of course, other types of costs (like costs of water losses, loss of revenues etc. - see, 

e.g. , [5 , I I, 12, 18]) are commonly considered in the literature. Among others, I should also 

mention restoration and diagnostic costs. They are very important, especially for long time 

horizon of an analysis. Some of the mentioned costs can be easily taken into consideration 

using the MC approach. It seems, that this is also possible for the restoration and the 

diagnostic costs. However, due to nature of further assumptions in this paper, these costs can 

be rather related to the HRF itself, instead of time ofa service (like a repair or a replacement). 

For example, after a restoration ofa connection, a value ofn,. can be lowered or values of a0 

and a 1 can be respectively changed for this connection. And an aim of such a change would 

be to increase length of a period to a next malfunction given by (I). But still the simulation 

approach is appropriate in this case. Of course, incorporation of other types of the costs (like 

restoration costs) can have some influence on the obtained results. 

I assume, that the mentioned costs depend on a type of a service (i.e. , if it is a 

replacement or a repair), length of such a service and a type of the considered connection. 

Therefore we have 



( ) (j) () C j (t;) = CR,const + Ci_var ( RT,;) 

or 

Ul ( ) - Ul Ul ( PT ) 
C ti - CP,const + Cp,var ti • 

where c<il (t;) denotes a total sum of costs for the given j-th connection and time t;, when a 

necessary service begins, crlonst is a constant value independent of length of a period for a 

repair (or for a replacement in the case of c~lons,), i.e. it is a fixed cost, and crtar (.) 
' ' 

denotes a variable cost of a repair (or a replacement for c~tar (. )), i.e. some function of 

length of this service. If the MC approach is applied, then the variable costs can be modelled 

in various ways, e.g. , an additional random distribution, which is related to RT; or PT; , can be 

used. 

As it was mentioned, I assume that the value of money depends on time in the 

considered setting. Therefore, the concept of a present value (or a future value), which is 

widely known in financial mathematics, is applied (see, e.g. , [7,27]). It is especially useful , if 

we are interested in a long time horizon T (like 20 or even 50 years) for which the estimated 

costs of the maintenance services should be calculated. And these costs, for different 

management decisions and possible scenarios, can be easily compared for the same, present 

time, i.e. t = 0. It leads to a straightforward way to select the best decision, taking into 

account a financial risk. 

To calculate the present value of the total sum of the costs of repairs and replacements 



PV (c) L PV (cUl (t )) l,J l (6) 

some model of an interest rate should be used, in order to find a discounting factor PV (.) for 

each cUl (t;). In the following, the one-factor Vasicek model (see, e.g. , [7]) 

(7) 

is used, where rt is a value of the interest rate at time t, Wt is the standard Brownian motion, 

and a, b, a are parameters of this model. Moreover, b characterizes a long term mean level 

(i.e. the trajectory of rt is directed to this value during its long run), a reflects speed of 

reversion towards b, and a is an instantaneous volatility (variability) of the trajectory 

introduced by the random component Wt. 

In the MC setting, a relevant iterative scheme for a generation of increments firt of the 

process (7) should be used (see, e.g., [7]). The values of rt for the fixed moments O = t0 < 

t1 < · · · < tn are given by 

rt;+, = exp( -a(t;+1 - t;) h, + b ( 1 - exp( -a(t;+1 - t;))) 

1 - exp(-2a(t;+1 - t;)) 
+ a 2a Z;, 

where Z1,Z2 , •.. ,Zn are iid samples from N(O, /). Also a cumulative factor 



which is necessary to evaluate the present value, can be easily approximated (see, e.g. , 

[7,26,27] for a more detailed discussion). 

As it is pointed out in [26] , if a variable interest rate is assumed (like the one-factor 

Vasicek model in this paper), then obtained results are different from an output for a model 

with a constant interest rate. I will also show these differences in examples in Section 6. 

5. Optimization procedure 

In numerical examples, which are presented in Section 6, I am interested in various 

statistical measures, which are important for an analysis of the maintenance costs. In practical 

situations, a decision maker is also confronted with different scenarios, concerning values of 

some parameters. Because of stochastic nature of the introduced process of the interest rate 

(7) and behaviour of the WDS itself, a relevant optimization procedure is necessary. There are 

various methods, which can be used to solve the mentioned min-max problem with a 

stochastic background (see, e.g. , [9]). However, in the following, I apply the Kiefer

Wolfowitz (KW) algorithm (see, e.g. , [2]) with some alternations, which are necessary for the 

considered setting. 

In general , an iteration scheme of the KW algorithm is based on a formula 

(8) 

where X1 is an initial value, an and en are two real-valued, deterministic tuning sequences, 

and /(Xn + en), /(Xn - en) are estimators (which are usually based on the MC approach) of 

a goal function f (. ) for Xn + Cn and Xn - Cn. The aim of the sequence (8), which is produced 

by this algorithm, is to minimize the value off (x), taking into account the decision parameter 

x. Speed and quality of a convergence to this minimum depend on the tuning sequences an 



and Cn (see, e.g., [2] for a more detailed discussion of some necessary requirements for these 

sequences). 

Usually, the estimators /(Xn + en) , /(Xn - en) are based on only single Monte Carlo 

samples, which are drawn from the relevant functions f(Xn + Cn),f(Xn - Cn), But in some 

cases, a more sophisticated approach is necessary. As in the considered setting, a function 

f (x) can behave in a very varied and unpredictable way, because of its stochastic nature. 

Therefore, the mentioned estimators, which are calculated as standard Monte Carlo averages, 

should be based on larger samples. Additionally, it can be profitable to store estimated values 

off(.) for previous steps of the algorithm, not only for the last one. 

In the following, the numerical experiments are focused on an optimization of the 

maintenance costs, if the unconditional replacement age P' is a decision parameter in (8). 

Strictly speaking, my aim is to find 

minp• EPV (c) , (9) 

i.e. a minimum of the expected, present value of the total sum (6), if P' is a decision 

parameter. From a practical point of view, the unconditional replacement age is very 

significant for a decision maker, especially if a long time horizon is taken into account. Of 

course, other characteristics of the WDS can be also treated as decision parameters, but the 

presented approach is applicable in these cases, too. 

6. Example of numerical analysis 

Now I apply the KW algorithm and the Monte Carlo simulations to find an optimum value of 

the unconditional replacement age P', which is a solution of the problem (9). In order to do 



this, I present a simplified example, but similar to a real-life case. In this analysis, the HRF, 

given by(]), is used to simulate times of the failures. 

I will start from a general description of the parameters in Section 6. 1. Then, in 

Section 6.2, I will present assumed numerical values of these parameters for a strictly crisp 

case. These values are used further, in Section 6.3, to find an optimal value of P' in the 

considered optimization problem. Also some other statistical measures of the maintenance 

costs are estimated there. In Section 6.4, I will discuss possible problems with suboptimality 

of the obtained solution. A dependency between the assumed model ofan interest rate and the 

optimal solution for P' is also considered there. Then, in Section 6.5, 1 will recall basic 

definitions and notation concerning a fuzzy approach. This fuzzy approach will be used in two 

analyses afterwards: firstly, when some parameters of the introduced HRF are fuzzified 

(Section 6.6), and secondly, to decide, if the estimated output is more prone to impreciseness 

related to the constant or to the variable parts of the costs (Section 6. 7). The results of all of 

the analyses will be summarized in Section 6.8. I will conclude this example with some 

remarks about a possibility of using the presented approach in practical application (Section 

6.9). 

6.1. General description of the parameters 

Taking into account the previous considerations, the parameters of the whole model , 

which are used in simulations, can be divided into four groups: 

I. parameters of the given type of the connection, which are related to the HRF 

given by ( I), i.e. a0 , a 1, x' , y', ar, n,. , 

2. parameters, which depend on the type of the connection, its location etc. , and 

they are related to the maintenance costs cR,const, cP,const, cR,var(-), cP,varC·) 



or to the lengths of times of necessary services (i.e. repairs and replacements), 

like parameters of the random distributions for RT; and PT; , 

3. parameters of the interest rate model , which are related to the financial setup 

(7), i.e. r0, a, b, CT, 

4. other parameters, like P' and time range for the whole simulation T. 

6.2. Applied parameters for the crisp case 

Firstly, I focus on the strictly crisp case. In a further numerical analysis, to simplify 

my considerations, I model a WDS, which consists of 20 connections of one type of a pipe. 

Let us assume, that one year is time unit, and x' = 0.5,y' = 1. It means, that after half of a 

year, the HRF of the time to a failure changes its behaviour and after a bum-in period, a 

connection is in its wear-out period. In general, these values can be given by some expert. 

And such a source combines an insight knowledge with a classical, probabilistic approach. 

I also assume, that a0 = a1 = l. It means, that the linear parts in the function (I) 

lean at an angle of 45 degrees and, if there is no previous repairs, the expected value of time 

to a next malfunction is equal to 0.715 of a year. This value can be easily found using 

numerical software, like, e.g., Mathematica. As it is seen from(!) , if there are some previous 

repairs, the whole HRF shifts upward by a multiplication of the parameter ar and the number 

of the previous repairs nr. Let us assume, that ar = 0.2. Then, after one repair, the time to a 

next malfunction is shortened to 0.635 (about 11 %). 

The next set of the parameters is related to the maintenance costs. In the following 

analysis, I apply one monetary unit assumption and set cR,const = 1, cP,const = 3, cR,varCt) = 

l00t, cP,varCt) = lO0t. Then, the constant cost of a replacement is three times greater than 

the constant cost of a repair, and the variable costs are linear functions of time, which is 

necessary for these services. Also, the variable cost of a replacement is the same as the 

.. 



relevant cost of a repair, which is equal to about 0.274 per day (plus the constant cost, which 

is paid once). Additionally, time of the maintenance service should be also modelled in some 

way. In the following, I apply the exponential random variable to describe both the time of a 

repair (with a paran1eter ilR for its density) and the time of a replacement (with a parameter 

ilp , respectively). Other random distributions, like, e.g. , the lognom1al distribution, are also 

useful and have a significantly practical meaning in this area. In this case, I set ilR = 365 (so, 

the expected value of the time of a repair is equal to one day) and ilp = 182.5 (then, the 

expected value of the time ofa replacement is equal to 2 days). 

Of course, in practical applications the relevant parameters of the considered 

connections should be estimated from real data (or based on the experts ' opinions). 

The last group of the parameters, which is mentioned in Section 6.1 , describes the 

interest rate model. For the one-factor Vasicek model , which is analysed in this paper, it is 

assumed that 

a= 0.1, b = 0.05, r0 = 0.04, O" = 0.001 

and a very long fifty years horizon of the financial analysis of the maintenance costs is 

considered (i.e. , T = 50). Therefore, comparing with (26] , even longer time period is taken 

into account. 

6.3. Results of the optimization procedure in the crisp case 

Now, when all of the necessary parameters are set, the KW algorithm for finding the 

solution of the problem (9) can be started. 

In the following analysis, I use P; = 5 as an initial value. As it was mentioned in 

Section 5, because of stochastic nature of the estimators /(P,'; + en) , /(P,'; - Cn) , the KW 



algorithm has to be slightly modified. Therefore, to calculate the values /(P;_ + en), /(P;_ -

en), m = 100 000 simulations are conducted for each of them and the relevant Monte Carlo 

averages are found. 

After 50 steps of the KW algorithm, an optimal value of P' , which solves the problem 

(9) is achieved. In the considered case, it is equal to 3.58. Now, let us compare various 

statistical measures of the maintenance services for this optimal value P" = 3.58 and the 

starting point P0 = 5. I examine an estimator of the discounted costs of services (PV(c)), an 

average number of repairs (xR) and unconditional replacements (xp) , a minimum cost of a 

repair (min cR) and an unconditional replacement (min Cp ), an average cost of repairs (cR) 

and replacements (cp) , a maximum cost ofa repair (maxcR) and a replacement (maxcp ), a 

standard deviation of costs of repairs (sd(cR)) and replacements (sd(cp)). 

As it is seen from Table I, (PV(c)) is reduced about 3.39%, if the optimal value of P' 

is used and a value of xR is reduced even more, about 14.21%. It means, that the overall 

discounted costs are now smaller and the repairs are more rare. In contrary, a value of Xp is 

greater for P" about 44.44%. Therefore, in this case, the more often unconditional 

replacements lead to a decrease of the number of repairs . Statistics for the cost of a single 

repair or a replacement are very similar for the both values of P' , so they do not affect the 

obtained conclusions. 

Measure P" = 3.58 P0 = 5 

PV(c) 1307.52 1353.36 

XR 1929.56 2266.41 

Xp 260 180 



mincR I 1 

maxcR 6.39567 6.22472 

CR 1.27371 1.27373 

sd(cR) 0.273725 0.273755 

mincp 3 3 

maxcp 12.3977 12.4351 

Cp 3.54815 3.54807 

sd(cp) 0.547971 0.548069 

Table 1. Companson of statistical measures of the mamtenance services for the optimal value 

and the starting point. 

6.4. The optimization procedure - additional remarks 

Of course, if the KW algorithm is applied, it is possible, that instead of an optimal 

point, some suboptimal value is found. However, it is not a case in the considered example. In 

Figure 6, PV(c) is plotted as a function of P' and denoted by circles. As it is seen, this 

function has a clear U-shape. On the other hand, Figure 7 allows us to analyse behaviour of 

the averages xR (a plot denoted by squares) and Xp (a plot denoted by diamonds). The 

average number of repairs grows rapidly fast, if it is compared to a slow decrease of the 

average number of replacements. Then, clearly, it is fruitful for a decision maker to choose 

the calculated optimal value of P' , instead of greater or lower one. 
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Figure 6. Plot of PV(c) for the one-factor Vasicek model (circles) and a nominal value 

(triangles) as a function of P' . 
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Figure 7. Plot ofxR (squares) and Xp (diamonds) as functions of P'. 

It was noticed in [26), that if a nominal value of the cash flow or a model with a 

constant yield is used, this leads to an incorrect estimation of the costs of the maintenance 

services. Because now I consider an optimization approach, a similar problem should be 

formulated - if other optimal value of P' will be found, when the model , which describes the 



cash flows, is changed? I apply the KW approach also for the model with nominal values of 

the cash flows (i.e. , a value of one unit of money is constantly the same, there is no 

discounting). Then, the optimal value of P' is calculated as 3.34, which is about 6.7% lower 

than P" = 3.58. 

Also averages of the costs can be compared. In Figure 6, apart from PV(c) , for the 

one-factor Vasicek model , a similar average for a nominal value of the cash flow as a function 

of P' is plotted and denoted by triangles. As it is easily seen, if a value of money is not taken 

into account, the nominal average cost of the maintenance services are overestimated and the 

optimal value of P' is shifted to the left hand side. 

6.5. Fuzzy approach - basic notation and definitions 

As it is noticed in many papers (see, e.g, [6,8, I 0,26]), some sources of impreciseness 

can be easily modelled by a fuzzy approach, so a value of such an imprecise parameter can be 

based on expert' s knowledge. This approach is especially very important, when data is sparse 

and various data analysis methods, like statistics, are not usable or even not possible. Then, 

taking into account opinions of the experts, the necessary parameters of the model can be 

described, e.g. , as "the value of this parameter is about 5". Because these opinions have not 

completely precise forms (like real numbers), fuzzy numbers are an obvious model to 

describe such statements. 

In [26] , an important step in an application of a fuzzy setting for simulations of the 

maintenance costs was made. Now, I conduct similar analysis, but for the new model of time 

of the failures , which was proposed in Section 2. 

l start form basic definitions and notation concerning the fuzzy approach, which will 

be used in the further part of the paper. Additional details can be found in, e.g., [14]. 



For a fuzzy subset A of the set of real numbers R I denote by µ7, its membership 

function µ7,: R --. [O,l] and by A[a] = {x: µ7,(x) ;::: a} the a-level set of A for a E (0,1]. 

Then A[O] is the closure of the set {x: µ7,(x) > 0}. 

A fuzzy number a is a fuzzy subset of R for which µ7, is a normal , upper

semicontinuous, fuzzy convex function with a compact support. Then for each a E [0,1] , the 

a-level set a[a] is a closed interval of the form a[a] = [ai[a], au[a]] , where ai[a], au[a] E 

Rand ai[a] :s; au[a]. 

A left-right fuzzy number (which is further abbreviated as a LRFN) is a fuzzy number 

with the membership function of the form 

{
Le=:), x E [a, b] 

() - l,xE[b,c] 
µa X - (d-x) ' R - , x E [c,d] 

d-c 

0, otherwise 

where L, R: [0,1] --. [0,1] are non-decreasing functions , such that L(0) = R(0) = 0 and 

L(l) = R(l) = 1. A triangular fuzzy number, denoted further by [a, b, c], is a LRFN with 

the membership function of the form 

{
~, x E [a,b] 
b-a 

µa(x)= :=:, xE[b,c]· 

0, otherwise 

In my further investigation, behaviour of a function f(x) plays a crucial role. In order 

to approximate a fuzzy output f (5<) for some fuzzy parameter i , monotonicity off (x) should 

be checked. If f(x) is an non-decreasing function, then for the given a , the left end point 



fL [a] is approximated using the crisp value xi[a]. The same applies for fu [a] and xu[a]. 

In contrary, if f(x) is an non-increasing function, xu[a],xi[a] are applied to evaluate 

[fL [a]Ju [a]] (see, e.g., (19,26]). 

6.6. Numerical analysis for the fuzzified parameters x', y' 

After the strictly crisp case, its fuzzy counterpart can be discussed. First, I assume that 

x',y' are modelled by triangular fuzzy numbers and all of other parameters are given as crisp 

values, which are the same as in Section 6.2. As it was indicated, both x' and y' can be based 

on experts ' knowledge, therefore fuzzy numbers are obvious tool to model these paran1eters. 

In the following, I set i' = [0.25,0.5,0.75] and y' = [0.5,1,1.5]. It means, that a horizontal 

coordinate of the point, where the introduced HRF (]), changes its behaviour is "about 0.5'', 

and its vertical coordinate is "about I", with impreciseness equal to "plus / minus 50%". 

Using these fuzzy values i',y' , the Monte Carlo estinlator of the discounted cost of services 

PV(c) for the previously estimated optimal point P" can be found. As it is seen in Figure 8, 

the output is a LRFN, which is slightly right-skewed. Its support is equal to 

[979.649,1769.21], which is -25% and +35%, if this interval is compared to a core of PV(c) 

(and, at the same time, the crisp value of PV(c) , which was estimated in Section 6.2). 

TI1erefore, the parameters x',y' have important impact on the estimated discounted costs. 
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Figure 8. Plot of PV(c) as a fuzzy number for i' = [0.25,0.5,0.75] and ji' = [0.5,1,1.5]. 

Moreover, a fuzzification of the parameters x ' , y' has an impact on the average 

number of the repairs. As it is seen in Figure 9, for i' = [0.25,0.5,0.75] and y' = 

[0.5,1,1.5], the relevant fuzzy average iR is also a LRFN, which is slightly right-skewed. Its 

support is equal to [1271.46,2859.13], which is -34% and +48%, if this interval is compared 

to the core ofiR. Therefore, a variability ofiR is higher than for PV(c). It also means, that an 

optimal value of P' should be found for each single analysed set of x',y'. For example, 0-cut 

(i.e. , a-cut of a fuzzy number, for which a = 0) of P' is equal to [3 .15,4.45] for the 

previously mentioned values ofi' and y'. Estimators of PV(c) and statistical measures of the 

costs of repairs and replacements for the left and the right end of this 0-cut can be found in 

Table 2. 
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Figure 9. Plot ofiR as a fuzzy number for i' = (0.25,0.5,0.75] and y' = (0.5,1,1.5]. 

Measure Pi[0] = 3.15 Pu[0] = 4.45 

PV(c) 1758.44 968.028 

XR 2720.12 1389.72 

ip 300 220 

mincR I 1 

maxcR 6.32746 6.01543 

CR 1.27363 1.27373 

sd(cR) 0.273637 0.273719 

mincp 3 3 

maxcp 12.2116 12.3969 

Cp 3.54795 3.54803 

sd(cp) 0.547883 0.548142 

Table 2. Comparison of statistical measures of the maintenance services for the left and the 

right end of P' [0]. 



6.7. Numerical analysis for the fuzzified parameters of the costs 

Apart from the parameters of the HRF, an influence of a fuzzification of other values 

can be analysed. For example, a decision maker can be interested in finding an answer, if the 

constant values of repairs and replacements or their variable counterparts are more prone to an 

impreciseness in an expert's opinion. Once again, the Monte Carlo simulations lead to a 

straightforward solution of this problem, which can be seen in Figure I 0. In this case, I 

assume, that the relevant costs are "about plus I minus 10%", i.e. cR,const = (0.9,1,1.1], 

cP,const = (2. 7,3,3.3] (the plot for the fuzzified constant values, which is labelled with 

squares) and ER.var= [90,100,110], cP,var = [90,100,110] , (the plot with circles, for the 

fuzzified variable parts). As it is easily seen, the constant parts of the maintenance costs have 

more important impact on the estimated total costs. In both cases, the outputs are triangular 

fuzzy numbers. For the considered fuzzy constant costs, its support is given by +/- 1.98% (if it 

is compared to the "crisp" estimator of PV ( c) and in the case of the fuzzy variable costs, its 

support is more wider(+/ - 8%). 
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Figure IO. Plot of PV(c) as a fuzzy number for ER,const = [0.9,1,1.1] , EP,const = [2.7,3,3.3] 

(squares) and cR,var = [90,100,110], Cp,var = [90,100,110] (circles). 



Of course, more than one source of impreciseness, which is modelled by a fuzzy 

approach, can be analysed. Using the Monte Carlo simulations, it is possible to observe 

interactions among many sources, e.g., the parameters of the HRF, the costs etc. 

6.8. Summary of the results 

Taking into account the previous analyses, some remarks about their results can be 

highlighted: 

• In the considered case, the overall discounted costs of the services are smaller 

(about 3.39%) and the repairs are even more rare (about 14.21 %) for the 

optinial solution. The costs of a single repair or a replacement are not affected 

by the optimization procedure. 

• It is possible, that application of nominal values of the cash flow, instead of a 

more realistic model with a variable interest rate, leads to incorrect results for 

the optimization procedure just like other statistics of the costs. 

• A fuzzification of various parameters of the introduced models is possible. For 

example, fuzzy values of i' and y' have a significant impact on the estiniated 

discounted costs and the evaluated average number of repairs. Additionally, the 

optimization procedure should be applied for each single analysed set of these 

parameters. 

• Using simulations and the fuzzy approach, many practical problems can be 

solved. In the considered fuzzy case, it turns out, that the constant parts of the 

maintenance costs have greater impact on the estimated total costs than their 

variable counterparts. 



6.9. Towards a practical application 

As it was mentioned, the previously presented example is a simplified one. However, some of 

its aspects can be directly carried to a real life application. For example, instead of only 20 

connections of one type, a few hundreds or even a few thousands of connections together with 

many types can be considered. It can be achieved using the Monte Carlo simulations, because 

the HRF, which is introduced in this paper, is a numerically very efficient algorithm. The 

same applies for the optimization procedure, which is linearly dependent on the number of the 

samples (i.e. connections). 

It seems, that a more complex problem is related to an estimation procedure for the 

applied parameters. If many connections are considered, then it can be quite laborious to 

estimate the necessary parameters of the HRF for each single type of a connection. In 

practical situations, it is also possible, that other kinds of the costs (see also the discussion in 

Section 4) and other effects (like a requirement to repair a whole group of connections in one 

time) should be taken into account. This directly leads to a more complicated model and 

longer time of the necessary simulations. 

7. Conclusions 

In this paper, a new kind of a hazard rate function for time between malfunctions of a 

pipeline is proposed. This HRF is a V-shape function, which also depends on a number of 

previous repairs of the given connection. Moreover, times of malfunctions can be easily 

generated with the Monte Carlo simulations, if this HRF is applied. Then, a model of costs, 

which is related to a type of a performed service and its length, is also introduced. 

These costs are dived into two parts, which facilitates an application of this approach 

in real-life situations. To calculate a present values of the maintenance costs, the one-factor 

Vasicek model is used. It is noticed during a more detailed analysis, that the obtained results 



strictly depend on the assumed type of a discount factor (i.e. if it is variable interest rate or a 

constant yield). During this numerical analysis, a behaviour of the whole WDS is simulated 

using the Monte Carlo approach. Afterwards , the costs of the maintenance services (i.e. 

repairs and replacements) are evaluated and statistically summarized. In this paper, a main 

aim of the conducted simulations is to minimize these maintenance costs. Therefore, an 

optimization procedure, which is based on the Kiefer-Wolfowitz algorithm, is applied. Apart 

from the strictly crisp setup, fuzzification of some parameters of the introduced models is also 

considered. Such an application of fuzzy numbers leads to a better incorporation of the 

experts' knowledge and more proper, closer to real-life situations, modelling of these 

uncertain parameters. Some relevant examples of the simulated output for both the crisp and 

the fuzzy settings are also provided. 
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