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Abstract

Statistical Quality Control (SQC) is an important field where both theory of prob-
ability and theory of fuzzy sets may be used. In the paper we give a short over-
view of basic problems of SQC that have been solved using both these theories
simultaneously. Some new results on the applications of fuzzy sets in SQC are
presented in details. We also present problems which are still open, and whose so-

lution should definitely increase the applicability of fuzzy sets in quality control.
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1. Introduction

Statistical Quality Control (SQC) is probably the most popular
application of statistical methods. It was introduced more than
eighty years ago, and since that time it has been used by thousands
of practitioners. One of its methodologies, acceptance sampling, has
been so successful, that for some statisticians it is the most convinc-

ing example of the applicability of the “frequentist” approach to
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probability and statistics. Thus, SQC is a firmly established meth-

odology with many practical applications.

1t is frequently observed in the case of application-oriented meth-
odologies, like SQC, that practitioners raise questions while facing
problems with the practical application of basic concepts. Many of
these problems are caused by unnecessary — in view of practitioners
— precision, required for the description of quality requirements and
statistical data. Solutions for those problems that are offered by theo-
reticians are frequently viewed upon as impractical, and thus ignored
in practice. Some twenty years ago it appeared to specialists in SQC
that the theory of fuzzy sets proposed by Lotfi A. Zadeh provides
useful tools for dealing with many practical problems related to the
lack of precision in statistical data and imprecisely defined quality
requirements. In the paper we are going to present the way, how

fuzzy sets have been incorporated in theory and practice of SQC.

In the second section of the paper we present the basic practical
problems of SQC that triggered interest of specialists working in
quality control to fuzzy sets. In the first subsection of this section we
present an overview of some solutions proposed by the pioneers of
the application of fuzzy sets in this area. In the second subsection we
present an original methodology for designing fuzzy acceptance
sampling plans for attributes which may be used for the analysis of
fuzzy data. In the third section of the paper we present the state of

the art of current research activities in the applications of fuzzy sets
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in SQC. Finally, in the last section of the paper, we discuss some
important challenges that face both theoreticians of fuzzy probability
and statistics and practitioners of SQC. Overcoming these difficul-
ties seems to be a prerequisite for the future practical successes of
the fuzzy methodologies in quality control, and related areas like re-

liability and safety analysis.

2. Application of Fuzzy Sets in Statistical
Quality Control

2.1 Fuzzy methodology in Statistical Quality Control — an

overview

Basic ideas of SQC have been developed in parallel with the ideas
of statistical testing. Thus, some basic concepts of SQC, like, e.g.,
producer’s and consumer’s risks, have their clear statistical interpre-
tation, and the theory of statistical tests has been used in designing
of SQC procedures. However, in the 1950’s some specialists in SQC
noticed that economic consequences (a wide variety of costs) of the
applied procedures should be taken into account. For example, there
exists an obvious relationship between economic consequernces of
the usage of SQC procedures and such concept as allowable risk.
Unfortunately, these consequences are never precisely known, so
crisp “economic-oriented” models of SQC procedures have not been

used in practice. Thus, the lack of precision in the estimation of in-
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volved costs leads to an obvious conclusion that the requirements for
the statistical characteristics of SQC procedures should be defined in

a “softer” way.

First attempts to “soften” classical SQC procedures were made in
the area of acceptance sampling. In the case of the simplest and the
most frequently used procedure of acceptance sampling by attrib-
utes, inspected items are classified as either conforming or noncon-
forming. A random sample of » items is taken from a lot (or a proc-
ess), and the number of observed nonconforming items d is
recorded. If this number is not greater than a certain acceptance
number ¢, the whole lot is accepted. Otherwise, it is rejected with
different consequences of this action. Thus, any single acceptance
sampling plan by attributes is described by a pair of integers (n,c). In
order to find the values of » and ¢, we usually specify four parame-
ters: producer’s quality level pg, consumer’s quality level p;, pro-
ducer’s risk &, and consumer’s risk 4. The values of pg and p; are
usually expressed in terms of fractions (or percentages) of noncon-
forming items in a lot or a process. The value of pg is assumed to be
acceptable, and the value of p; is assumed to be non-acceptable. The
value of « represents the probability of wrongly rejection of in-
spected lots of good quality (i.e. when the actual fraction noncon-
forming in the lot is equal to pg), and the value of S represents the
probability of wrongly acceptance of inspected lots of bad quality

(i.e. when the actual fraction nonconforming in the lot is equal to
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p1).  The required sample size », and the acceptance number ¢, we

find from the following inequalities:

{P( po)2l-a (€)]
(p)<p

where P(p) is the probability of acceptance when the actual quality
level is equal to p.

Ohta and Ichihashi [19] were first authors who considered “sof-
tening” of (1) in a special case, when the requirements are stated in a
form of equalities. A generalization of (1) with fuzzy inequalities
wag discussed by Kanagawa and Ohta [16]. In the most general case

a fuzzy equivalent of (1) can be expressed as

{P(ﬁo)z 1-& ®
P(p)< B

where P(P) denotes the probability that a lot of imprecisely defined
(fuzzy) quality p will be accepted. Solution to (2) was considered
by Tamaki et al. [23], who solved a certain fuzzy mathematical pro-
gramming problem with modal (possibility or necessity) constraints.
Another solution to (2) was proposed by Grzegorzewski (9}, who
applied a methodology of fuzzy hypothesis testing proposed by Ar-
nold {1].

Another important field of SQC is Statistical Process Control
(SPC). The main tools of SPC are control charts introduced by W.
Shewhart in the 1920°s. Control charts are widely used in production




Olgierd Hryniewicz:  Statistics with fuzzy data .. 6

practice where both quality requirements and quality data are usually
precisely defined. Therefore, applications of fuzzy sets in SPC are
not so obvious as in the case of acceptance sampling. Nevertheless,
first attempts to propose fuzzy control charts appeared in the late
1980’s in papers by Wang and Raz [26], and Raz and Wang [21]. In
these papers it has been assumed that the set of possible fuzzy values
of observations is finite, and the membership functions of such ob-
servations are given in advance. The fuzzy sample mean is then
represented by a certain crisp value. This value is plotted on a chart
whose control lines are calculated using defuzzified values of previ-
ous observations. Kanagawa et al. [17] also assumed that the fuzzy
values of observed statistics are represented by certain crisp values,
and proposed a more general, but very complicated from a practical
point of view, construction of a control chart. Control charts pro-
posed in [17], [21], and [26] are relatively easy to use. On the other
hand, their assumptions are not very realistic, and due to the usage
of defuzzified values of sample statistics some important informa-

tion may be lost.

2.2 Fuzzy acceptance sampling plans for fuzzy data

Fuzzy acceptance sampling procedures mentioned in the previous
section have been proposed for working with precise statistical data.
However, in many practical cases it is difficult to classify inspected
items as “conforming” or “nonconforming”. We face this problem

rather frequently when quality data come from users who express
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their assessments in an informal way, using such expressions like
“almost good’, “quite good”, “not so bad”, etc. First attempts to cope
with the statistical analysis of such quality data can be found in
Hryniewicz [13], who assumed that the quality of each inspected
item is described by a family of fuzzy subsets of a set {0,1], with the

following membership function
Ho |0+ iy 11,05 gag, py <1, max{psg, g} =1, &)

where the notation wuk stands for <membership grade>|<value>.
Thus, equation (3) defines a possibility distribution on a binary set
representing the result of the test.

When an inspected item “in general, fulfils quality requirements”,
the result of quality assessment is expressed as a fuzzy set with the
membership functionl|0+ g, |1. Fully conforming items are de-
scribed by crisp sets. In this case the membership function is given
by 1{0+0]|1. On the other hand, if an inspected item “in general,
does not fulfill quality requirements”, the result of quality assess-
ment is expressed as a fuzzy set with the membership function

#,10+1]1, and fully nonconforming items are described by crisp

sets with the membership function 0{0+1}1.

Let us now consider the mathematical model for the process that
generates such fuzzy data. Let X be a random variable describing
quality of an inspected item. If the observed values of X are fuzzy

we can describe them using the notion of &cuts. Let & € (0,1] be
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the level of the &-cut. For this level there exist three possible ob-
served values of X: A° = {0}, 47 ={0,1}, and 47 = {1}, where {0}
means that the inspected item is considered as conforming, {1}
means that the inspected item is considered as nonconforming, and
{0,1} means that (at the given & level) it is not possible to distin-
guish if the inspected item is conforming or nonconforming. Let us
introduce now the following probabilities: pJ =P(X =4;),
P =P(X=47), and p] = P(X = A7), where p& + pl + pl =1.
Hence, at the given & level, the result of inspection X is described
by a three-point probability distribution. This distribution induces a
Shafer belief function on the binary frame representing the result of

the test of an individual item.

If a sample of » items is inspected the result of inspection is de-

scribed by a random vector (X, X,,..., X, )

Let

=A4° 4
b= 103
0 otherwise

@MP{

be the indicator function describing the result of the inspection of

one item, and

3 , ®
K? =;]AI,(X,.),1=1,2,3.
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Then, at the given & level, the result of the inspection of the whole

sample is described by a trinomial distribution

P(Kla =kl,Kf=k2,K35 =k3)=7€%(P§0)kl (pgl)h(Pl’;l)h ©
-7y 0y

In quality control we are interested in the evaluation of the fraction
of nonconforming items that are either surely observed (X =4} ) or
only possibly observed (X =A] ) Therefore, the probability of ob-
serving a nonconforming item is, at the given & level, represented as
an interval p] = [p{‘,, Pl p‘fl]. The set of such intervals (for all
& € (0,1]) defines the fizzy probability of finding a nonconforming
item that describes the previously defined fuzzy observations. When
results of a test are crisp, the total number of nonconforming items
in a sample is distributed according to a binomial distribution. Thus,
in the considered fuzzy case it is described by a fuzzy random vari-

able distributed according to a fuzzy binomial distribution.

Assume now, that in the sample of » items in » cases the quality
of inspected items is characterized by fuzzy sets described by the
membership function gy, |0+1[1,i=1,...,n and in the remaining
n, =n-—n, cases by a fuzzy set described by the membership func-
tionl| 0+, |1,i=1,...,n,. Without loss of generality we can as-
sume that O<p, <<y, <1, and 124, 2.2, 20,

Hence, the fuzzy total number of nonconforming items in this sam-
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ple, calculated using Zadeh’s extension principle, is given by
Hryniewicz [13]:
d= |0+ g, [T+, 41 + @)

+ 4y, '(”l +1)+--~+/‘1,n, l(”l +”z).

This number has to be compared with a fuzzy acceptance number
¢ which can be found using a methodology for the design of fuzzy
acceptance sampling plans suggested by Hryniewicz [13], and de-
scribed in details below.

Let us assume that the parameters pq, p1, &, and S that describe an

acceptance sampling plan are imprecisely defined by triangular

fuzzy numbers p, = (pOL:PuD’Pau) s BL =P Pl Pro) s

&=(a,,a,,ay),and B =(B,,B,.5, ), respectively. Using the re-
sults of Hald [12] we can calculate the sample size # as the solution

(rounded to the nearest integer) of the following equation

”(Plo —PS)—*/;(,Vl-ﬂOW-YI-RBM)+(k. —ky)=0, ®)
where
g0 =1=pos g =1=pl sy =Yg 1) = Vip, ®
and
K, =-05+(g0 - pPJu? -1}/ 6,1 =0,1. (10)

By y, we denote the quantile of order y in the standard normal dis-

tribution.
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When all parameters used for the design of the sampling plan (po,
21, a, ) are crisp, we can use an approximate formula proposed by
Hald [12] for the calculation of the acceptance number c. In the case
of fuzzy values of these parameters we can use Zadeh’s extension
principle to fuzzify the value of c. The fuzzy acceptance number ¢
can be described by its &-cuss. For the given & level we can calcu-

late the interval (cf,c{f) with limiting values calculated from the fol-

lowing expressions:

ci = in (ot )["(Po +P1)+‘/;()’l-a\/}70qo VgV P )+
4

- Po f(‘;ffL fiu h

aelay o JOe\fy .
+(ky +4,)]72
(1n

)= sup (o + 2,)+ V(o Pods ~ 2ipPrs )+
poslode.els) IE(MZ; siy)
”’ETGL “ay tﬂEC’i’ v/’u)
+ (kg +4,)]72
(12)

All the symbols in the formulae (11) and (12) have the same inter-

pretation as in (8).

Let c,c,,...,c, besetofall integers that belong to the support of
the fuzzy set ¢, defined by the §—cuts (c,‘f,cg ), and let us denote its

membership function by x, (c) Now, for each ¢,,i =1,...,m let us
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define the interval 4, =[c, - 0,5,¢, +0,5). Next, for each
¢;,i=1,..,m let us calculate the following values of a membership

function

p(c,):sup,uo(c),i=l ..... m. (13)

Hence, the fuzzy equivalent ¢ of an acceptance number ¢ may be

defined by the following fuzzy set:

E':/’(Cl)lcl+"'+/"(ci)'c.+"'+/’(cm)lcm- (14)

The decision to reject the sampled lot or process has to be taken if

the inequality d > holds. It is a well known fact that a unique
method for the comparison of two fuzzy numbers does not exist.
Therefore, in practice we have to use one of the methods which have

been proposed for that purpose.

Let /J(x) be the membership function of the fuzzy set X, and
v( ») be the membership function of the fuzzy set 7. The Possibility

of Strict Dominance (PSD) index, introduced by Dubois and Prade
[6], that measures the possibility that X strictly dominates ¥, is

calculated from the following formula

PSD(¥ » )= sup{ inf [min(p(x),l - V(y))]} . (19)

x  |pasy














































