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Abstract 

Statistical Quality Control (SQC) is an important field where both theory of prob­

ability and theory of fuzzy sets may be used. In the paper we give a short over­

view of basie problems of SQC that have been solved using both these theories 

simultaneously. Same new results on the applications of fuzzy sets in SQC are 

presented in details. We also present problems which are stili open, and whose so­

lution should definitely increase the applicability of fuzzy sets in quality control. 

Key words: fuzzy sets, statistical quality control, acceptance sam­

pling, statistical process control, control charls 

1. lntroduction 

Statistical Quality Control (SQC) is probably the most popular 

application of statistical methods. lt was introduced more than 

eighty years ago, and since that time it has been used by thousands 

of practitioners. One of its methodologies, acceptance sampling, has 

been so successful, that for some statisticians it is the most convinc­

ing example of the applicability of the "frequentist" approach to 
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probability and statistics. Thus, SQC is a firmly established meth­

odology with many practical applications. 

It is frequently observed in the case of application-oriented meth­

odologies, like SQC, that practitioners raise questions white facing 

problems with the practical application of basie concepts. Many of 

these problems are caused by unnecessary - in view of practitioners 

- precision, required for the description of quality requirements and 

statistical data. Solutions for those problems that are offered by theo­

reticians are frequently viewed upon as impractical, and thus ignored 

in practice. Some twenty years ago it appeared to specialists in SQC 

that the theory of fuzzy sets proposed by Lotfi A. Zadeh provides 

useful tools for dealing with many practical problems related to the 

Jack of precision in statistical data and imprecisely defined quality 

requirements. In the paper we are going to present the way, how 

fuzzy sets have been incorporated in theory and practice of SQC. 

In the second section of the paper we present the basie practical 

problems of SQC that triggered interest of specialists working in 

quality control to fuzzy sets. In the first subsection of this section we 

present an overview of some solutions proposed by the pioneers of 

the application of fuzzy sets in this area. In the second subsection we 

present an original methodology for designing fuzzy acceptance 

sampling plans for attributes which may be used for the analysis of 

fuzzy data. In the third section of the paper we present the state of 

the art of current research activities in the applications of fuzzy sets 
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in SQC. Finally, in the last section of the paper, we discuss some 

important challenges that face both theoreticians of fuzzy probability 

and statistics and practitioners of SQC. Overcoming these difficul­

ties seems to be a prerequisite for the future practical successes of 

the fuzzy methodologies in quality control, and related areas like re­

liability and safety analysis. 

2. Application of Fuzzy Sets in Statistical 

Quality Control 

2.1 Fuzzy methodology in Statistical Quality Control - an 

overview 

Basic ideas of SQC have been developed in parallel with the ideas 

of statistical testing. Thus, some basie concepts of SQC, like, e.g., 

producer' s and consumer' s risks, have their elear statistical interpre­

tatio n, and the theory of statistical tests has been used in designing 

ofSQC procedures. However, in the 1950's some specialists in SQC 

noticed thai economic consequences ( a wide variety of costs) of the 

applied procedures should be taken into account. For example, there 

exists an obvious relationship between economic consequences of 

the usage of SQC procedures and such concept as allowable risk. 

Unfortunately, these consequences are never precisely known, so 

crisp "economic-oriented" models of SQC procedures have not been 

used in practice. Thus, the Jack of precision in the estimation of in-
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volved costs leads to an obvious conclusion thai the requirements for 

the statistical characteristics of SQC procedures should be defined in 

a "softer" way. 

First attempts to "soften" classical SQC procedures were made in 

the area of acceptance sampling. In the case of the simplest and the 

most frequently used procedure of acceptance sampling by attrib­

utes, inspected items are classified as either conforming or noncon­

forming. A random sample of n items is taken from a lot ( or a proc­

ess), and the number of observed nonconforming items d is 

recorded. If this number is not greater than a certain acceptance 

number c, the whole lot is accepted. Otherwise, il is rejected with 

different consequences of this action. Thus, any single acceptance 

sampling plan by attributes is described by a pair ofintegers (n,c). In 

order to find the values of n and c, we usually specify four parame­

ters: producer's quality level po, consumer's quality level p1, pro­

ducer's risk a, and consumer's risk /J. The values of po and p 1 are 

usually expressed in terms of fractions (or percentages) of noncon­

forming items in a lot or a process. The value of po is assumed to be 

acceptable, and the value of p 1 is assumed to be non-acceptable. The 

value of a represents the probability of wrongly rejection of in­

spected !ols of good quality (i.e. when the actual fraction noncon­

forming in the lot is equal to po), and the value of /J represents the 

probability of wrongly acceptance of inspected lots of bad quality 

(i.e. when the actual fraction nonconforming in the lot is equal to 



< 
• 

Olgierd Hryniewicz: Statistics with fuzzy data„ 5 

p 1) . The required sample size n, and the acceptance number c, we 

find from the following inequalities: 

{P(p0 );:,: !-a 

P(p,)~/3 
(I) 

where P(p) is the probability of acceptance when the actual quality 

level is equal top. 

Ohta and lchihashi [ 19] were first authors who considered "sof­

tening" of ( 1) in a special case, w hen the requirements are stated in a 

form of equalities. A generalization of (1) with fuzzy inequalities 

was discussed by Kanagawa and Ohta [16]. In the most generał case 

a fuzzy equivalent of(!) can be expressed as 

(2) 

where P(p) denotes the probability that a lot of imprecisely defined 

(fuzzy) quality p will be accepted. Solution to (2) was considered 

by Tamaki et al. [23], who solved a certain fuzzy mathematical pro­

gramming problem with moda! (possibility or necessity) constraints. 

Another solution to (2) was proposed by Grzegorzewski [9], who 

applied a methodology of fuzzy hypothesis testing proposed by Ar­

nold [l]. 

Another important field of SQC is Statistical Process Control 

(SPC). The main tools of SPC are control charts introduced by W. 

Shewhart in the 1920's. Control charts are widely used in production 
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practice where both quality requirements and quality data are usually 

precisely defined. Therefore, applications of fuzzy sets in SPC are 

not so obvious as in the case of acceptance sampling. Nevertheless, 

first attempts to propose fuzzy control charts appeared in the late 

1980's in papers by Wang and Raz [26), and Raz and Wang [21]. In 

these papers it has been assumed that the set of possible fuzzy values 

of observations is finite, and the membership functions of such ob­

servations are given in advance. The fuzzy sample mean is then 

represented by a certain crisp value. This value is plotted on a chart 

whose control lines are calculated using defuzzified values of previ­

ous observations. Kanagawa et al. [17] also assumed that the fuzzy 

values of observed statistics are represented by certain crisp values, 

and proposed a mare generał, but very complicated from a practical 

point of view, construction of a control chart. Control charts pro­

posed in [17), [21], and [26] are relatively easy to use. On the other 

hand, their assumptions are not very realistic, and due to the usage 

of defuzzified values of sample statistics same important informa­

tion may be lost. 

2.2 Fuzzy acceptance sampling plans for fuzzy data 

Fuzzy acceptance sampling procedures mentioned in the previous 

section have been proposed for working with precise statistical data. 

However, in many practical cases it is difficult to classify inspected 

items as "conforming" or "nonconforming". We face this problem 

rather frequently when quality data come from users who express 

, 
• 
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their assessments in an informal way, using such expressions like 

"almost good', "quite good", "not so bad", etc. First attempts to cope 

with the statistical analysis of such quality data can be found in 

Hryniewicz [13], who assumed that the quality of each inspected 

item is described by a family of fuzzy subsets of a set {O, I], with the 

following membership function 

µ 0 10+µ, ll,0~µ 0 ,µ 1 ~l,max{µ0 ,µ 1}=1, (3) 

where the notation µlk stands for <membership grade>l<value>. 

Thus, equation (3) defines a possibility distribution on a binary set 

representing the result of the test. 

When an inspected item "in generał, fulfils quality requirements", 

the result of quality assessment is expressed as a fuzzy set with the 

membership function 11 O+ µ 1 11 . Fully conforming items are de­

scribed by crisp sets. In this case the membership function is given 

by I I O + O 11. On the other hand, if an inspected item "in generał, 

does not fulfill quality requirements", the result of quality assess­

ment is expressed as a fuzzy set with the membership function 

µ 0 I O + 111, and fully nonconforming items are described by crisp 

sets with the membership function O I O+ 111 . 

Let us now consider the mathematical model for the process that 

generates such fuzzy data. Let X be a random variable describing 

quality of an inspected item. If the observed values of X are fuzzy 

we can describe them using the notion of ó'.-cuts. Let ó E (0,1] be 
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the level of the o-cut. For this level there exist three possible ob­

served values of X: A,6 ={O}, Af = {0,1}, and Af = {I} , where {O} 

means that the inspected item is considered as conforming, {I} 

means that the inspected item is considered as nonconforming, and 

{O,!} means that (at the given o level) it is not possible to distin­

guish if the inspected item is conforming or nonconforming. Let us 

introduce now the following probabilities: pg0 = P(X = A,6), 

pg, = P(X = Af), and p,~ = P(X = Af), where pg0 + pg, + Pti =I . 

Hence, at the given o level, the result of inspection X is described 

by a three-point probability distribution. This distribution induces a 

Shafer belief function on the binary frame representing the result of 

the test of an individual item. 

If a sample of n items is inspected the result of inspection is de­

scribed by a random vector (X, ,X,, ... ,X.). 

Let 

I ,(X)={I 
A1 0 

X=A 6 
1 ,j = 1,2,3 

otherwise 

(4) 

be the indicator function describing the result of the inspection of 

one item, and 

(5) 
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Then, at the given ,5 level, the result of the inspection of the w hole 

sample is described by a trinomial distribution 

( o o o ) n! / .. o)k'( 0)k'( 0)k' (6) P K 1 =ki,K2 =k2 ,K3 =k, =---I.Jl00 Poi P11 
k1!k2 !k3 ! 

In quality control we are interested in the evaluation of the fraction 

of nonconforming items that are either surely observed (x = A;) or 

only possibly observed (x = A;). Therefore, the probability of ob­

serving a nonconforming item is, at the given olevel, represented as 

an interval Pi° = [p:i, p1~ + pgJ The set of such intervals (for all 

,5 E (0,1]) defines the fazzy probability of finding a nonconforming 

item that describes the previously defined fuzzy observations. When 

results of a test are crisp, the total number of nonconforming items 

in a sample is distributed according to a binomial distribution. Thus, 

in the considered fuzzy case it is described by a fuzzy random vari­

able distributed according to a fuzzy binomial distribution. 

Assume now, that in the sample of n items in n1 cases the quality 

of inspected items is characterized by fuzzy sets described by the 

membership function µ 0,; I O + I I 1, i= 1, . .. , n1 and in the remaining 

n, = n - n1 cases by a fuzzy set described by the membership func-

tion I I O+ µ 1,; I 1, i = 1, ... , n, . Without loss of generality we can as-

sume that O ś µ 0_1 ś ... ś µ 0,., ś 1, and 1 <'. µ 1,1 <'. .• . <'. µ 1,., <'. O. 

Hence, the fuzzy total number of nonconforming items in this sam-
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ple, calculated using Zadeh's extension principle, is given by 

Hryniewicz [13): 

J = µ0,1 I O+ µ0,2 Il+ .. •+ 1 I n1 + (7) 

+µ1,1 l(n1 +1)+ .. . +A_., l(n1 +n,)" 

This number has to be compared with a fuzzy acceptance number 

c which can be found using a methodology for the design of fuzzy 

acceptance sampling plans suggested by Hryniewicz [13), and de­

scribed in details below. 

Let us assume that the parameters po, p1, a, and /3 that describe an 

acceptance sampling plan are imprecisely defined by triangular 

fuzzy numbers Po = (PoL,pg ,Pou), P1 = (P1L ,p~ ,Piu), 

a= (a,, a 0 , au), and 'jJ = ( f3uf3o,f3u), respectively. Using the re­

sults of Hałd [12) we can calculate the sample size n as the solution 

(rounded to the nearest integer) of the following equation 

n(p~ - pg )-✓n~1-p, ✓ P~ q1° - Y1-a, ✓ pgqg )+ (k1 -k0 ) =O, (S) 

where 

qg = I- pg, q1° = I- P~, Uo = Y1-a,, U1 = Y1-p, (9) 

and 

(10) 

By Yr we denote the quantile of order y in the standard norma! dis­

tribution. 

., -
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When all parameters used for the design of the sampling plan (p0, 

p 1, a, /3) are crisp, we can use an approximate formula proposed by 

Hałd [12] for the calculation of the acceptance number c. In the case 

of fuzzy values of these parameters we can use Zadeh' s extension 

principle to fuzzify the value of c. The fuzzy acceptance number c 
can be described by its o-cuts. For the given o level we can calcu­

late the interval (et ,et) with limiting values calculated from the fol­

lowing expressions: 

(11) 

(12) 

All the symbols in the formulae (11) and (12) have the same inter­

pretation as in (8) . 

Let c1 ,c2 , . . • ,cm be set of all integers thai belong to the support of 

the fuzzy set c0 defined by the li-cuts (et, et), and lei us denote its 

membershipfunctionby µ 0 (c) . Now, foreach c,,i=l, .. . ,m letus 
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define the interval A; = [c; -0,5,c; + 0,5) . Next, for each 

c;, i = I, ... , m let us calculate the following values of a membership 

function 

µ(c;) = sup µ 0 (c), i= 1, .. . ,m . (13) 
ceA1 

Hence, the fuzzy equivalent c of an acceptance number c may be 

defined by the following fuzzy set: 

The decision to reject the sampled lot or process has to be taken if 

the inequality J >- c holds. It is a well known fact that a unique 

method for the comparison of two fuzzy numbers does not exist. 

Therefore, in practice we have to use one of the methods which have 

been proposed for that purpose. 

Let µ(x) be the membership function of the fuzzy set x, and 

v(y) be the membership function of the fuzzy set y . The Possibility 

of Strict Dominance (PSD) index, introduced by Dubois and Prade 

[6), that measures the possibility that x strictly dominates y, is 

calculated from the following formula 

PSD(x >- y) = s~p{t.1:C, [min(µ(x ).1- v(y ))]} . 
(15) 

' r 

.. .. 
I .., 
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Positive, but smaller than 1, values of this index indicate certain 

weak evidence that x strictly dominates y. When this evidence is 

stronger we can measure it using the Necessity of Strict Dominance 

(NSD) index, introduced by Dubois and Prade [6], and defined as 

follows 

NSD(x >- y) = I- sup [min(µ(x ), v(y ))]. (16) 
x,y :xSy 

Extensive simulations described in [13] have revealed that the NSD 

index seems to be the most useful for the purpose of the comparison 

of J and c . Thus, the decision of rejection should be taken if 

NSD(J >- c) <>: T/o, where O :,; T/o :,; 1 is a certain required value of 

NSD. 

Let us illustrate the usage of the proposed method with the follow­

ing example. The management of a firm producing household appli­

ances has decided to verify if the quality of certain product fulfills 

expectations of users. It has been decided that a sample of n ran­

domly chosen users should be asked about their opinion about this 

product. The design of the sampling plan was initially based on ex­

perience coming from production tests. The level of acceptable qual­

ity, po, measured in percent ofnegative opinions, was set to 5%, and 

the level of non-acceptable quality, p 1, was set to 15%. The prob­

ability of wrong rejection, when the product meets stated quality re­

quirements (producer's risk), a, was set to 3%. The probability of 

wrong acceptance, when the quality of the product is on the non-
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acceptable level (consumer's risk), /J, was set to 5%. In further dis­

cussions it has been decided that design parameters typical for 

production tests are too stringent. Thus, their relaxed versions have 

been proposed in a form of fuzzy triangular numbers: (0.05, 0.05, 

0.08) for Po, (0.03, 0.03, 0,06) for a, (O. I 5, 0.15, 0.20) for P, , and 

(0.05, 0.05, O.IO) for 'jJ. 

The sample size n, calculated from (8), is now equal to 103. The 

acceptance criterion, calculated from the formulae (11) - (14) is 

given as the folJowing fuzzy set 

c = 1.019 + 0.93110 + 0.70111 + 0.47112 + 0.25113 + 0.0114. (17) 

In the questionnaire sent to the users, five possible answers have 

been available: 

a) "I am fuIJy satisfied" (represented by the fuzzy set Oil+ 110), 

b) "I am rather satisfied" (represented by the fuzzy set Oil + 

110.5), 

c) "I do not know" (represented by the fuzzy set Ol I + I I I), 
d) "I am rather not satisfied" (represented by the fuzzy set Oj0.5 + 

III), and 

e) "I am definitely not satisfied" (represented by the fuzzy set OIO 

+ li). 

From among n=I03 persons, 90 have chosen option a), 3 have 

chosen option b), 5 have chosen option c), 3 have chosen option d), 
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and only 2 have chosen option e ). Thus the fuzzy set that represents 

the result of the investigation is given as follows : 

d = 010 + OJ! + 0.5J2 + 0.5J3 + 0.5J4 + IJ5 + 116 + !J7 + IJ8 + (18) 

IJ9 +IJIO + 0.5JII + 0.5Jl2 + 0.5JI3 + OJ14. 

Now, !et us verify if the result of this investigation supports the 

claim that the quality of the considered products is worse than re-

quired. In order to do so, we have to evaluate the relation 'J >- c, 
where 'J is given by ( I 8), and c is given by (17). The NSD index, 

calculated from (16) is equal to O. Thus, there is no strong evidence 

that this relation is true. The PSD index, calculated from (15), is in 

the considered case equal to 0.5. It means that there exists certain 

weak evidence that the quality requirements are not fulfilled. This is 

hardly unexpected, if we look at the results of the investigation. De­

spite the fact that only 2 opinions were definitely negative, alto­

gether I 3 opinions were not absolutely positive. This number is ob­

viously greater than the acceptance number calculated for the most 

stringent quality requirements (c=9). On the other hand, it is not 

greater than the acceptance number for the most relaxed quality re­

quirements (c=I3). Thus, the results of the investigation cannot be 

regarded as a decisive one. 

3. Current Problems of Fuzzy SQC 

In the previous section we have presented the main problems of 

SQC where fuzzy sets have found many applications. The results 
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published in 1980s and I 990s Jet us state that the basie theory of 

fuzzy SQC has been already established. Therefore, during the last 

ten years the efforts of specialists in these fields have been focused 

rather on solving particular problems than on more generał issues. 

3.1 Applications in Statistical Process Control 

In the area of statistical process control new results have been 

proposed in the papers by Grzegorzewski [8], Grzegorzewski and 

Hryniewicz [11], Taleb and Limam [22], and Tannock [24] . One of 

the charts proposed in [8] and [11] is based on the concepts offuzzy 

statistical confidence intervals and the necessity of strict dominance 

(NSD) index defined by (16). Control ( decision) lines of the chart 

are calculated as critical values of certain fuzzy statistical tests . The 

inspection with the chart begins with setting significance level a and 

necessity index T/ . Then, a fuzzy sample of n items is observed, and 

the interval corresponding to (1-T/ )th cut of the arithmetical mean 

X is plotted on the chart. If the w hole interval lies outside the con­

trol lines we claim that the process is out of control. If this interval 

intersects one of the control lines, a warning signal is generated. 

Nearly all papers devoted to fuzzy control charts deal with fuzzy 

versions of a classical Shewhart control chart. A cumulative sum 

(CUSUM) control chart for fuzzy quality data has been proposed re­

cently by Wang [25]. In this paper, Wang proposes to represent 
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original fuzzy data by appropriately chosen "representative values", 

and then to plot these values on a classical CUSUM control chart. 

Interesting new application of fuzzy control charts has been re­

cently proposed by Cheng [4). He assumed that instead of usual 

measurements of quality characteristics aggregated fuzzy quality 

measures provided by experts are displayed on a control chart. An­

other interesting combination of classical SQC procedure and fuzzy 

technique, namely neural fuzzy technology, can be found in the pa­

per by Chang and Aw (3). 

3.2 Applications in acceptance sampling 

In acceptance sampling new applications of fuzzy SQC are rather 

seidom. Interesting, from a purely theoretical point of view, results 

were obtained by Kriitschmer [18], who proposed a mathematically 

sound basis for the sampling inspection by attributes in fuzzy envi­

ronment. Unfortunately, no new practical SQC procedures have 

been proposed using that generał model. 

Much more practical procedure, namely a fuzzy version of an 

acceptance sampling plan by variables, has been proposed by Grze­

gorzewski [IO]. General results from the theory of fuzzy statistical 

tests have been used in this paper for the construction of fuzzy sam­

pling plans when the quality characteristic of interest is described by 

a fuzzy norma! distribution. 
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Finally, we have to mention the result that could be applied not 

only in SQC (inspection interval for control charts) but also in the 

theory and practice of reliability (inspection intervals for monitoring 

processes). Hryniewicz [14] has shown why in the case ofimprecise 

input information optima! inspection intervals are usually deter­

mined using additional preference measures than strict optimization 

techniques. 

4. Challenges for the Future 

The short overview of the applications of fuzzy sets in the area of 

SQC shows that there is a solid ground for the implementation of 

fuzzy sets methodology in practice, as it is the case for the theory of 

probability and mathematical statistics. There are, however, some 

serious problems of theoretical and practical nature that have to be 

overcome if we want to see real applications. In this section of the 

paper we present our personal and subjective view on challenges 

that have to be faced by specialists working in the area of fuzzy sets 

and their applications. 

Problems of Statistical Quality Control have both random (prob­

abilistic) and imprecise (fuzzy, possibilistic) nature. Therefore, seri­

ous efforts have to be undertaken in order to clarify mutual relation­

ships between these methodologies. The paper by Dubois and Prade 

[7] presents an interesting overview of this problem, and the recent 

results of de Cooman [5] should be regarded as an important step on 
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the way to solve it. Unfortunately, there is stili a lot to do if we want 

to have a generał theory covering both randornness and fuzziness. 

Another challenge for the fuzzy sets community is connected with 

operational rules that have to be used by practitioners. Fuzzification 

of existing results in SQC usually leads to prohibitively complex 

computations. Therefore, there is a need for commonly agreed sim­

plifications and approximations. An example of such work can be 

found in Hryniewicz (15], where complex calculations of system's 

fuzzy reliability have been dramatically simplified using the concept 

of shadowed sets introduced by Pedrycz (20]. Such simplifications 

and approximations should be proposed having in mind a certain ul­

timate view: to provide practitioners with some standards for deal­

ing with imprecise concepts. By standards l mean standardized pro­

cedures for simple description of fuzzy events. For example, if we 

decide that trapezoidal fuzzy numbers should be used for the de­

scription of fuzzy results of measurements, we have to give opera­

tional methods for the evaluation of the parameters defining the 

membership function of such numbers. 

To the end of !his paper, we would like to cite a statement from 

the paper by Cai (2]: " .. , the area of fuzzy methodology in system 

failure engineering is stili staying in a speculative research period 

and is premature. From a speculative research period to an engineer­

ing practice period, from premature to mature, a lot of work has to 

be done". After nearly ten years, this statement stili remains, unfor-
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tunately, true. Not only in the area of system failure engineering, but 

in statistical quality control, as weII. 
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