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Abstract 

The paper deals with the Two-Constraint Einary Knapsack Problem, 
which is special case of Multi-Constraint Knapsack Problem, with 2 con
straints only. It is assumed that some of the problem coefficients are real
izations of mutually independent random variables. Asymptotical proba
bilistic properties of selected problem characteristics are investigated . 

1 Introduction 

Let us consider a Two-Constraint Einary Knapsack Problem in the following 
formulation: 

It is assumed that: 

n 

=oPr(n) = max I: ci · Xi 
i=l 
n 

subject to I: aji · Xi ,:;; bj(n) 
i=l 

where j = 1, 2, Xi = O or 1 

n 

Ci> O, aji > O, O< bj(n),:;; Laji, i= 1, ... ,n, j = 1,2. 
i=l 

(1) 

Without restricting the generality of considerations it may be also assumed that: 

b1(n):::;; b2(n) 

The assun'iptions that Ci > O, aji > O, O< bj(n) ,:;; I:~=l aji, i= 1, ... , n, j = 
1, 2,are supposed to avoid the trivia! and degenerated problems. More precisely 



interpretation of the aji = O or c; = O is far unobvious. When bj(n) > I:;:'.,.1 aji 
then the j-th constraint is always fulfilled and therefore it may be removed 
from the problem formulation, otherwise if bj(n) = O then (1) has only the 
trivia! solution i.e . .::opr(n) = O. 

Two-Constraint Einary Knapsack Problem is special case of the binary mul
ticonstraint knapsack problem, also known as m-constraint knapsack problem, 
see Nemhauser and Wolsey [10] and Martello and . Toth [7], where in generał 
case there is arbitrary number m of constarints, i.e. j = 1, ... , m. Anat.her 
import.ant special case is classical (single constraint) or, in ot.her words, Einary 
Knapsack Problem, which have only one constraint , i.e. j = 1 (see Martello a1~d 
Toth [7]). In the Szkatula's papers see [13] and [14] probalistic analysis results 
of the different cases of the binary multiconstraint knapsack problem were pre
sented. Moreover full case of the classical (single constraint) Einary Knapsack 
Problem was considerd in the paper [14]. 

The Multi-Constraint Knapsack Problem is well known to be NP hard, 
moreover, when m ;;, 2, it is NP hard in the strong sense (see Garey and 
Johnson [3]). It does mean that Two-Constraint Einary Knapsack Problem (1) . 
is also NP hard in the strong sense. C!assical (one-constraint) Einary Knapsack 
Problem is NP hard combinatorial optimisation problem, however not in the 
strong sense. 

The papers by Frieze and Clarke [2] , Mamer and Schilling [6], Schilling [11] 
and [12] investigate the asymptot.ie value of .::opr(n) for the random model of 
Multi-Constraint Knapsack Problem, where bj(n) = 1, j = 1, .. . , m. Papers 
by Szkatuła [13] and [14] deal with the random model of the Multi-Constraint 
Knapsack Problem, where bj(n) are not restricted to be equal to 1. Papers 
by Meanti, Rinnooy Kan, Stougie and Vercellis [9] , Lee and Oh [4] consider 
more generał random models of Multi-Constraint Knapsack Problem but only 
for j = 1, 2 some analytical results describing the growth of .::opr(n) were 
obtained. Moreover full case of the Einary Knapsack Problem, j = 1, was 
considerd in the Szkatuła [14]. 

The aim of the present paper is to analyze the growth of the asymptot.ie value 
of .::opr(n) for the class of random Two-Constraint Einary Knapsack Problems 
(1) with full spectrum of the right-hand-sides of the constraints values. Two
Constraint Einary Knapsack Problem is import.ant special case of the generał 
Multi-Constraint Knapsack Problem, see Martello and Toth [8]. It is difficult, 
NP hard in the strong sense, combinatorial optimisation problem. Results 
of the probabilistic analysis may allow to describe asymptot.ie behavior of the 
.::opr(n) for practical!y all combinations of values of b1 (n) and b2(n) as well as 
ot.her problem coefficients ( considered as realisations of the random variables). 
Those results may help to bet.ter understand the theoretical issues related to 
Two-Const.raint Einary Knapsack Problems as well as enable constrnction of 
more efficient algorithms for solving the practical instances of the (1). 

2 Definitions 

The following definitions are necessary for the furt.her presentation: 

Definition 1 We denote V,; ""Yn, where n--> oo, ~f 

Yn · (1 - o(l)) ,:;; Vn ,;;; Yn · (1 + o(l)) 
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when Vn, Yn are sequences of numbers, or 

lim P{Yn · (1 - o(l)) ~ Vn ~ Yn · (1 + o(l))} = 1 
n-oo 

when Vn is a sequence of random variables and Yn is a sequence of numbers or 
random variables, where limn-oo o(l) = O as it is usually presumed. 

Definition 2 We denote Vn :::5 Yn(Vn ~ Wn) if 

V,,~ (1 + o(l)) · Yn (Vn ~ (l - o(l)) · Wn) 

when Vn, Yn (Wn) are sequences of numbers, or 

lim P{Vn ~ (l + o(l)) · Yn} = 1 ( lim P{Vn ~ (1 - o(l)) ·W,.,}= l} 
n-oo n-oo 

when Vn is a sequence of random variables and Y,., (Wn) is a sequence of numbers 
or random variables, where lim,-,-= o(l) = O. 

Definition 3 We denote Vn ~ Yn ~f there exist constants c" ~ c1 > O such that 

where Yn, Vn are sequences of numbers or random variables. 

The following random model of (1) will be considered in the paper: 

• n-+ oo, i= 1, ... , n, j = 1, 2. 

• Ci, aji are realizations of mutually independent random variables and 
moreover Ci, aji are uniformly distributed over (O, l]. 

• O< 8 ~ b1(n) ~ b2(n) ~ n/2, bj(n) ~ bj(n + 1), for every n~ 1 and all 
bj(n), j = 1, 2, are deterministic, where 8 is a constant. 

Under the assumptions made about ci , aji and bj(n) the following always 
hold 

n n 

O~ =oPT(n) ~ Lc; ~ n, 8 ~ bj(n) ~ Laji ~ n, j = 1,2. (2) 
i=l i=l 

Moreover, from the strong law of large numbers it follows that 

n n 

L Ci~ E(ci) ·n= n/2, L aji ~ E(a 11 ) ·n= n/2. 
i=l i=l 

Therefore, it is justified to enhance formula (2) in the following way: 

(3) 

Formula (3) shows that random model of the Two-Constraint Einary Knap
sack Problem (1) is complete in the sense that nearly all possible instances of 
the problem are considered. In this respect the model where b1(n) = b2(n) = 1 
is just a very special case. Taking int.o account that L~=l aji ~ n/2 assumption 
that bj(n) ~ bj(n + 1) , for all n~ 1, is quite logical. 

3 



The growth of :::opr(n) - value of the optima! solution of the problem (1) 
may be influenced by the problem coefficients, namely: 

n, c;, aj;, bj(n), where i= 1, ... , n, j = 1, 2. 

We have assumed that c;, aji are realizations of the random variables and there
fore their impact on the :::opr(n) growth is in this case indirect. Moreover, we 
have assumed that n -, oo. The aim of the probabilistic analysis is to investigate 
asymptotic behavior of :::opr(n) when n-> oo. The impact of the right-hand
side values - b1 (n), b2(n) - is well illustrated by the Lagrange function and the 
problem dual to (1), see Averbakh [1], Meanti, Rinnooy Kan, Stougie and Vercel
lis [9], Szkatuła [13] and [14]. Due to the very complicated formulas, impossible 
to handle in the generał case, the papers by Szkatuła [13] and [14] investigate 
only two import.ant special cases of values of constraints right hand sides in the 
case of Multi-Constraint Knapsack Problem. 

3 Lagrange and dual estimations 

When the generał knapsack type problem, with one or many constraints, is 
considered then Lagrange function and the corresponding dual problems, see 
Averbakh [l], Meanti, Rinnooy Kan, Stougie and Vercellis [9], Szkatuła [13] and 
[14] are very useful tools to perform various kind of analyses of the original 
problem. In the specific case of the Two-Constraint Einary Knapsack Problem 
Lagrange function of the problem (1) may be formulated as follows: 

n 2 ( n ) 
~c;•x;+?;>..j• bj(n)-~aj;·x; 

2 n ( 2 ) ~ Aj + ~ c; - ~ Aj · aji · X; 

where x = [x1, ... , Xn] and A = [A1, A2] - vector of Lagrange multipliers. More
over, !et for every A, Aj ~ O, j = l, 2 : 

<fin(A)= max Ln(x,A)= max {tAj-bj(n)+ t(c;-"I:,Aj·aji)Xi }· 
xE{O,l}" xE{O,l}" j=l i=l . j=l 

Using the following notation: 

{ 
2 

x;(A) 
if c; - I: Aj · aji > O 

(4) j=l 

o otherwise. 

{ 
2 

c;(A) 
C; if e; - I; Aj · aj; > O 

j=l 

o otherwise. 

{ 
2 

aj;(A) 
aji if c; - I: Aj · aji > O 

j=l 

o otherwise. 
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we have for every A, >.j 2: O, j = 1, 2: 

r/Jn(A) = t>.j-bj(n)+t(c;-t>.j-aj;)·x;(A)= 

= t>.j · bj(n) + t (c;(A)- t>.j. aj;(A)) 

Obviously for i= 1, ... , n, j = 1, 2, 

c;(A) = c; · x;(A), aj;(A) = aji · x;(A). 

Dual problem to Two-Const.raint Einary Knapsack Problem (1) maybe formu
lated as follows: 

(5) 

For every A 2: O the following holds: 

2 

zopy(n) :S: ć[>~ :S: </i,,(A) = =n(A) + 2::>j(bj(n) - sj(A)). (6) 
j=l 

Let us denote: 

n n n n 

=n(A) L c; · x;(A) = L c1(A), Sj(A) = L aji · x;(A) = L aj;(A), 
i=l i=l 

2 2 

Sn(A) = L >.j · Sj(A), B(A) = L >.j · bj(n). 
j=ł j=ł 

By definition of c;(A) and aj;(A), see also (4), we have: 

2 

and therefore 

c;(A) 2: L >.j • aj;(A), i= 1, ... , n, 
j=ł 

i=l 

(7) 

For certain A, x;(A) given by (4) may provide feasible solution of (1), i.e.: 

Sj(A) :S: bj(n) for every j = 1, 2. (8) 

Then: 

If (8) holds, then the below inequality also holds: 

B(A) - Sn(A) 2: O. 

5 



From (7) we get: 

łn(A) =n(A) B(A) - Sn(A) B(A) - Sn(A) -- = -- + ---'---'------''-'- < 1 + . . 
=n(A) =n(A) =n(A) - Sn(A) 

Therefore if (8) holds, then the following inequality aJso holds: 

l < zoPT(n) < 4")~ < if>n(A) < B(A) . 
- =n(A) - =n(A) - =n(A) - Sn(A) 

(10) 

Formula (10) shows, that if there exits such a set of Lagrange multipliers A(n) 
which is fulfilling the formula (8) and if the formula below holds: 

. B(A(n)) 
/~~ Sn(A(n)) = 1 (11) 

then, due to (10), limn-oo ;'.,'[~{~';l = 1 and therefore x;(A(n)), i = 1, ... , n, 
given by (4), is the asymtotically sub-optima! solution of the Two-Constraint 
Einary Knapsack Problem (1). Moreover the value of =n(A(n)) is an asymptot
ical approximation of the optima! solution value of the Two-Constraint Einary 
Knapsack Problem i.e . .::opr(n). 

4 Pro babilistic analysis 

In the present section of the paper some probabilistic properties of the Two
Constraint Einary Knapsack Problem (1) will be investigated. We have assumed 
that that c;, aii i= l, ... , n, j = 1, 2 are realizations of mutually independent 
random variables and moreover c;, aii are uniformly dist.ributed over (O, 1]. 
Moreover we have assumed that O< o~ b1 (n) ~ b2 (n) ~ n/2, bi(n) ~ bi(n+l). 
In addition we will assume that Lagrange multipliers .A1 and .A2, .A2 ::; .A1, A= 
(.A1, .A2) are also deterministic. Monotonicty of constraints right hand sides, 
b1 (n) ~ b2 (n), is in this case determinig montonicity of the Lagrange multipliers, 
.A2 ::; .A1. This is pretty standart probabilistic model of the generał knapsack 
problems and it suits well also to Two-Constraint Einary Knapsack Problem 
(1). 

Let us first observe that due to the assumptions made the following holds, 
for i= 1, ... , n, j = l, 2: 

{ 
O when x ~ O { O when x -~ O 

P(aji < x) = x when O< x ~ l , P(c; < x) = x when O< x ~ l . 
1 when x ~ l 1 when x ~ 1 

(12) 
In order to preceed with probabilistic analysis of the Two-Constraint Einary 

Knapsack Problem (1) it is neccesary to consder probalisitc distribution of the 
following random variables 

k 

L .Aj · aji, k = l or 2 
i=l 

6 



lxl + x { x if x ;=:: O .• { 1 if j = 2 
Let (x)+ = - 2- = O th . , J = 2 'f . 1 , Then for or o erw1se 1 J = 

i= 1, ... , n, j = 1, 2, the following holds: 

1 
P {..\j · aji < x} = 3:((x)+ - (x - Aj)+), 

J 

1 

P {..\1 · ali + A2 · a2; < x} = A~ j Fi(x - Aj•t, A\Aj)dt =(13) 

o 

~ ((x)! - (x - A1)! - (x - A2)! + (x - A1 - A2m 
"l ' "2 

The dist.ribution functions of the random variables aj;(A), c;(A), i= 1, ... , n, 
j = 1,2 are: 

Gj;(x, A) = P { aj;(A) < x} = 

p { aji < X u aji ;::: X n t Ak · a;k ;;:: C;} = (14) 

1 1 

1 - J J F1(r - Aj· t, A\,,\j)drdt 
X Q 

Hi(x,A) P{ci(A)<x}= 

p { Ci < X u Ci ;::: X n t Ak · aik ;;:: Ci} = (15) 

1 

1 - J F2(t, A)dt, 
X 

Using above fromulas (14) and (15) expectations of the aji(A), c;(A) could 
be expressed as fellows: 

1 1 1 J xdGj;(x, A)= J x J Fi(r - Aj· x, A \Aj)drdx = (16) 
o o o 

A~• (! x !((r-x • Aj)+ - (r-x • Aj - Aj•)+)drdx) 

7 



1 1 

E(c;(A)) j xdH;(x, A)= j x · F2(x, A)dx = (17) 

o o 
1 

1 J ( 2 2 2) 2. >-1. >-2 x. (x)+ - (x - >-1)+ - (x - >-2)+ + (x - >-1 - >-2)+ dx = 
o 

2 . ,\~. ,\2 ( ¼- / x · ((x - >-1)! + (x - A2)!- (x - >-1 - >-2)!) dx). 

It is easy to observe that above formulas (16) and (17) may take different 
values, depending on the mutual relations between A1 , A2 and x, r since severa! 
items of the formulas above may become O or be strongly postive. 4 specific 
cases could be distiguished for i= 1, ... , n, j = 1, 2: 

1. Case of "large" values of the Lagrange multipliers 1 ::o .\2 ::o A1 . In this 
case: 

1 11/>._1 11 1 
- x (r-x·Aj)drdx= 2 (18) 
Aj• o X•Aj 24 · \ · Aj• 

l 

E(c;(A)) 1 jx3dx = 1 . 
2 · A1 · >-2 8 · >-1 · >-2 

o 

2. Case of "mixed" values of the Lagrange multipliers >-2 ::o 1 ::o A1. In this 
case: 

E(c;(A)) 

3. Case of "moderate" values of the Lagrange multipliers >-2 :'.S >-1 :'.S 1, 

8 



A2 + A1 2'. 1. In this case: 

2_ ( [1 x1
1 

(r - x · \)drdx- (20) 
A1• Jo x->.; 

r(l->.;-)/>.; X j 1 (r - X. Aj - Aj• )drdx) = 
Jo (x ->.;+>.;•) 

1 3A5 - SAJ + 6AJ - 6AJ. + 4Aj• - Ai. + 4AJ. - 1 

24 AJ Aj• 

E(c;(A)) l (! -J1 
X· (x - A1)2 dx - /

1 
X· (x - A2)2dx) 2 . A1 . A2 4 

~\1 .>,,:l 

24} 1A2 (Ai - 6Ai + 8A1 + A~ - 6A~ + 8A2 - 3). 

4. Case of "small" values of the Lagrange multipliers A2 ::; A1 ::; 1, A2 + A1 ::; 
1. In this case: 

E(c;(A)) 

+ 

Probablistic, or in other words average case, analysis consists in determining 
such Lagrange multipiers = (A1(n),A2(n)) that when n-+ oo, x;(A(n)), i= 
1, ... , n, defined by (4) will provide solutions of the Two-Constraint Einary 
Knapsack Problem (1) which are, in the sense of convenrgence in probability, see 
Loeve [5], providing solutions which are asymptotically feasible , i.e. sj(A(n)) 
is satifying (8) and moreover if Sn(A(n)) is fulfilling (11) then, due to (10) , 

limn~= ~'.:[~illl = 1 and .::n(A(n)) is suboptimal solution of the (1) and morever 

zoPT(n)::::: Zn(A(n))::::: E(.::n(A(n))). 

The above goal may be achived by determing A(n) as the solution of the fol
lowing system of equations: 

E(s1(A(n))) = b~(n), E(s2(A(n))) = b;(n), (22) 

g 



where b~(n) < b1(n) and b2(n) < b2(n) and A(n) is fulfilling both (8) and (11). 
Each of the 4 cases rnent.ioned above should be consdiered independently. Let 
us observe that E(sj(A(n))) = n·E(aj1(A(n))), E(.::n(A(n))) = n·E(ci(A(n))). 

Lemma 1 ff c;, aji i = 1, ... , n, j = 1, 2, are realizations of mutually inde
pendent random variables uniformly distributed over (O, 1), and ~f 1 :<::: >-2 :<:'.: ,\1 

then 

is the solution of (22) and 

Proof. Above formulas follow immediately from the (18) and (22). • 

5 Concluding remarks 

In the present paper same preliminary results describing probabilistic properties 
of the Two-Constraint Einary Knapsack Problem (1) are considered. 

In the paper distribution functions of the various random variables repre
senting important problerns characteristics are presented. 

Future research should be devoted to investiagting remaing 3 cases of the 
mutual relations bet.ween >-1(n) and >.2(n), feasibility of the received solutions 
and estimations of the Two-Constraint Einary Knapsack Problem (1) optima! 
solution values .::apr(n) growth, when n-. oo 
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