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Analysis of the usefulness of ·diffusion equations for the description 
of dislocation mobility and related phenomena 

S. PILECKI (W ARSZAWA) 

DISLOC..\TION motion induced by the process of thermal activation and mechanical loading is 
considered. An analysis is given of possible reasons explaining that the motion of dislocation 
is more restricted as compared to point defects. The influence of material properties on the dis
placements (displacements in two-dimensional and three-dimensional spaces) is studied. A good 
correlation between the theory and experiments indicates the possibility of describing the 
process by the diffusion equations. 

Rozpatrzono ruchy dyslokacji wywolane przez aktywacj~ termiczn~ i przez obci~ienia mecha· 
niczne. Przeanalizowano przyczyny ograniczenia mo:Zliwosci przemieszczen dyslokacji w po
r6wnaniu z defektami punktowymi i wplywu na te przemieszczenia wlasnosci materialu (prze
mieszczen w przestrzeni 2- lub 3-wymiarowej). Zgodnosc wynik6w badan doswiadczalnych 
z wnioskami teoretycznymi wskazuje na mo:Zliwosc opisu procesu przy pomocy r6wnan dyfuzji. 

PaccMoTpeHLI ABIDI<emm AHCJIOI<aiUIH, Bbi3BaHHbie TepMHtJeci<oii aKTHBanue:H H MexaHHtJeCKo:H 
Harpy3KOH. AHaJIH3HpyroTcH npHliHHbi orpaHHtJeHHH B03MO>KHOCTH nepeMem;eHH:H AHCJIOKauuH 
no cpaBHeHHIO c TotJelJHbiMH Ae<PeKTaMH H BJIHHIDUI Ha 3TH nepeMem;eiDUI CBOHCTB MaTepuana 
(nepeMem;eHH:H B AByxMepHoM HJIH TpeXMepHOM npocrpaHCTBe). CoBnSAeHHe pe3yJII>TaTOB 
3KcnepHMeHTaJibHbiX HCCJieAOBaHHH C TeopeTHlleCKHMH BbiBOAaMH yi<83biBaeT Ha B03MO>KHOCTb 
onucaHHH npo~ecca npu noMom;u ypaBHeHHif AH<Pq,y3HH. 

1. Introduction 

IN THE papers [1, 2, 3] and others devoted to problems of the fatigue of metals the author 
applied the diffusion equations to estimate the ability of dislocation displacements (mo
bility), their density changes, maximum density etc. The equation for the density of the 
mobile dislocations had the form 

(1 ) O(!m L1 k .1 oN = D13 em+a2 Fem+a3!2im-a4Ff2m 

-2(a5 +a1 +ag +a1 t)e:a- (a6 +as +ato +a12)!2mf2im 

and for immobile dislocations was 

(1.2) ~'ivm = -a3!Jim+a4Fem+(2as +a1 +ag)e:a+ (a6-ato)f2mf2im· 

The equation for all dislocations after adding by sides Eqs. (1.1) and (1.2) is 

(1.3) !~ = DL1e+be-ce2, 

where D, b, c, are the coefficients of diffusion, multiplication and annihilation of disloca-
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tions, respectively. These coefficients are dependent on the corresponding coefficients ai ap
pearing in Eqs. (1.1) and (1.2) and on {J(N), where 

(1.4) {J(N) = _R!!!_ ~ 1 - _(!_. 
(! (!um 

Analysis of the approximate solution of Eq. (1.3) shows [1] that the change of oefoN 
depends mainly on the value of the coefficient H 

(1.5) 

where R is the radius of the cross-section of the specimen. 
Depending on the value of the coefficients which appear in Eq. (1.5), the value of H 

may be positive, negative or equal to zero. If H > 0 the dislocation density rapidly in
creases to the limit state of saturation (!Hm (Fig. 1) and the greater (!um• the larger His; 
if H < 0 the dislocation density rapidly decreases to the minimum limit values and the 
smaller Qum, the smaller H is; if H = 0 the dislocation density does not change. 

It should be stressed that at the fixed values of the coefficients b, c and D the limit 
dislocation density, Eq. (1.3), does not depend on the initial density existing in metal 
before the start of action of the variable loading. From the numerical computations it 

results that if b > 5. 78D I R 2
, then the limit density depends solely on the coefficient ratio 

b 
(1.6) (!um(N) = -
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FIG. 1. Changes in dislocation density at different values of H in terms of a) number of cycles, N; b) along 
the radius of the cross-section of the specimen, R. 

http://rcin.org.pl
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and 
(1.7) e(r) = eum(N)f(D/R). 

If the initial density eo < b/c, then the variable loading involves the growth of dis
location density to the value e11m; if eo > b/c then under action of the variable loads the 
dislocation density decreases to eum. 

2. The notion of diffusion of dislocation 

The notion of diffusion used in this paper may raise some objections since in the litera
ture it was really not encountered in this sense. In the literature the notion of diffusion 
of dislocation caused by the diffusive motion of point defects toward the dislocation or 
from the dislocation was generally used. The displacement of the edge of dislocation 
occurs then in a dislocation plane (in a half-plane being the dislocation wedge). But our 
considerations deal with the displacements of dislocations in their slip planes. 

In the case of single dislocation such a displacement is described by its direction, 
velocity and distance passed. If, however, the great number of the dislocations moves in 
different directions, what occurs especially under variable stresses, the estimation of the 
summary effects of the objects moving chaotically in different directions may be described 
by means of the diffusion equations which were used by the author for describing the 
effects of the dislocation displacements. The dislocation density is sufficiently large so it 
_is possible to say something about the average effects of the dislocation displacements, 
and at the same time it is sufficiently small so that the particular dislocation can preserve 
the individual features of the objects forming the sets. 

The doubts mentioned above as to whether the application of the diffusion equations 
for describing the effects of dislocation displacements is sufficiently argumented may arise 
from the fact that: 

one may have objections as to whether the condition of chaoticity is satisfied for dis
locations; 

in distinction to the classic processes of the diffusion of atoms or molecules in gases, 
fluids and solids, the only existence of the density gradient of dislocations does not lead 
to the corresponding dislocation displacements, causing the decrease of this gradient; 

the decrease of the dislocation density and dislocation density gradient may in certain 
conditions occur only under variable external loads. 

These problems will be discussed successively. 

3. Chaoticity of elementary dislocation displacements 

The displacements of dislocation in a determined direction is the resulting effect of 
overcoming by particular dislocation segments of the consecutive barriers of the potential 
coinciding with the net planes. The dislocation motion connected with its vibrations 
between two extreme positions coinciding with the neighbouring maxima of the potentials 
was first considered by SEEGER [4]. This problem was further developed by DoNTH [5] 
and others. 
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At a fixed temperature the dislocation segments vibrate similarly as a string with a vi
bration frequency which, depending on the kind of crystal, degree of its purity etc., equals 
y = 106 -1011 sec- 1 , [6], and the amplitude of the vibrations is of the order of the lattice 
parameter. These vibrations exhibit the features of the thermally-activated process and 
under thermal fluctuations their amplitude changes locally. The pair of transient kinks 
is formed on the dislocation lying in a plane of dense packing (Fig. 2) due to thermal 
fluctuations and first of all due to applied external load. These kinks in the case of over
coming the barriers of the potential and the attractive force between kinks (Fig. 2c) become 
permanent deflections and then move away along the dislocation line (Fig. 2d). The dis
placement of dislocation in its slip plane has then a two-dimensional character since it 
consists in overcoming the successive Peierls-Nabarro barriers and is connected with the 
displacement of kinks in a direction normal to the direction of dislocation motion. 
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FIG. 2. The model of thermically-activated overcoming of Peierls-Nabarro barriers, [6). 

In equilibrium conditions the kinks of dislocations, similarly as the atoms from which 
these kinks are built, under the influence of the thermal fluctuations vibrate in a chaotic 
way. The flux of the kinks assumes the form [15] 

(3.1) Jk = -Dk ~~. 
The diffusion coefficient of kinks, Dk, is 

(3.2) n. = 111J
2

W "' a2voexp(-- :; ). 

where ck is the concentration of kinks, a denotes the length of the elementary jump, w is 
the frequency of jumps in a given direction, the coefficients IX ~ 1, Yo denotes the vibration 
frequency of the kinks which is of the order 1012-1013 sec- 1 , Wm is the activation energy 
of the jump of kink. 
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Both possible directions of kinkjumps are equally probable, hence no favoured direction 
of dislocation motion can arise. When acted upon by a constant shear stress r, the motion 
of kinks is biased. The jumps to one side are aided by the. force rbh, while those to the 
other side are retarded, so that a net drift velocity, Vb in the direction of the stress results: 

rbh 
(3.3) Vk = Dk kT , 

where b is the Burgers vector and h is the height of the kink (Fig. 3). 
y 

X 

FIG. 3. Dislocations with kinks distributed at the same distances I [15]. 

If the distances between the kinks are the same and equal /, and the kinks move with 
the velocity Vk, then the whole dislocation moves in a direction perpendicular to its line 
with the velocity 

(3.4) 

According to recent concepts the dislocations in fee metals manifest the ability to move 
even at a temperature close to 0°K. The resulting motion of dislocation is then a consequence 
of the motion of its particular segments which are being displaced thanks to the continuous 
randomly vibrating motions with the largest probability of overcoming the barriers of the 
potential in one plane (in a slip plane). 

4. Dislocation density gradient and dislocation displacement 

It has been confirmed above that the noticeable dislocation displacements can not be 
proved experimentally when r = 0 or grad T = 0, but only when grad (! > 0. The possi
bility of equalization of the dislocation densities between the micro-regions even with the 
significant values of the grad (! and high temperature is not confirmed, while for the atoms 
the equalization of the concentrations when r = 0, grad T = 0 and T = const but only 
when grad c > 0 is one of the basic symptoms of the diffusion. Moreover, the self-diffusion 
phenomenon confirms the fact that for atoms the existence of grad c > 0 is not necessary 
for the diffusion to develop with noticeable macroscopic effects. 

4.1. Dislocation displacements at symmetric elementary displacements 

In conditions of symmetric elementary displacements ( r = 0, grad T = 0, T = const 
or even r > 0 but Tm = 0) the character of the displacement of atoms and point defects 
in solids differs essentially from that of the displacement of dislocations. Although the 
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possibilities of displacements of atoms and dislocations exhibit in crystals directional 
anisotropy, the probability of the displacement of the atom or point defect in the three 
mutually orthogonal directions is, however, the same (in cubic lattice) or almost the same 
(in hexagonal lattice). Each of these objects being in a determined point may be displaced 
with the same probability to one of at least six similar neighbouring points. The diffusion 
processes of atoms or point defects are then symmetric processes occurring in the three
dimensional space. 

The dislocations-even in a body with directional isotropy and particularly in real 
anisotropic crystals-may displace only in the slip plane. A given atom may be displaced 
with the same probability Py forward and backward together with the dislocation line 
(Fig. 2) and with the same probability Px to the left and to the right with the kink. The 
atoms of a dislocation half-plane lying at a distance of n parameters of the lattice away 
from the edge of this half-plane may be subjected to analogous displacements only in 
the plane parallel to the slip plane, at a distance of n parameters of lattice away from it. 
Similar reduction of the motions of atoms to two-dimensional space exists also in the 
displacement of the screw dislocations. 

Since several differently oriented planes of the easy slips exist in the crystal, the three
dimensionality of the processes may be sometimes also taken into account; however, the 
elementary displacements of atoms causing the motion of the particular dislocations occur 
in two-dimensional space. Some deviations from this ruie take place at the cross slips. 
But this will be discussed later in Sect. 5. 

There is a full analogy between the character of the displacements of atoms or point 
defects in the crystal lattice of metals (especially cubic) and the model of displacements 
considered in the mathematical theory of the symmetric random walks [7]. In both cases 
the objects may rest only in the nodal points of the lattice composed of the elementary 
squares or cubics and may pass by jumps the discrete distances to the neighbouring points. 
Thanks to this analogy and to the fact that the theory of the random walks lies in the 
foundations of the diffusion theory, two basic theorems of the theory of random walks 
are applied in the analysis of our problem. 

1. In the case of the symmetric random walks the probability that in the infinite in
crease of time the random walking point will come back to its initial position in 1- and 
2-dimensional space equals unity, while in 3, 4, ... , n-dimensional spaces this probability 
is less than unity [12, 13, 14]. 

2. Two randomly walking points in 1- and 2-dimensional space will meet with a proba
bility equal to 1 infinitely multiple times, while in the 3, 4, ... , n-dimensional spaces the 
probability that these points will never meet is positive (they rather go away from each 
other toward the boundary of the region) [12, 13, 14]. 

The essential conclusions result from these theorems. 
1. The atoms or point defects, if they are only sufficiently mobile, displacing in the 

3-dimensional space show a tendency to increase continously the distance from their 
initial positions. These motions account for the transport of the particular atoms for 
significant distances what in fact causes the decrease of grad c. This also contributes to 
the forming of the self-diffusion process occurring in the crystals built from the atoms 
of the single element, i.e., at grad c = 0. 
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2. The dislocations, moving because of the displacements of atoms in the 2-dimensional 
space, show a tendency to return unceasingly to their initial positions. In the conditions 
when T = const, grad T = 0 and T = 0, or even r > 0 but 'l'm = 0, the displacements 
of the kinks and the whole dislocations may have solely a local character and their summary 
effect equals zero. This is just the reason why the displacements of dislocations are not 
in a sufficient number required to cause noticeable equalization of the differences of their 
densities between different (neighbouring) microvolumes. 

The self-diffusion phenomenon mentioned above confirms the fact that the existence 
of grad c > 0 is not an indispensable condition for the diffusion processes. These processes 
are the result of the enormous number of the randomly occurring elementary displacements 
of atoms. Fick's formula in general reflects correctly the quantitative effects of the process 
governed by the law of large numbers, but the existence of grad c > 0 is certainly not 
a motor mobilizing the mechanism of the directional diffusion. Besides, it is known from 
the experiments that the process of reverse diffusion may occur when the flux of the deter
mined kind of atoms displaces to the regions of their greater concentrations. The nonhomo
geneous distribution of the stresses, the differences of the chemical potential, etc. may be 
the reason for this phenomenon. 

The discussed restriction of the possibility of displacement of the dislocations to the 
2-dimensional space is certainly responsible for the fact that the differences alone of the 
dislocation densities in the particular micro-regions are not a sufficient factor for equalizing 
these densities. The stress fields produced by the dislocation and, in particular, by their 
tangles may act against such an equalization. In certain conditions the differentiation of 
the local dislocation densities may even increase since the dislocations should demonstrate, 
because of the limited mobility mentioned above, the tendency to gather in microregions 
of higher efficiency of their multiplication, i.e., in the vicinity of the boundaries of the 
subgrains and grains. 

4.2. Dislocation displacements at asymmetric elementary displacements 

In the equation of the flux of dislocations 

(4.1) 
D 

J = Vdrlft (! = kT rbhe, 

in the equation for changes of dislocation density 

(4.2) 
0(! 
oN = DL1e 

or in Eqs. (1.1) and (1.3) the dislocation diffusion coefficient D determines the number 
of dislocations passing in unit time through the unit width of the plane (in the 2·dimensional 
model) or through the unit surface (in the 3-dimensional model when more than one slip 
plane exist). 

In the conditions of variable stresses when the direction of the dislocation displacement 
~hanges cyclically the flux J expresses a difference between the number of dislocations 
moving back and forward during one cycle of loading through the unit width or surface. 
In the case of the symmetry of dislocation displacements the flux J equals zero, i.e. the 
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situation is similar to that considered in Sect. 4.1, since the noticeable effects of the dis
placements of dislocations in a given region will not appear. In the case of asymmetry 
of displacements the flux J > 0 and the directional stream of dislocations arise with the 
density given by Eq. (4.1). --

Mean dislocation velocity Vm or drift velocity in Eq. (4.1) plays a significant role in 
the process of dislocation displacements and through vm the coefficient D depends on 
different factors. The sign of dislocation velocity depends on the sign of stress; the velocity 
depends on the stress, temperature, kind of lattice, etc; the path of the free displaceroents 
depends on the kind of crystal, the degree of its imperfection, the density of the barriers, 
i.e. density of inclusions or density of immobile dislocations, etc ... 

The velocities of dislocations in different crystals, and even in the same crystal but in 
different ranges of stress and temperature, are strongly differentiated. In the quantitative 
analysis of the problem one may use the direct results of measuring or the empirical for
mulae. For example, one such relation has the form [8] 

(4.3) 

where Vm denotes the mean dislocation velocity, T is the applied Stress, To is the StreSS 
causing the unit velocity and m denotes the experimental coefficient different for various 
crystals and temperature ranges. 

The values of m for certain materials are as follows [8]: Si (600-900°C)-1.4; Ge 
(420-700°C)-1.4-1.9; Cr-ca 7; Mo-ca 8; W-5; LiF-14.5-25; Fe-3.25% Si-35; 
Cu-ca 200; Ag-ca 300. 

The external surface should play a particular role in the conditions where, at the stresses 
acting on the crystal, the flux D = 0 (symmetry of dislocation displacements) and D > 0 
(asymmetry of dislocation displacements). However, even in such loading conditions 
which lead to D = 0 in the core (when, for example, for symmetric stresses and a variable 
sign the mean stress equals zero), near the surface D > 0 will occur due to the additional 
interaction for~ of attracting the dislocation to the surface. For the screw dislocation 
parallel to the surface this force referred to unit length is 

(4.4) 
F Gb2 

and for edge dislocation 

F Gb2 

L- 4n(l-ft)l' 
(4.5) 

where G and 1-l denote t,he elastic shear modulus and the Poisson coefficient respectively, 
and I is the distance from the dislocation to the surface. 

The flux of dislocations appearing in a surface layer, directed to the surface and caused 
by the joint interaction of the external and internal forces, has an essential influence on 
the mechanism of fatigue. It is not excluded that the whole agglomerations of dislocations, 
gathered in the tangles or in boundaries of cells of dislocations, diffuse to the surface. 
Thus, it was confirmed experimentally that the surface layer can be free of the dislocations 
[9, 10]. 
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5. Diffusive mechanism of cycling hardening and softening 

The consequences of different possible mechanisms of dislocation displacements appear 
in the macroscopic effects (work-hardening or softening curves) as well as in microscopic 
effects (distributions of dislocations). FELTNER and LAIRD [11] have presented the work
hardening and softening curves for the polycrystal copper and alloy Cu-7,5% AI and have 
evaluated the densities and distributions of dislocations in these materials. They used 
specimens annealed and cold-worked (decrease in diameter 5%, 15%, 23% and more) and 
fatigued at temperature of 78oK or 300°K. 

It should be pointed out that in such materials as Cu-7,5% AI or Fe-3% Si the disloca
tion displacements have a 2-dimensional character, i.e. the slips occur only in the deter
mined planes (due to large anisotropy), but for example in Cu, AI or Fe the displacements 
have a 3-dimensional character since in these materials cross slips of the screw dislo
cations may occur easily [11]. 

The result of examinations of the hardening and softening and distribution of disloca
tions were as follows: 

I. At a given test temperature, copper, which has a 3-dimensional or wavy glide slip 
character, has a unique cyclic stress-strain curve independent of history. The results in Fig. 4 
show that cyclic stress-strain curves for Cu are coincident, regardless of the annealing 
treatment (resulting in different grain sizes), the amount of cold work, the cold working 
process, and the temperature of cold work. Other\ results on pure AI demonstrate the 
generality that saturation conditions produced by cyclic strain in materials which display 
a wavy slip character are independent of the history of the metal. 

60 
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IniTial condition 
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1hr 750 °C 

• . 24hr450 °C 
• 5% reduction in dia . 
• 23% ,, 
+Annealed (t.) then pre

strained 50% in tension 
at 78°K 

FIG. 4. Cyclic (-~)and monotonic (-----)stress-strain curves for copper at 300°K [11]. 

2. Cu-7.5% AI, which has a planar glide slip character, has a different cyclic stress
strain curve for each different initial condition of the material. The results in Fig. 5 show 
that cyclic stress-strain curves of Cu-7.5% AI are never coincident and depend strongly 
on annealing and cold working treatment. 

3. In annealed copper subjected to fatigue the dislocation cells appeared (Fig. 6a, c), 
the diameters of which were larger at higher temperature and at lower amplitude of cyclic 
stress. The interiors of cells, in which after static deformation some amounts of spreading 
dislocations remained (Fig. 6b ), were "cleaned" after cyclic stress from dislocations 
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FIG. 5. Cyclic (--) and monotonic (---- -) stress-strain curves for Cu-7.5% AI at 300°K [11]. 

FIG. 6. Dislocation structures in copper before a) and b) and after cycling c) and d) [11]. 

(Fig. 6d). But the boundaries of cells composed of dislocations were narrower, more 
distinct and the greater was the number of loading cycles applied, the greater did the 
condensation of dislocations occur. 

4. In Cu under initial cold work the significant condensation of cells and the increase 
of dislocation density occurred (Fig. 6b ). Due to the action of cyclic stresses the cell struc
ture and the density of dislocations changed to such a state which appeared in annealed 
specimens subjected to similar variable loading only (Fig. 6c, d). The history preceding 
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the process of fatigue had then no influence on the density and distribution of dislocations 
produced by variable loading under the condition that the plastic strain caused by these 
loads had a variable sign. 

5. In the annealed and fatigued Cu-7.5% AI the dense planar strips of dislocations 
and the considerable amount of dislocations spreading between these strips appeared 
(Fig. 7c). At higher stresses the dislocations were distributed almost uniformly in planar 
sets. The number of tangles in cold worked and cycled material was greater than the number 
of tangles prior to fatigue. The number of tangles in the cold worked and cycled material 
was smaller than in a material annealed and cycled. In the cold worked and cycled material 
the density of interstrip dislocations was large, what was a consequence of the initial 
state (cold working). 

Fig. 7 .. Dislocation structures in Cu-7.5% AI before a) and b) and after cycling c) and d) [11]. 

6. In Cu-7.5% AI the history effect of the specimen was distinct, in particular at a lower 
amplitude of variable loads. The structure and density of dislocations in the cycled speci
mens after previous cold working or annealing differred essentially. 

In the light of the considerations in Sect. 2-4 the discussed character of the hardening 
and softening curves and the differences in distributions of dislocations have found evident 
argumentation. We shall discuss these topics successively in the same order as we have 
illustrated the experimental results (points 1 to 6). 

I. The fact that the shape of the cyclic stress-strain cur •'e in Cu (Fig. 4) is independent 
of history is significant for two reasons. 

Firstly, it indicates that the changes of dislocation densities responsible for the harden
ing or softening phenomenon exhibit really diffusive processes. The independence of these 
curves of the history is in agreement with the property discussed in the introduction 
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(Eqs. (1.6) and (I. 7)) characteristic of the diffusion processes (and heat conduction) 
which claims that after a sufficiently long time (or corresponding number of cycles) a certain 
typical value and distribution of density of dislocations (or concentrations of other diffusive 
objects, or temperature) are established in the body and they depend solely on the value 
of the coefficients appearing in the equation of type (1.3), i.e. b, c and D but do not depend 
on the initial conditions. 

Secondly, the results presented in Fig. 4 demonstrate that in Cu the value of the coef
ficient H (Eq. (1.5)) never changes under external factors, i.e. does not depend on the 
history. It also means that the coefficients b, c, D do not change because a change of b 
and c even at b/c = const and H = const would lead to the displacement of the hardening 
or softening curve to the left (accelerated process) or to the right (delayed process). 

2. The similarity of the curves from Fig. 5 to the curves of Fig. 4 indicates that in 
Cu-7.5% AI cyclic hardening or softening is also caused by a diffusive change of disloca
tion density. But a qualitative dependence of the curves on the history indicates that in 
this material the history has influence on the value of the coefficient H, i.e. the coefficients b, 
c and D change in a different way. A change of the ratio b/c causes the growth or decay 
of the density of the state of saturation !?Hm (Eqs. ( 1.6) and (1. 7) ). The decrease of the 
coefficient c as consequence of cold working may be caused here by the increase of density 
of immobile dislocations under the influence of variable loads (see point 6). 

3. In Cu due to the fact that dislocations move in 3-dimensional space they show the 
tendency to go away from the previously occupied positions. Thus the interiors of the 
3-dimensional cells do not contain dislocations. The dislocations gather in 2-dimensional 
cell boundaries on which they can locally move. The cell boundaries appear probably at 
the initially existing boundaries of subgrains because of the presence of immobile disloca
tions. The cell boundaries may displace probably as a whole due to directional diffusion 
of the dislocation conglomerations (forming these boundaries). 

4. In Cu, due to the fact that in 3-dimensional motions the dislocations there overpass 
more easy the barriers, the coefficient H (Eq. (1.5)) is independent of the actual disloca
tion density and p need not diminish to zero. This means that the coefficients b, c and D 
in the same way (e.q. by influence of {3) depend on the actual dislocation density and are 
uniquely dependent only on the actual loads and temperature. Thanks to this fact the 
large density of dislocations arising during cold working-if it does not exceed the de
termined limits-does not lead to irreversible blocking of dislocations. These dislocations 
during the action of correspondingly smaller variable loads are then dismissed or annihilat
ed. The mechanism of the process is such that a smaller coefficient b corresponds to the 
low variable loads. Thus, the density of saturation-in agreement with the formula 
(1.6)-decreases. The change of sign of plastic strain is necessary to cause 3-dimensional 
diffusion '(displacements from a given point in 6 possible directions) and if it is not the 
case the effects of the process will not be obtained. 

5. In Cu-7.5% AI the distribution of dislocations in the slip planes is more uniform, 
since in the incessant return of dislocations to their initial positions the distinct changes 
of their concentration state are not possible. The cold working makes a large number 
of blocked dislocations arise and during cycling the development of tangles is more dif
ficult (smaller b) than in annealed material. 
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6. In connection with the state discussed in point 5 and in distinction to the situation 
existing in Cu (point 4), in alloy Cu-7.5% AI the distinct decrease of dislocation density 
under the influence of variable stresses cannot take place (due to greater blocking of the 
dislocations, {3--+ 0 and b, c and D depend on the actual dislocation density). The history 
dependence of the density and distribution of dislocations in this material is then fully 
justified. 

6. ConcJusions 

From the above considerations it results that experimentally confirmed differences 
in the effects of displacements of atoms and dislocations do not contradict the possibility 
of describing the motion of dislocations and phenomena connected with these motions 
by means of diffusion equations, but on the contrary-finding a unique explanation
completly justify this possibility. 

Thus it seems that there are no physically and mathematically justified reasons for not 
using diffusion equations in the case of dislocations. The agreement of the conclusions 
resulting from the analysis of the fatigue of metals performed using these equations in 
[1-3] and in the paper with the facts confirmed experimentally may constitute the additional 
argument supporting these ideas. 
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