





Generation of the generalized
Farlie-Gumbel-Morgenstern distribution

Anna Olwert
Systems Research Institute, Polish Academy of Sciences
ul. Newelska 6, 01-447 Warsaw, Poland

aolwert@ibspan.waw.pl

Abstract

The algorithin producing random variables from the multivariate Farlie-Gumbel-
Morgenstern distribution is proposed. The construction of this algorithm based on

so-called copulas.
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1 Introduction

The Farlie-Gumbel-Morgenstern (FGM) distribution belongs to the family of multivariate
distributions modeling dependencies between random variables. Its application is limited
to cases with weak or moderate dependencies. The FGM distribution is widely used in
practice.

In this paper we present the algorithm generating random variables from the multi-
variate FGM distribution. The suitable algorithm in the bivariate case has been given by
Johuson (1987). The construction of proposed algorithm bases on so-called copulas.

[t is usually hardly to generate dependent multivariate random variables. Copulas
appear to be a very useful tool to construct and simulate multivariate distributions.
They describe a dependence structure between random variables in the specific way, so, in
particular, they are the convenient tool to generate dependent random variables. A general
algorithm producing randoin variables from copulas has been proposed by Romano (2002).
We take advantage of it to construct the algorithm generating random variables from the

FGM distribution.



2 Farlie-Gumbel-Morgenstern distribution

The FGM bivariate distribution (Morgenstern, 1956) has joint cumulative distribution

function given by
F(zy,22) = (1) Fala) {1+ o[l — Fi(z)][l - F(w2)]} (1)

where F} and F, are the marginal cumulative distributions functions of Xy and X, re-

spectively, and « is a parameter. The joint density function corresponding to (1) is
Flan,ae) = filz)fa(m2) {1 + ol = 25 (m))[1 — 2F5(x2)]}, (2)

where f; and f» are the marginal density functions of X; and X5, respectively. The
coefficient « is a real number, suitably limited so that f(=z, ;) is a nonnegative function
for all z), .

The parameter a describes the association between random variables. The variables
Xy and X, are independent if and only if @ = 0. They are positively associated, if & > 0
and negatively associated if o < 0.

This family of bivariate distribution was later discussed by Gumbel (1958) and Far-
lie (1960). However, it seems that the earliest publication with the special form (1), i.e.
with uniform marginals Fy and F3, is Eyraud (1938). Now this family is usnally called the
Farlie-Gumbel-Morgenstern distributions or sometimes also the generalized Eyraud distri-
butions. Cambanis (1977) considered constraints on parameter ¢ for different marginals.
If variables X and X, are absolutely continuous, then {a| < 1.

It can be shown that the FGM distributions are restricted to describing weak depen-
dencies between random variables. Schucany (1978) proved that for continuous bivariate
FGM distributions the correlation coefficient p is limited irrespective of the marginal

distributions Fy and F3, i.e.

: ®3)

Wl =

[p(X1, Xa)| <

In particular, when both X, and X, have a normal distribution, then we even have
|p(X1, Xa2)| < 1/7. Whereas if X and X, are exponentially distributed, then |p(X), X5} <
1/4. For other restricts on p see Schucany (1978).

Example 1. The bivariate FGM distributions with the uniform marginals.
Figure 1 gives a graphical representation of the bivariate FGM distribution (2) with the
wniform marginals U(0,1). The point (0.5,0.5) is a saddle point of the FGM density
Sfunction. o« = 1 and o = —1 correspond to mazimum positive and negative dependence
between two random variables. The suitable cases with positive and negative values of a
represent the same surface rotated 90 degrees about the point (0.5,0.5). For a = 0 the
density function corresponds to independent components.
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Example 2. The bivariate FGM distributions with the exponential marginals.
Figure 2 represents the bivariate FGM distribution (2) with the exponential marginal dis-
tribution functions E(0,1). Here, the graphs for the same absolute values of o represent

different surfaces.

Johnson and Kotz (1975) introduced a general system of multivariate FGM distribu-

tions defined by

F(:Bl, PR il'n) = H F,(’l?,) [1 + Z&jk(l - F}(I}J))(l - Fk(.’l}k))

i=1 j<k

n
ot O - Fk(l‘k))J, (4)

k=1
where F; is the marginal cumulative distribution function of X;. The coefficients s, a3,
(ta3, ..., Q2. o are real numbers. Constraints on the values of this coefficients are needed
to ensure that F(zy,...,z,) is a multivariate cumulative distribution function. If the

univariate marginal distributions are absolutely continuous, the joint density function is

fl@r, ) = ] fulm) [1 + 3 a(1 = 2F5(x,))(1 — 2Fk(xx))
i=1 i<k
+ootana ][]0 ~2Fk(zk))]. (5)
k=1

Every hivariate pair (X, X) has (marginal) distribution (2) with & = a;;. The fun-
ction (5) is nonnegative, so coefficients in formulas (4) and (5) must satisfy the following

condition

n
14 Zcicjaij + Z ciciChrije + ..+ (Hci> ags, g > 0, (6)
i=1

i< i<y<k
where ¢; = %1 for all ¢. It is worth noting, that for n = 2 weget 1 a3 > 0, i.e. |app| < 1.
For n = 3, the conditions can be summarized as follows

|zl <1+ g + aya + ags,

|z + cos + g3 | < 14 aug,

fans +aus £ iy ] < 14 aug,

|z + 03 £ s | <1+ ana. (7)
If iy = a3 = gy = 1 in (7), then ajes = 0. Similarly if a3 = 1, then ayy = a3 =
ags = 0. Introducing higher ovdered correlations can lead to reduction of some correla-

tion coefficients among 9, (vy3, g, . . ., @12, Moreover higher ordered correlations are

seldom available in practical applications and they are usually difficult to calculate.
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Figure 2: The bivariate FGM distributions with the exponential marginals.



So, further on we will consider a special case of the multivariate FGM distributions,
i.e. we suppose that there are only binary correlations between variables, namely

n
Ploy, . z) =[] Flm) (14D sl = Fi@))(1 = Fu(a) | - (8)
i=1 i<k
Such a truncated model seems to be rich enough. It was successfully applied e.g. for
modeling the fatigue crack growth (Sobczyk & Spencer, 1992).

Many of the properties of bivariate FGM distributions generalize. In particular, mul-
tivariate FGM distributions characterize weak dependence among the random variables
X1, Xs, ..., X,,. Additional properties of the FGM family can be found in Johnson & Kotz
(1975, 1977). Primarily because of their simple analytical form, FGM distributions have
been widely used in modeling, for tests of association and in studying the efficiency of
nonparametric procedures. They are also considered (Schucany et al., 1978) as a model for
screening variables in a quality control application. Shaked (1975) discussed the analyti-
cal appeal of multivariate FGM survival functions in reliability applications and theory of
Bayesian survey sampling. For extensive lists of applications and references, see Conway
(1983) and Hutchinson & Lai (1990)

3 Copulas
Definition 1. An n-dimensional copula C is a multivariate distribution function with
marginals uniform in [0, 1] satisfying the following properties:

(1) € :fo,1]" — [0, 1],

(2) Clug,...,u,) =01ifu; =0 foranyi=1,...,n,

(3) C,...,Liu,l,...,1) = foreachi=1,...,n and all w; € [0,1],

(4) C is n-increasing.

The following theorem by Sklar is useful in many practical applications.

Theorem 1. Let F' be an n-dimensional distribution function with continuous marginals

Fy, ..., F,. Then it has the following unique copula representation
F(xy,...,2,) = C(Fi(zy), ..., Folza)). (9)

For the proof, see Sklar (1996).

It is seen that, copulas are functions that join multivariate distribution functions to their
one-dimensional marginals. The basic idea of the copulas is to separate the dependence
and the marginal distributions in a multivariate distribution. From Theorem 1 we get the

following corollary.



Corollary 1. Let I be an n-dimensional distribution function with continuous marginals
Fy, ..., F, and copula C satisfying (9). Then for any (uy,...,u,) € [0,1]"

C(“l»---yun) =F(F_1(ul)v-"1F_1(un))7 (10)

where F' is the inverse function of Fy.

It is easy to give the form of FGM copula. Using Theorem 1 for the distribution
function £ given by (8) we get

CF(1),. s Falan)) = [ Filma) (14 a1 = F(a))(1 - F(ex)) [ (11)
i=1 i<k

We will denote the FGM copula by C.
For uniformly distributed marginals uy, up in [0, 1] we will rewrite (11) as

Clur,up) = wua[l + a(l —ur)(l —wy)], ~1<a <1 (12)

in the bivariate case and

Ck'(ul, e Ug) = Hui 1+ Za‘jk(l —u) (I —we)l, ,—1< Zajk <1 (13)
i=1

i<k <k

in the multivariate case.

4 A general algorithm for random variable genera-
tion from copulas

From (9) we know that if we have a collection of n-copulas then we automatically have
a collection of n-dimensional distributions with whatever one-dimensional marginal dis-
tributions we desive. This fact is useful in modeling and simulation using copulas.

A general algorithm for random variable generation from copulas (Romano, 2002)
makes use of conditional distribution method. Below it is represented for the bivariate
(Algorithm 1) and multivariate (Algorithm 2) cases, separately. Let U = (Uy,...,U,) be
a random vector. The first algorithm has the following form:

Algorithm 1 (Genest & MacKay, 1986)

(1) generate two independent random variables v, and vy from the uniform distribution

U0, 1),

(2) set u; = vy,



(3) let Clug;uy) = Chyi(ug, uz), where

OC(uy,
Coplug, wg) = P(Us S wpllUy = wy) = —%Lljl‘uz—)

(4) set ug = C™1{v2;11),
(5) the vector (u;,us) is generated from the copula C.

The Algorithm 1 generalizes to the multivariate case as follows:

Algorithm 2 (Romano, 2002)

(1) generate n independent random variables vy, vg, . . ., v, from the uniform distribution

U0, 1),
(2) set wy = vy,
(3) let Clum;ur, ..oy Ume1) = Caprm—r (21, -+, Um), M= 2,...,n, where

Cm[l,,,.,'nl—l(“ly sy um) = P(Um < “mlUl =Upy -, Umul - “m~1)
or-l - Clur,... um, 1,...,1)

— ULt —1 , 14
Bl Cluny. im0 1) (14)

(4) set uy, = C7' WUmi w1, o ., Uinmr), M= 2,...,1,
(5) the vector (uy,...,uy,) is generated from the copula C.

In order to generate random variables (24, ..., T,) from a multivariate distribution F with
given marginals F; and copula C we have to transform each u; using the marginal distri-

butions as follows z; = F7 ' (w), i=1,...,n.
Algorithm 2 is computationally intensive for high values of n. In fact, it is a difficult

task to compute the conditional distribution (14).

5 Generation of the FGM distribution

To generate bivariate random variables from the FGM copula C given by (12) we can

apply Algorithmm 1 which reduces to the following procedure:

Algorithm A (Johnson, 1987)

(1) generate independent random variables v; and v, from the uniform distribution
uU(o, 1),

(2) set u; = vy,

































