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Abstract

In this paper two new methods of an evolutionary algorithm control are proposed. The
first one is a new method of tuning probabilities of genetic operators. 1t is assumed in the
presented approach that every member of optimized population conducts his own ranking of
genetic operators qualities. This ranking enables computing the probabilities of appearance
and execution of genetic operators. This set of probabilities is a base of experience of every
individual and according to this it chooses the operator in every iteration of the algorithm.
Due 10 this experience one can maximize chances of his offspring to survive.

The second idea developed in this paper is a self-adapting method of selection.
Methods applied in the evolutionary algorithms are usually derived from nature and prefer
solutions where the main role plays randomness, competition and fight among individuals. In
the case of evolutionary algorithms, where populations of individuals are usually small it
causes a premature convergence 1o local minima. To avoid this drawback we propose to
apply an approach based rather on an agricultural technique. The correctness of such
assumption follows from the observation that by operating on small populations of plants or
animals it was possible to cultivate species of desired features without randomness, fight and

competition. Two new methods of object selections are proposed: a histogram selection and a




mixed selection. Also advantages of passing them into the evolutionary algorithm are shown,

using examples based on scheduling and TSP.
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1. Introduction

In early years of evolutionary algorithms (EA) development much attention has been
devoted to show their similarity to processes observed in nature [12]. Such concepts as a
strong competition among individuals and fight for survival were introduced. Also genetic
operators, which modify the genetic code of members of the population were similar to
natural ones. As follows from experiments, traditional evolutionary mechanisms are not
sufficient in many cases for fast growing of population in desired direction. More
complicated, adaptive methods are much better. There are big difficulties with a theoretic
description of its behavior and properties, but there are first results, some of them very
surprising f11], [1].

In the classic genetic algorithm, proposed by Holland [12], both used operators
crossover and mutation had constant probabilities of working, chosen intuitively or
experimentally. Individuals of the population were coded as binary strings. The general rule
was to pass a high probability (0.8 - 1.0) for crossover and a low one for mutation (0.01 - 0.2).
These values were chosen not only intuitively, but based on biological and experimental data.
The mutation is responsible for exploration of searched domain, while the crossover exploits
previously found best regions. Too big level of mutation can lead to lose of convergence to
optimal solution, because of the fact that changes of the genetic material are stronger than

directed by fitness function process of evolution. So the probability of it is very low. High




level of crossover intensifies exploration of local extrema and it is useful to have big
probability of it.

Many problems cannot be effectively solved using traditional operators and methods of
encoding. It is necessary to use specialized ways of encoding solutions as members of the
population and designed for operating on them genetic operators. In that case it is difficult to
foresee what values the probabilities of operator choice should have, because it is often not
easy to realize what is a character of an actual operator. So we have two solutions to overcome
this problem: experimental tuning of probabilities or to make them self-adaptive'. There were
some trials of experimental evaluating parameters of genetic optimization for several
problems, using traditional genetic algorithm [6], but it is rather impossible to investigate the
whole domain of possible modifications of genetic algorithms for different problems. Of
course tuning parameters for actual problem is still a very good (but time consuming) way of
finding optimal values of them. The second possibility is much more promising. One of the
earliest solutions was to use a genetic subalgorithm to optimize parameters of main genetic
optimization process [10]. But it was rather slow method. Next step was to find the
probability of an appearance of the genetic operator connected with his behavior. Such
methods were described in [3], [4], [5], [13]. They are based on a quality of the operator
which modifies the population of solutions. Every operator gets (if is chosen) his period of
time when he affects the population, So all modifications of an evaluation function can be
assigned to a particular operator and they modify his probability of appearance. They are also
backpropagated to previously used operators, which credits are also taken into account and
their probabilities are also changed. Thanks to this method we can use any number of
operations, no matter how they work, randomly or knowledge based. The method described in

the chapter 2 of that work continues and develops the latter mentioned idea.

! A great survey of almost all used methods of the parameter control in EA, can be find in [7] or [16].

3




The second idea proposed in this paper deals with the problem of individual selection.
Almost all used methods are based on a natural selection or similar non-adaptive methods (a
short description of some of them will be located later in this paper), which are good mainly
for big populations with many individuals (ideally infinite number of them). Examples taken
from real life indicate that good results may be achieved by applying in the population rather
agricultural measures than the principle of natural selection. It should be noticed that in nature
each living organism is endangered by a number of unprofitable factors. Simultaneously it
endeavors to adopt himself in maximal extent to the environment. So its objective function is
uncommonly complicated. The influence of the environment and its unprofitable effects are in
great measure eliminated by a man. Due to this, much faster than in nature, individuals with
desired features are derived. In such approach potential advantages of individuals can be
utilized in great extent. However, in nature such could probably not survive. This idea is a

base of presented in this paper method of controlled selection.

2. A new method of probability control

2.1 Description of the method

In the presented approach it is assumed that an operator which generated good results
should have bigger probability and more frequently effect the population. But it is very likely
that operator, which is good for one individual, gives worse effects for another, for instance
because of his location in the domain of possible solutions. So every individual may have his
own preferences. It is rather common situation in nature - every living creature has his own
needs concerning environment of live, food, temperature, light, etc. Population of solutions

created for solving technical problems has also biological origins and probably can develop

2 The idea of ,personal preferences” of population member is also used in [14] but quite different method of adaptation.




better, considering preferences of its members. The idea of personal preferences is realized as
follows. Every individual has a vector of floating point numbers - g (beside encoded solution).
Each number corresponds to one genetic operation (the number of operators may vary during
computations). It is a measure of quality of the genetic operator. The higher the number is, the

higher is the probability of the operator. This relationship may be written as follows:

pij(t)=.i'(2_ (1)

i=L(t)

>a;®
1

i=

where:

qi(t) - a quality coefficient of the i-th operation in the moment ¢ for j-th member of
population;
Dift) - probability of an appearance of the i-th operation in the moment # for j-th member of
population;

L(1} - number of genetic operators (may vary during genetic computations).

The algorithm of this method is provided below:

1. Initialization of the population of solutions and starting values of gg;

2.i:=1;

3. Selection of genetic operators (and partners) by members of population;

4. Modification of individuals using selected genetic operators;

5. Evaluation of new values of fitness function and new values of gy for all members of
population;

6. Evaluation of new probabilities of operators selection;

7. Selection of members to the offspring population;

8.iw=i+1;

9. If not stop then go to 3;

10. End.

This method can be applied both in the case of operators changing one individual (like

mutation) and two or more individuals (like crossover). In the first case, there is no problem in
executing operators, it depends only on personal preferences. In the second one, two (or more)

individuals must choose the same operator to make it executable. So it is necessary to




implement a mechanism of searching for population members with the same preferences and
this solution is very similar to situations from nature.

The parameters gq;; are closely related with values of the fitness function or to be exact
with changes of this function worked out by the genetic operators. It is possible to attribute
every change of fitness function to an actual operator, because only one operator modifies one
member of population in one generation. Of course during one generation different operators
are used by different individuals, but one individual is changed only by the chosen operator.

The formula (2) shows how the qualities of operators are estimated.

b varg(1—1)fori=1

—_— *qg,(t— ori=

gy(0)=1""Feor-DE0) " Y @
gi(1-1) for other i

where:
qif(t), qi{t-1) - a quality of i-th operation for j-th individual in following generations;
I - number of the chosen operator;
qo - a credit value, always significantly less than 1;
fi..) - normalizing function, its arguments can be:
Q(t-1) - the best solution in the moment ¢-7;

X,(¢) - the mean value of improvements of quality function;

Xj(t) - an improvement of the problem’s quality function, obtained by i-th operation for j-th
member of population. In the case of lack of the improvement equal zero, x;(1)=Q(t-1) -
Qi(t) (minimization) or Xxj(t)=Qy(t) - (t-1) (maximization), Qt) - solution of j-th
individual, obtained using I-th operator;

a - a coefficient of forgetting (0, 1).

The first element of the formula (2) - go plays a role of a credit - a small value, which

supports small level of g; even if the operator does not give any advantages for a long term.




Dropping this value to zero would eliminate corresponding to it operation for current
individual and for its possible offspring. This fact is not profitable, because it is possible that
the excluded operator will work better on other stages of the evolution process. For exploring
operators like mutation it is often necessary to let them work even without any visible
improvements of the fitness function.

The second addend is a normalized value of an improvement of the problem's quality
function in the current generation. The improvement of the quality function can be taken into
account in two ways: improvement of the global best solution (which is more desirable) and
improvement of the offspring in relation to its parents. Both possibilities can be used in the
formula (2) with appropriate weights higher for the first and lower for the second way. The
normalization function is responsible for making changes of quality function independent on
character of the problem. It is easy to imagine problems where a small change of quality
problem is for instance 10° or 10°. This situation would require a long process of tuning
parameters of formula (2), if the normalization function wasn't applied. After adding
normalization the range of searched optimal values of parameters o and & can be significantly
decreased. Exact form of normalized function is not given in formula (2). It is possible to use
any function which transforms values of quality function improvements to range (0, 1) and
higher positive changes are also higher after normalization. Successfully tested by authors
functions are: best value of quality function reached by optimization process and a mean value
of improvements during the algorithm simulation. More information about normalizing
function will be given further in this paper.

The third part of the formula (2} is responsible for remembering old achievements of
an operator multiplied by a forgetting factor . The parameter « is responsible for balancing
the influence of the quality factor of an operator old and new improvements. It should be

noticed that some genetic operators may achieve good results in some phase of simulation,




and then draw out their abilities. In the other hand remaining operators, probably better in next
phases, would have small probabilities of appearance, if the factor a hasn’t been introduced.
So it would take a lot of time to change this situation and slow down the process of genetic
computations. The effect of forgetting former achievements can overcome this problem.
When operators don't change the global best solution for some tin;ne, the probabilities of
operators become small or even equal. After every generation only bounded with the chosen
operator value g is updated, the others remain unchanged. Only one operator is executed in
one generation for one individual, so there is no reason to change coordinates corresponding
to the others, not selected operators. Setting the value of & to 1 can cause the situation of
domination of operators which don't produce any income, but were good in early stages of
evolutionary process and consequently slew down computations. In other hand value 0 causes
the situation where quality of operators bases only on the newest information. It gives the
situation of almost equal probabilities of appearance of all operators, because significant
improvements of quality function are rare and all operators qualities would have the same
values during the major part of computation time. In the case of long term lack of positive

achievements of an operator, its value g;; establishes at level described by the formula (3):

9, (3)

;(e2)=limg, =
95()=1mdy =175

where:

gii(>o) - a limit value of gy(t), all other symbols like in formula (2).

It is obvious that formula (2) reduces itself to a sum of infinite convergent geometric

sequence (a<I) when an income is zero for a long time.




2.2 Parameters for the practical use

The formula (2) requires two numerical parameters g, & and a normalizing function.
Process of selecting this elements is not very complicated and is described below. Generally,
the parameter go ought to be less than important changes of normalized quality function. The
parameter & should belong to the range (0, 1) to assure a convergence of geometric sequence,
generated by formula (2). The span of practically used values of « is narrower (0.7, 1). Too
small values of « cause lack of positive feedback between a high quality of operator and its
frequency of appearance, because all qualities fast become equal for all operators. Too big
values cause in practical eliminating of worse operators at the beginning of the evolution
though they can become very useful later. Even selecting =1 shouldn't bring overflow errors
(not convergent geometric sequence), because computations last a finite number of iterations.

It is also important to assure non zero starting values of g; (gy{0)), because
probabilities corresponding to operators cannot be zero. In the case of qualities equal zero
only one operator chosen randomly or manually at the beginning of simulation would appear
all the time until the end of evolutionary computations. A good idea of setting initial values of
gy is using the formula (3). This value is achieved when no improvement is detected and that
situation appears at the beginning and also at the end of simulation.

The formula (3) may be also used as a base for determination values of & and gq. It is
possible to accept an assumption that the quality factor of an operator can change its value in
the first iteration maximally in 1.0 (using normalizing function as in formula (8), for functions

(6) and (7) this value depends on the solved problem):

xy(1)

— T < @)
FOQ(0)F;(1)




It should be an important change in relation to the coefficient g;{ec) in for instance

50%, so it formulates a following estimation:

9o .05=10 5)
1-a

where:
all symbols in (4) i (5) have the same meaning as in (2) i (3).

Assuming value a=0.9 it is possible to determine a value of go as 0.2 and
gii{>2) = q;(0) = 2. Described way of finding parameters of formula (2) is only a scheme but
gives satisfying values. Generally, the method of adaptive selection of operators is resistant on
selected values of parameters. They can be selected from a wide range without any malicious
effects because the main role of valuing operators play their achievements.

Beside factors a and g, the third unknown parameter in formula (2) is the normalizing
function. Its role is to make independent changes of problem's quality function (x;(¢)) on the
specific problem. It makes possible to choose values of @ and gp more universally. The
simplest solution of this problem is taking a best found solution as a normalizing function.
But this have some shortcomings:

o in the case of negative values of quality function it is necessary to use a modulus of the
function:
£, =|0) ©)
where:

Q(t-1) - the best solution in the moment ¢-7;

X, (r) - the mean value of improvements of quality function;

3 This value is chosen, basing on conducted experiments with various values of the parameter .
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e in the case of approaching the quality function to zero, its normalized value could
unlimitedly increase due to division by zero. Scaling and translation of the quality function
can overcome this problem (parameters a and b used in (7) are strictly connected with
solved problem):

O, X (1) =b+a-Q(t) )]
where:
Q(t-1) - the best solution in the moment ¢-1;

x,(t) - the mean value of improvements of quality function;
a, b - chosen coefficients;

e in the situation of changing sign of the quality function, described above method can fail.
In that case a good solution is using a mean value of improvements of the quality function,

computed separately for every individual of the population:

(3)

O, 1) =5, = %0- 1)-(tt— D+x,(0)

where:
Q(t-1) - the best solution in the moment -1

X, (1) - the mean value of improvements of quality function;

The latter case seem to be the most interesting. For this normalizing function is easy to
foresee the maximum value of increase of the quality factor, used in formula (4). The second
advantage of this function is adaptation of the mean value of improvements, because it
decreases during computation and also possible improvements decrease on more advanced
states of evolution. This effect compensates decreasing level of evolution during

computations.
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If necessary it is possible to establish vectors of values &, gy i gif =), which coordinates
are specific for every operator. When there is an ,,a priori” information about behavior of
operators there may be a situation where different values of parameters for every operator may
be used but in most cases it is not necessary because the main role play achievements of

operators.

3. Uncontrolled and controlled selection methods
3.1 A short survey of traditional selection methods
In traditional evolutionary algorithms the following methods of not controlled
selection are used [15], [8]:
o The roulette method. Individuals to the offspring population are selected in accordance
with probabilities, which are proportional to the values of their matching function. An

expected value of offspring population can be written as:

E,(t+1)=u‘j=—i(i)— 9)

F(0)
j=t

where:

E(t+1) - an expected value of offspring of I-th individual in the 7+ iteration;
1 - the size of parent population;
A - the size of offspring population;
Fi(t), Fi(t) - value of matching function for I-th or j-th individual in iteration z.
e The method of the best individual selection. In this method the following formula is

applied:

m(r +1) = W(F (1) = F,, (1) (19

where:
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. 0 forx<0
1(...)- step function, = H
€) P =) {1 for x>0
Fia(t) - all individuals evaluated above this value, enter to the next population;

all other symbols are the same as in the formula (9).

The method of deterministic roulette is described by the function:

nl(t+l)=f #.T:uf-;llﬁ.—‘ (11)

Y Fo
j=1

where:
nft+1) - number of offspring population of 1-th individual in the next generation;
f..) - an function converting a real value to an integer value (round or floor);

W, A, Fi(1), F;(1) - have the same meaning like in the formula (9).

Selection by stochastic remainder method with repetitions is some kind of combined
method. Its first phase is based on deterministic roulette method (11). Free places after first
part are completed using fractional parts of ,,individuals” by traditional roulette method, it

is described by the formula (12).

JEpEd -
E(n,(t+1) = ﬂoor(x,)+(p— Y’ Aloor(x J.)] ﬁl’i& (12

Y. (x; —floor(x,))
J=l

where:

x;, x; - an expected value of offspring in the roulette selection (9), denoted as x; or x; for
shortening the formula (12);

all other symbols like in formula (9) and (11).

Tournament selection is a method, where u times a competition between two (sometimes

more) randomly chosen individuals is conducted and a better one is connected to the
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descendant population. The expected value of the I-th individual offspring shows the
formula (13):

WHA-1+1f —(u+Ad-0F

(u+ A 13

E@+D)=p-

where:

E; (1+1) - an expected value of offspring of /-th individual in the r+1 iteration, 1 € (1..u+A);
M - the size of parent population;

A - the size of offspring population;

k - the size of the tournament (number of randomly chosen individuals, form which the best

is a winner).

This list doesn't exhaust the whole domain of different selection methods; also very
interesting ideas cover ranking selection [2], (9], and many others. Traditional roulette
approach in stationary evolutionary algorithm provides usually poor results. After long time of
computations it stabilize oscillating round about some value far off the global extremum. Poor
properties of the roulette method were criticized in very early works on genetic algorithms [6].
Much better results may be achieved using the selection of best individuals. However, this
method doesn’t save a high level of pressure for the population development. The
deterministic roulette method has a very strong pressing for the population development but it
quickly loses the diversity of population and consequently the algorithm terminates at a far
local extremum. The selection by stochastic remainder with repetitions is very similar to
deterministic roulette but behaves better, because it assures a higher level of population
diversity.

Having analyzed traditional methods of selection it has been found that they may not

be controlled and adapted. Thus, they do not enable to influence the process of selection and
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development of population by some external factors. Presented in this paper histogram and

mixed selection methods allow fulfilling this postulate.

3.2 A new approach

3.2.1 Histogram selection

In the histogram selection, described by the formula (14), a list of individuals of
different values of the matching function is created (this list resembles a histogram).

me+n = flu 'Tfl'(t) (14)

2 Fi0
s
where:
s - number of values on the list;
all other symbols have the same meaning as in formula (11);
The length of this list is usually shorter than a number of individuals in the population.
Next, a mean value of the matching function is calculated but using only once each value from
the list, no matter how many individuals are connected with this value. Each individual (or
rather value from the list) passes to the offspring population adequate number of individuals.
First, the particular matching function is divided by a sum of all values from the list. Next,
this quotient is multiplied by a size of base (parent) population and finally rounded to the
nearest integer value. In case when calculated number is lower than the size of base
population, an appropriate number of best creatures that were rejected in the first phase is
added to the population. In opposite case some the worst individuals are removed.
Fluctuations of obtained size of base population are caused by approximations calculated real

values by integers.
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The method of histogram selection delivers a number of interesting features. This
selection is carried out in deterministic way, so there is no possibility of dying out the best
individuals, which can occasionally happen in case of probability based methods. It also
enables to maintain the population diversity in a simple manner. In this approach mean value
of the matching function depends only on existing in the population values of this function,
not on number of appearances of these values in the population. Thus, the best individuals are
not advanced excessively. Worse individuals also have got a chance to be selected to new
population. However, there is a possibility to lose good individuals described by the same
matching function values but with completely different genetic code. So the histogram
selection may be extended to distinguish solutions having the same values of matching
function but representing different individuals. In case of discrete function optimization, the
simplest manner to distinguish individuals is to check if their genetic codes differ at least on a
single position. When optimizing continuous functions it is also possible to check similarity
of individuals. In this case one should introduce some neighborhood of respective point in

which two solutions are considered as identical.
3.2.2 Mixed selection

As follows from the previous point the histogram selection operates effectively not
allowing for too early convergence of the algorithm. Its characteristic feature is lower
selective pressure towards promoting the best individuals than deterministic roulette. On the
contrary the deterministic roulette method prominently selects the best solutions which results
in fast loosing of population diversity and consequently the premature convergence. So these
two methods have different faults and advantages and a method connecting features of these
two methods can work better than each of them can do separately. The mixed selection is a

good solution, which has advantages of both methods. This method consists of two parts:
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histogram selection and deterministic roulette, which are selected in random during the

execution of the algorithm. The performance of this method is explained in Table 1.

Iteration u ] A u ] A
Histogram Selection Deterministic Roulette Method
1 5,5,4,3,2 ,2,3,1,4 5,5,4,3,2 1,2,3,1,4
2 55,4,3,2 0,2,3,2,4 5,5,4,4.3 0,2,3,2,4
3 5,5,4.3,2 1,2,3,.2,4 5,5,4,4,4 1,2,3,2,4
Deterministic Roulette Method Histogram Selection
4 5.5.4,43 | 5,5,4,3.2

Table. 1. An example of the mixed selection performance.

In the table 1 an example of a certain matching function maximization is considered.
Two possible cases for randomly chosen selection methods are provided. Particular fields of
the table comprise values of the matching function where each number suits to one individual.
To simplify and better illustrate advantages as well as faults of two selection methods a lack
of improvement in this small part of the algorithm was assumed. Such situation occurs very

often when computations last. In the respective example the population size was y=A=5 for

the strategy (u+A). The above hypothetical example of evolutionary computations shows
characteristic properties of the proposed method. The deterministic roulette selection exhibits
tendency to fill up the population by identical individuals, on the other hand the histogram
selection assures to preserve the population diversity. As follows from this example, the
histogram selection also has the property to repair a composition of too uniform population.
Both versions of selection (histogram, deterministic roulette) supplement each other. It is
possible to control the property of selection operation by introducing the probability of
appearance of particular selection version. The more frequent appearance of the roulette
selection causes the higher pressure towards promoting the best solutions, which can in some
cases (when there is a high level of population diversity) speed up the computations. On the

contrary histogram selection increases the level of the population diversity, paying for it the
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weaker pressure towards promoting the best individuals. Due to this mechanism it is possible
to examine given search area more effectively.

This approach allows adjusting features of the selection operation to current
requirements of the population, The adaptation of probabilities of selection operations may be

derived from statistical properties of the population. An idea of this method presents Fig. 1 (in

equations ppis=I1-pg.).

L If3%KAF) <max(F youn - Frgins Fmac~ Fongan) then priy = pris ~ a%paey
2' lf0,5*o(F) > ma-r(Fm-an' Fnu':u Fm' mmn) ‘he”pln‘: =le'(l + a);
3. 1£0,5*(F) Smax(Fpean- Fuiny Frnas~ Frean) S3*(F) then puis = pis *(0,5-pai)*a;

Fig. 1. The algorithm of automatic tuning probabilities of the mixed selection elements,

The symbols used in Fig. 1 mean: py;; - probability of histogram selection appearance,
Pder - probability of deterministic roulette, Fnean, Fimin, Fmax - average, minimal and maximal
values of fitness function in the population.

If particular individuals are described by too small standard deviation of the matching
function (o(F)) with respect to the extent of this function (max(Fpean- Fimin Fmax- Frean)), then
it is desirable to increase the probability of appearance of the histogram selection. On the
contrary the probability of the deterministic roulette selection can be increased. As far as
parameters of the population are located in some range, considered as profitable we may keep
approximately the same probabilities of appearance for both methods of selection. In our
experiments the statistic parameters of the population: 0.5 and 3.0 have been found
empirically because they proved the best results. The value of the parameter a has been fixed
to 0.05. The method of tuning parameters of the selection operation also has been practically
checked. It has been found that this approach is better than the selection with constant (but

best found) value of a.
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4. Experimental results

4.1 Solved problems

To assess the utility of the proposed methods a number of experiments were
performed. Tests were carried out for widely known traveling salesman problem (TSP) of
1002 cities and for scheduling of time-dependent jobs on a multiprocessor system (1000
tasks).

Solutions for TSP were encoded as lists of cities to be visited in an order described by
the list. To solve this problem several genetic operators were used: blind and heuristic. All
operators were designed to assess problems limitations - the offspring always encoded valid
solutions. The operators were:

e mutation - a random exchange of two cities in the list of cities.

e crossover - starting from the first city of one list, next cites are chosen from one or second
list to be closer to the previously accepted.

e inversion - a fragment of the list is used in the reverse order;

e transposition - a fragment of the list of cities is moved to another part of the list;

e two-optimal method - exchanges two chosen edges in the route, if it gives a shorter route;

e neighborhood operator (two versions) - exchanges a city in the route for other, chosen from
the list of the closest ones in the geometric sense (a list of several closest cities is generated
for every city during initialization of the algorithm). The ,,neighborhood-1" operator simply
exchanges a city from the list (found on the path) with randomly chosen one. The
,neighborhood-2” operator cuts a close to chosen city from the path, moves all cities
between them in one position an inserts the city near the chosen one.

Members of the population for scheduling were coded as lists of tasks waiting for

processing. Also a graph of time-dependencies was introduced into algorithm as labels of
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waiting tasks. All operators are designed to assess valid solutions. Only problem-blind

operators were used (similar to used for TSP): mutation, inversion and transposition.

4.2 The probability control

Fig. 2 shows the dependence between a quality of an operator and its frequency of an

appearance for selected operators (only TSP). All data are collected from the whole

population (not from one member) so that’s why there is no exact proportion between quality

and frequency (fig. 2b shows a very big jump of frequency and very small increase of quality -

it can be caused by an important improvement of fitness function of one member, which had

many ,,children”). It would be difficult to show data from one individual during the iterations,

because it lives only for one epoch.
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Fig. 2. The dependence between a quality facter of an operator (at the bettom of

every picture) and its frequency of appearance (TSP - 1002 cities).
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Analyzing those pictures clearly can be seen that better behavior of the operator
effects in an increase of frequency of his appearance and consequently speeds up genetic
computations (which can be seen from tables 2 and 3). Operators which don't bring any
income aren't eliminated, but have approximately constant frequency. It is very likely that
they behave in the way like mutation and have exploration properties. They are very
important, but they can’t appear too often, due to possible effect of loosing convergence to
optimal solution.

In the table 2 an influence of the factor & on the genetic computations ca be
observed. Data from 25 simulations are collected and a mean values of them are presented

for different numbers of iterations and values of factor a.

0 100 500 1000 2000 5000 10000 | 20000 | 50000

const | 293042 | 289893 | 282191 | 278390 | 275278 | 272749 | 271492 | 270593 | 269693
a=0.0 | 293246 | 289378 | 280440 | 277136 | 274487 | 272270 | 271399 | 270607 | 269786
a=0.1 | 293351 | 287947 | 279570 | 276632 | 274347 | 272323 | 271298 | 270803 | 269929
o=0.2 | 293395 | 288355 | 279539 | 275973 | 273609 | 271842 | 271021 | 270527 | 269855
o=0.3 | 293258 | 288106 | 280058 | 276872 | 274388 | 272401 | 271577 | 270975 | 270434
=0.4 | 293026 | 287169 | 279246 | 276007 | 273873 | 271972 | 271199 | 270591 | 269728
a=0.5 | 292938 | 287472 | 278819 | 275744 | 273735 | 271895 | 271182 | 270759 | 270068
a=0.6 | 293635 | 288056 | 278282 | 275834 | 273875 | 272067 | 271422 | 270998 | 270154
a=0.7 | 292542 | 286664 | 278404 | 275954 | 273981 | 272269 | 271659 | 271320 | 270788
=08 | 292832 | 286319 | 277131 | 275368 | 273503 | 271981 | 271506 | 271286 | 270492
a=0.9 | 293522 | 286268 | 276100 | 274115 | 272655 | 271345 | 270937 | 270560 | 269942
o=1.0 | 292957 | 285490 | 275853 | 275602 | 274751 | 272768 | 271235 | 270858 | 270359

Table 2. A comparison of data obtained from 25 simulations (mean value) for several
numbers of iterations and values of forgetting factor a (TSP). The row labeled

»const” shows results obtained using the same probabilities for all operators.

All simulations were started from solutions obtained from a simple algorithm that
generates a route taking the closest city to the last visited. Starting from randomly chosen
cities it gives different solutions and works much faster than random initialization of the

solution population. A strategy (1+A4) was used with u=A=60. The optimal solution for the

21




considered task is known and equals 259045. The best found solution by described

program is 3% worse after 10° epochs.

0 50 100 200 500 1000 | 2000 | 5000 | 10000 | 20000
const | 2342.1 ] 2125.7 | 2036.0 | 1924.7 | 1740.3 | 1588.4 | 1445.5 | 13014 | 1232.0 | 1190.6
a=0.012348.6 | 2128.4 | 2036.6 | 1921.6 | 1744.8 | 1591.7 | 1450.3 | 1304.6 | 1234.2 | 1190.7
a=0.1(2357.6 | 2134.5 | 2042.8 | 1927.6 | 1739.8 | 1590.2 | 1444.5 | 1301.8 | 1232.2 | 1191.1
o=0.2}2345.1 | 2136.5 | 2042.5 | 1927.6 | 1742.8 | 1594.5 | 1450.9 } 1305.1 | 1235.2 | 1192.1
a=023]2353.9 | 2121.1 | 2034.6 | 1917.3 | 1732.4 | 1588.0 | 1446.9 | 1302.3 | 1232.0 | 1190.9
a=041]2339.0 21193 | 2024.1 | 1923.8 | 1744.8 | 1593.1 { 1450.4 | 1304.8 | 12353 | 1191.5
a=0.5|2342.5| 21389 | 20469 | 1921.2 | 17444 | 1593.9 | 1453.5 | 1301.4 | 1232.2 | 1191.1
a=0.6| 23323 [ 2108.6 | 2014.3 | 1906.9 | 1732.0 | 1582.9 | 1447.9 | 1299.9 | 1231.3 | 1189.7
a=0.7(2337.4] 21152 } 2024.9 | 1911.4 | 1736.7 | 1590.0 | 1451.1 } 1303.3 | 1235.1 | 1190.8
a=0.8|2331.5] 21249 | 2025.9 | 1915.3 { 1730.9 | 1588.8 | 1450.0 | 1305.4 | 1233.7 | 1190.6
a=09{2326.8 | 2097.4 | 2006.0 | 1894.9 | 17159 { 1571.0 | 1441.7 | 1300.1 | 1234.3 | 1190.9
a=1.0|2344.5) 2128.4 | 2022.7 | 1888.9 [ 1686.0 | 1532.1 | 1413.5 | 1329.2 | 1290.3 | 1257.6

Table 3. A comparison of data obtained from 25 simulations (mean value) for several
numbers of iterations and values of forgetting factor a (scheduling of 1000 tasks). The
row labeled ,,const” shows results obtained using the same probabilities for all
operators.

Considering data from table 2 and table 3 it is easy to see that the best results and
the fastest computations can be obtained using o€ (0.6..0.9). It should be noticed that
setting a=0 doesn't provide equal values of probabilities for all operators because it doesn't
eliminate the influence of their behavior. It only provides the smallest period of
remembering their achievements, which lasts till the next execution of that operator.

Parameters of simulation for scheduling are the same as in TSP. Optimal solution is
unknown, best found 1121 (after 10° epochs). Optimal values of ¢ are from the same
range, but differences between solutions for various & are bigger than in the case of TSP.

This fact is connected with used operators. For TSP both blind and knowledge-based were

used and they played the main role in computations. In scheduling only randomly working
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operators generated improvements and proper probabilities of their appearance are much

more important than in TSP.

4.3 The method of controlled selection

The empirical analysis of selection operation has been provided for two, described

carlier problems. An analytical description of effects of the selection operation on the

quality of the evolutionary algorithm is very difficult. Therefore it should be done

experimentally. Results of simulations are provided in Table 4.

Scheduling of time dependent jobs
Iteration I 11 I v v VI VIl VIIL

0 2341,1 2355,4 2350,1 23319 2336,3 2353,7 2357,0 2357,3

100 2154,7 2064,6 2058,7 2108,0 2062,8 2091,5 2075,7 2082,1

500 1961,4 1760,0 1767,7 1821,2 1767,8 1801,0 1765,1 1772,5

1000 1854,7 1613,5 1628,6 1661,3 1643,6 1632,6 1609,5 1611,7

2000 1725,5 1493,7 1528,0 1518,6 1550,0 1489,2 1473,4 1480,1

5000 1590,8 1424,1 1466,9 1373,7 1480,6 1396,6 1348.4 1352,1

10000 1581,8 1386,9 1432,5 1306,3 14423 1364,8 1287,8 1288,6

20000 1577,7 1364,3 1402,1 1256,5 1422,7 1341,9 1241,6 1241,7

25000 1581,4 1358,7 1392,5 1244,2 1413,2 1335,7 12273 1229,0

Traveling salesman problem
Iteration I 11 111 IV v Vi VII Vit

0 293985,9 | 292714,2 | 292920,2 | 2931204 | 2929678 | 292977,5 | 293108,7 | 292834,0
100 3416199 | 288221,9 | 288825,4 | 292679,0 | 288479,5 | 290328,1 | 290314,7 | 289269,1
500 461707,2 | 280190,6 | 280566,5 | 285446,8 | 280392,8 | 282651,9 | 282931,2 | 281813,7
1000 563016,9 | 276809,3 | 277017,5 | 281450,0 | 276835,1 | 278948,1 | 279693,6 | 2783414
2000 575346,3 | 274590,4 | 274153,3 | 278057,3 | 273991,3 | 275782,5 | 276557,0 | 275499,3
5000 673394,7 | 2725199 | 2723225 | 2750684 | 2722455 | 272920,8 | 273336,3 | 272899,9
10000 | 697337,3 | 2720852 | 271452,4 | 273558,0 | 271656,8 | 271561,3 | 2718309 | 271981,1
20000 683691,8 | 271998,7 | 271003,3 | 272645,0 | 271451,5 | 270769,1 | 270970,9 | 270972,4
50000 717214,7 | 271951,2 | 270623,8 | 271634,0 | 271406,7 | 270289,0 | 270240,2 { 270150,1

Table 4. Results obtained for different methods of selection: I - classical roulette, II -
deterministic roulette, III - selection by stochastic remainder method with repetitions,
IV - tournament selection, V- best individuals selection, VI - histogram selection, VII -
mixed selection with constant probability (pns=0,45 and pg.=0,55), VIII- mixed

selection with automatic tuning of probabilities.

That results show average values for 30 simulations. In each case results obtained

for the best individual in given iteration are provided. Except the selection operation all
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other processes are assumed to have identical parameters. The tables comprise results at
different stages of evolution to investigate changes in operation of the selection methods.
As follows from the presented data the mixed selection is superior to the other considered
methods. It is due to adequate balance between selecting pressure and ability of saving the
population diversity. Both versions behave in enough similar way. It should be noted that
deterministic roulette method is fast in initial phase of evolutionary process. However in
further stages its advantage is diminished due to too big unification of the population. The
histogram selection is somewhat slower in initial phase than deterministic roulette and it
behaves very well in the TSP problem.

The tournament selection is close (o proposed methods and has very good
parameters, but also is a little bit slower (about 2-4%) than mixed. The stochastic
remainder method with repetitions resembles deterministic roulette. Selection of best
individuals method is rather average. Classic roulette is very poor in all presented cases and
it is widely known that its importance is limited rather for theoretic considerations than
practical use.

Promising properties of the mixed selection depend on the probability of its
components appearance. To find better values of these probabilities a number of
simulations have been carried out in range (0, 1) with step 0.1. Results of simulations are
presented in the table 5. One may notice that good parameters for the mixed selection are
located in the range 0.4<p;;;<0.6 (pg.r=1-pyis) especially for scheduling problem, where
only blind operators were used and a method of selection plays the main role in
development of population. It has been observed that the best values for this problem are in
vicinity of the point (py;s=0,45, p4.=055). In the case of TSP, there are several values of

Puis and pge;, which assure a good behave of algorithm. To solve this problem several
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knowledge based operators were used and selection is not the only one factor, which

directs the population.

cheduling of time dependent jobs

| Pugs | Pa 0 500 1000 2000 5000 10000 250000
1,010,0] 23437 1772,2 1626,4 1487,0 1399,2 1366,3 13394
0,9]01] 23377 1773,7 1626.4 1491,8 13753 13144 1264,5
08(02]| 23301 17599 1609,8 1476,9 1359,8 1303,0 12472
0,7]03]| 23586 1790.8 16344 1490,4 1354,6 1289,3 12309
0604 23625 1761,6 1612,2 14754 1360,3 1298,6 1239,7
0,5[0,5| 23344 1772,3 1611,6 1468,1 1343,6 1287,3 1229,3
04106 23443 1759,6 1598,8 14755 1343,5 1281,4 1223,8
03]0,7| 23556 1754.5 1600,5 1462,1 1336,8 1280,2 12259
02108 23360 1751,2 1595,1 1468,0 1351,6 1300,1 1246,6
01{09]| 23385 1741,9 1590,8 1472,1 1363,8 1309,3 12514
0,0{1,0] 23296 1755,9 1610,1 1481,5 14103 1379,1 13452
Traveling salesman problem
Puis | Pa. 0 500 1000 2000 5000 10000 250000
1,0] 00| 293022,1 | 2779651 | 275016,6 | 2730359 | 271311,6 | 270792,8 | 270725,
0,910,1] 292851,7 | 278039,0 | 275299,7 | 273235,3 | 271814,0 | 271131,8 | 270770,8
0,802 292709,4 | 279030,7 | 275583,0 | 273388,9 | 271634,6 | 271089,5 | 270729,2
0,7{0,3] 2925323 | 278236,7 | 275771,7 | 273884,7 | 272192,5 | 271638,5 | 2714257
0,604 | 292526,1 | 278653,2 | 276049,3 | 274289,7 | 2725058 | 2717140 | 2711064
0,5]10,5) 293037,0 | 279175,8 | 276299,6 | 274511,1 | 272901,5 | 271964,5 | 271505,1
04]0,6| 293456,6 | 279016,6 | 2767487 | 2745250 | 272961,3 | 272096,0 | 271217,3
0310,7| 294227,5 | 277955,7 | 2748358 | 273062,0 | 271609,1 | 271039,0 | 2705273
0,208 292850,5 | 276754,4 | 274105,8 | 272713,7 | 271666,7 | 271177,8 | 270856,0
0,110,9] 293057,8 | 277903,6 | 275011,4 | 273538,0 | 272243,0 | 2719644 | 271377,1
0,0]1,0] 292867,9 | 277188,1 | 275059,4 | 273288,6 | 2721004 | 271897,6 | 271870,1
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Table 5. A comparison of the mixed selection performance for different probabilities

5. Conclusions

Described methods, which improve the controlling of the evolutionary algorithm
are not limited only to problems shown in this paper and may be widely used for
optimization the performance of the evolutionary algorithm. They assure a speedup of the
computations and a better final solution than using traditional methods, based on constant

probabilities for genetic operators.
Further possibility of development of described methods is by applying principles

of evolutionary programming, which gives not only the possibility of adapting parameters
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of operators, but also evolutionary searching for new operators, better adjusted to the

specific of solved problem.
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