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Abstract 

In this paper two new methods of an evolutionary algorithm control are proposed. The 

first one is a new method of tuning probabilities of genetic operators. lt is assumed in the 

presented approach that every member of optimized population conducts his own ranking of 

genetic operators qualities. This ranking enables computing the probabilities of appearance 

and execution of genetic operators. This set of probabilities is a base of experience of every 

individual and according to this it chooses the operator in every iteration of the algorithm. 

Due to this experience one can maximize chances of his ojfspring to survive. 

The second idea developed in this paper is a self-adapting method of selection. 

Methods applied in the evolutionary algorithms are usually derived from nature and pre/er 

solutions where the main role plays randomness, competition and fight among individuals. In 

the case of evolutionary a/gorithms, where populations of individua/s are usually small it 

causes a premature convergence to loca/ minima. To avoid this drawback we propose to 

apply an approach based rather on an agricultural technique. The correctness of such 

assumption follows from the observation that by operating on small populations of plants or 

animals it was possible to cultivate species of desired features without randomness, fight and 

competition. Two new methods of object selections are proposed: a histogram selection and a 



mixed selection. Also advantages of passing them into the evolutionary algorithm are shown, 

using e.xamples based on scheduling and TSP. 
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1. Introduction 

In early years of evolutionary algorithms (EA) development much attention has been 

devoted to show their similarity to processes observed in nature [12] . Such concepts as a 

strong competition among individuals and fight for survival were introduced. Also genetic 

operators, which modify the genetic code of members of the population were similar to 

natural ones. As follows from experiments, traditional evolutionary mechanisms are not 

sufficient in many cases for fast growing of population in desired direction. More 

complicated, adaptive methods are much better. There are big difficulties with a theoretic 

description of its behavior and properties, but there are first results, some of them very 

surprising [ll], [l]. 

In the classic genetic algorithm, proposed by Holland [12], both used operators 

crossover and mutation had constant probabilities of working, chosen intuitively or 

experimentally. Individuals of the population were coded as binary strings. The generał rule 

was to pass a high probability (0.8 - 1.0) for crossover and a low one for mutation (O.Ol - 0.2). 

These values were chosen not only intuitively, but based on biologica) and experimental data. 

The mutation is responsible for exploration of searched domain, while the crossover exploits 

previously found best regions. Too big level of mutation can lead to lose of convergence to 

optima) solution, because of the fact that changes of the genetic materiał are stronger than 

directed by fitness function process of evolution. So the probability of it is very low. High 
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level of crossover intensifies exploration of loca) extrema and it is useful to have big 

probability of it. 

Many problems cannot be effectively solved using traditional operators and methods of 

encoding. It is necessary to use specialized ways of encoding solutions as members of the 

population and designed for operating on them genetic operators. In that case it is difficult to 

foresee what values the probabilities of operator choice should have, because it is often not 

easy to realize w hat is a character of an actual operator. So we have two solutions to overcome 

this problem: experimental tuning of probabilities or to make them self-adaptive1
• There were 

some tńals of experimental evaluating parameters of genetic optimization for severa! 

problems, using traditional genetic algorithm [6], but it is rather impossible to investigate the 

whole domain of possible modifications of genetic algorithms for different problems. Of 

course tuning parameters for actual problem is stili a very good (but time consuming) way of 

finding optima) values of them. The second possibility is much more promising. One of the 

earliest solutions was to use a genetic subalgorithm to optimize parameters of main genetic 

optimization process [IO]. But it was rather slow method. Next step was to find the 

probability of an appearance of the genetic operator connected with his behavior. Such 

methods were described in [3], [4], [5], [13]. They are based on a quality of the operator 

which modifies the population of solutions. Every operator gets (if is chosen) his period of 

time when he affects the population. So all modifications of an evaluation function can be 

assigned to a particular operator and they modify his probability of appearance. They are also 

backpropagated to previously used operators, which credits are also taken inio account and 

their probabilities are also changed. Thanks to this method we can use any number of 

operations, no matter how they work, randomJy or knowledge based. The method described in 

the chapter 2 of thai work continues and develops the latter mentioned idea. 

1 A great survey of almost all used methods of the parameter control in EA, can be find in (7] or (16]. 
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The second idea proposed in this paper deals with the problem of individual selection. 

Almost all used methods are based on a natura! selection or similar non-adaptive methods (a 

short description of some of them will be located later in this paper), which are good mainly 

for big populations with many individuals (ideally infinite number of them). Examples taken 

from real life indicate thai good results may be achieved by applying in the population rather 

agricultural measures than the principle of natura! selection. Il should be noticed that in nature 

each living organism is endangered by a number of unprofitable factors. Simultaneously il 

endeavors to adopt himself in maxima! extent to the environment. So its objective function is 

uncommonly complicated. The influence of the environment and its unprofitable effects are in 

great measure eliminated by a man. Due to this, much faster than in nature, individuals with 

desired features are derived. In such approach potentia! advantages of individuals can be 

utilized in great extent. However, in nature such could probably not survive. This idea is a 

base of presented in this paper method of controlled selection. 

2. A new method of probability control 

2.1 Description of the method 

In the presented approach it is assumed that an operator which generated good results 

should have bigger probability and more frequently effect the population. But il is very likely 

thai operator, which is good for one individual, gives worse effects for another, for instance 

because of his location in the domain of possible solutions. So every individual may have his 

own preferences2. Il is rather common situation in nature - every living creature has his own 

needs conceming environment of live, food, temperature, light, etc. Population of solutions 

created for solving technical problems has also biologica! origins and probably can develop 

2 The idea of „personal preferences" of population member is also used in [14] but quite different method of adaptation. 
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better, considering preferences of its members. The idea of personal preferences is realized as 

follows. Every individual has a vector of floating point numbers - q (beside encoded solution). 

Each number corresponds to one genetic operation (the number of operators may vary during 

computations). It is a measure of quality of the genetic operator. The higher the number is, the 

higher is the probability of the operator. This relationship may be written as follows: 

q.(t) 
p;;(t) := l=L(t) (1) 

I,ą;;(t) 
l=l 

where: 

qij(t) - a quality coefficient of the i-th operation in the moment t for j-th member of 

population; 

pij{t) - probability of an appearance of the i-th operation in the moment t for j-th member of 

population; 

Lf.t) - number of genetic operators (may vary during genetic computations). 

The algorithm of this method is provided below: 

1. Initialization of the population of solutions and starting values of q0; 

2. i:= 1; 
3. Selection of genetic operators (and partners) by members of population; 
4. Modification of individuals using selected genetic operators; 
5. Evaluation of new values of fitness function and new values of q11 for all members of 

population; 
6. Evaluation of new probabilities of operators selection; 
7. Selection of members to the offspring population; 
8. i:= i+ 1; 
9. If not stop then go to 3; 
10. End. 

This method can be applied both in the case of operators changing one individual (like 

mutation) and two or more individuals (like crossover). In the first case, there is no problem in 

executing operators, it depends only on personal preferences. In the second one, two (or more) 

individuals musi choose the same operator to make it executable. So it is necessary to 
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implement a mechanism of searching for population members with the same preferences and 

this solution is very similar to situations from nature. 

The parameters ąij are closely related with values of the fitness function or to be exact 

with changes of this function worked out by the genetic operators. It is possible to attribute 

every change of fitness function to an actual operator, because only one operator modifies one 

member of population in one generation. Of course during one generation different operators 

are used by different individuals, but one individual is changed only by the chosen operator. 

The formula (2) shows how the qualities of operators are estimated. 

I Xc-(t) 
ąo+ ~ _ +a•qr(t-J)fori=l 

ą;ltJ= f(Q(_t-1),xjCt) ~ 

ą;j{ t -1) for other i 

where: 

qij(t), q;jt-1) - a quality of i-th operation for j-th individual in following generations; 

l - number of the chosen operator; 

ąo - a credit value, always significantly less than I; 

ft .. ) - normalizing function, its arguments can be: 

Q(t-1)- the best solution in the moment t-1 ; 

x
1 
(t) - the mean value of improvements of quality function; 

(2) 

Xj,{f) - an improvement of the problem's quality function, obtained by i-th operation for j-th 

mernber of population. In the case of lack of the irnprovement equal zero, Xj,{t)=Q(t-1) -

Q1jt) (rninirnization) or xji(t)=Qij(t) - Q(t-1) (maximization), Qijt) - solution of j -th 

individual, obtained using l-th operator; 

a - a coefficient of forgetting (O, 1). 

The first element of the formula (2) - q0 plays a role of a credit - a small value, which 

supports small level of ą;j even if the operator does not give any advantages for a long term. 
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Dropping this value to zero would eliminate corresponding to it operation for current 

individual and for its possible offspring. This fact is not profitable, because it is possible that 

the excluded operator will work better on other stages of the evolution process. For exploring 

operators like mutation it is often necessary to fet them work even without any visible 

improvements of the fitness function. 

The second addend is a normalized value of an improvement of the problem's quality 

function in the current generation. The improvement of the quality function can be taken into 

account in two ways: improvement of the global best solution (which is more desirable) and 

improvement of the offspring in relation to its parents. Both possibilities can be used in the 

formula (2) with appropriate weights higher for the first and tower for the second way. The 

normalization function is responsible for making changes of quality function independent on 

character of the problem. It is easy to imagine problems where a small change of quality 

problem is for instance 105 or 10·5_ This situation would require a long process of tuning 

parameters of formula (2), if the normalization function wasn't applied. After adding 

normalization the range of searched optima! values of parameters qo and a can be significantly 

decreased. Exact form of normalized function is not given in formula (2). lt is possible to use 

any function which transforms values of quality function improvements to range (0, 1) and 

higher positive changes are also higher after normalization. Successfully tested by authors 

functions are: best value of quality function reached by optimization process and a mean value 

of improvements during the algorithm simulation. More information about normalizing 

function will be given further in this paper. 

The third part of the formula (2) is responsible for remembering old achievements of 

an operator multiplied by a forgetting factor a. The parameter a is responsible for balancing 

the influence of the quality factor of an operator old and new improvements. It should be 

noticed that some genetic operators may achieve good results in some phase of simulation, 
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and then draw out their abilities. In the other hand remaining operators, probably better in next 

phases, would have small probabilities of appearance, if the factor a hasn't been introduced. 

So it would take a lot of time to change this situation and slow down the process of genetic 

computations. The effect of forgetting former achievements can overcome this problem. 

When operators don't change the global best solution for some time, the probabilities of 

operators become small or even equal. After every generation only bounded with the chosen 

operator value % is updated, the others remain unchanged. Only one operator is executed in 

one generation for one individual, so there is no reason to change coordinates corresponding 

to the others, not selected operators. Setting the value of a to 1 can cause the situation of 

domination of operators which don't produce any income, but were good in early stages of 

evolutionary process and consequently siew down computations. In other hand value O causes 

the situation where quality of operators bases only on the newest information. It gives the 

situation of almost equal probabilities of appearance of all operators, because significant 

improvements of quality function are rare and all operators qualities would have the same 

values during the major part of computation time. In the case of long term Jack of positive 

achievements of an operator, its value qij establishes at level described by the formula (3): 

(3) 

where: 

q;j( 00)- a limit value of q;j(t), all other symbols like in formula (2). 

It is obvious that formula (2) reduces itself to a sum of infinite convergent geometrie 

sequence (a<l) when an income is zero for a long time. 
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2.2 Parameters for the practical use 

The fonnula (2) requires two numerical pararneters qo, a and a nonnalizing function. 

Process of selecting this elements is not very complicated and is described below. Generally, 

the parameter qo ought to be less than important changes of normalized quality function. The 

pararneter a should belong to the range (0, 1) to assure a convergence of geometrie sequence, 

generated by formula (2). The span of practically used values of a is narrower (0.7, 1). Too 

small values of a cause lack of positive feedback between a high quality of operator and its 

frequency of appearance, because all qualities fast become equal for all operators. Too big 

values cause in practical eliminating of worse operators at the beginning of the evolution 

though they can become very useful later. Even selecting a=J shouldn't bring overflow errors 

(not convergent geometrie sequence), because computations last a finite number of iterations. 

It is also important to assure non zero starting values of ąu (qij{O)), because 

probabilities corresponding to operators cannot be zero. In the case of qualities equal zero 

only one operator chosen randomly or manually at the beginning of simulation would appear 

all the time until the end of evolutionary computations. A good idea of setting initial values of 

ąu is using the fonnula (3). This value is achieved when no improvement is detected and that 

situation appears at the beginning and also at the end of simulation. 

The fonnula (3) may be also used as a base for deterrnination values of a and q0• It is 

possible to accept an assumption that the quality factor of an operator can change its value in 

the first iteration maximally in 1.0 (using norrnalizing function as in fonnula (8), for functions 

(6) and (7) this value depends on the solved problem): 

x .. ( 1) 
V <JO 

f(Q(O),xj(l)) ' 
(4) 
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It should be an important change in relation to the coefficient q;Joo) in for instance 

50%, so it formulates a following estimation: 

..!k_.05=10 
1 ' ' -a 

(5) 

where: 

all symbols in (4) i (5) have the same meaning as in (2) i (3). 

Assuming value a= O.!ł3 it is possible to determine a value of qo as 0.2 and 

q;J oo) = q;j(O) = 2. Described way of finding parameters of formula (2) is only a scheme but 

gives satisfying values. Generally, the method of adaptive selection of operators is resistant on 

selected values of parameters. They can be selected from a wide range without any malicious 

effects because the main role of valuing operators play their achievements. 

Beside factors a and q0 the third unknown parameter in formula (2) is the normalizing 

function. Its role is to make independent changes of problem's quality function (x;/t)) on the 

specific problem. It makes possible to choose values of a and qo more universally. The 

simplest solution of this problem is taking a best found solution as a normalizing function. 

But this have some shortcomings: 

• in the case of negative values of quality function it is necessary to use a modulus of the 

function : 

f (Q(t),x/t)) = IQU)I (6) 

where: 

Q(t-1 )- the best solution in the moment t-1; 

x
1 

( t) - the mean value of improvements of quality function; 

3 This value is chosen, basing on conducted experiments with various values of the parameter a. 
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• in the case of approaching the quality function to zero, its nonnalized value could 

unlimitedly increase due to division by zero. Scaling and translation of the quality function 

can overcome this problem (parameters a and b used in (7) are strictly connected with 

solved problem): 

f(Q(t),x/t)) ==b+a•Q(t) (7) 

where: 

Q(t-1)- the best solution in the moment t-1; 

x/t) - the mean value of improvements of quality function; 

a, b - chosen coefficients; 

• in the situation of changing sign of the quality function, described above method can fail. 

In that case a good solution is using a mean value of improvements of the quality function, 

computed separately for every individual of the population: 

x(t -1),(t- l) + x (t) 
f (Q(t),x (t)) == x (t) == 1 11 

J J t (8) 

where: 

Q(t-1)- the best solution in the moment t-1; 

x/t) - the mean value of improvements of quality function; 

The latter case seem to be the most interesting. For this nonnalizing function is easy to 

foresee the maximum value of increase of the quality factor, used in formula (4). The second 

advantage of this function is adaptation of the mean value of improvements, because it 

decreases during computation and also possible improvements decrease on more advanced 

states of evolution. This effect compensates decreasing level of evolution during 

computations. 
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lf necessary it is possible to establish vectors of values a, q0 i qij{oo), which coordinates 

are specific for every operator. When there is an „a priori" information about behavior of 

operators there may be a situation where different values of parameters for every operator may 

be used but in most cases it is not necessary because the main role play achievements of 

operators. 

3. Uncontrolled and controlled selection methods 

3.1 A short survey of traditional selection methods 

In traditional evolutionary algorithms the following methods of not controlled 

selection are u sed [ 15], [8] : 

• The roulette method. Individuals to the offspring population are selected in accordance 

with probabilities, which are proportional to the values of their matching function . An 

expected value of offspring population can be written as : 

E (t +I)=µ• . F,(t) 
I J~). 

2..,F1 (t) 
/•I 

where: 

E(t+J)- an expected value of offspring of l-th individual in the t+I iteration; 

µ - the size of parent population; 

,ł, - the size of offspring population; 

F1(t), Fj(t) - value of matching function for l-th or j-th individual in iteration t. 

(9) 

• The method of the best individual selection. In this method the following formula is 

applied: 

(10) 

where: 
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1( ... )- step funct10n, 1( x) = ; 
. {O forx <;.O 

J for x > O 

Fm;,,(I) - all individuals evaluated above this value, enter to the next population; 

all other symbols are the same as in the formula (9). 

• The method of deterministic roulette is described by the function: 

where: 

n1 (t +I)= Jlµ• i • ~.(t) j f F1(t) 
j=l 

nJ( I+ 1) - number of off spring population of 1-th individual in the next generation; 

Jr. .. ) - an function converting a real value to an integer value (round or floor); 

µ, A, Fdt), Fj(I) - have the same meaning like in the formula (9). 

(11) 

• Selection by stochastic remainder method with repetitions is some kind of combined 

method. Its first phase is based on deterministic roulette method ( 11 ). Free places after first 

part are completed using fractional parts of „individuals" by traditional roulette method, it 

is described by the formula (12). 

[ 

J•µ+!. J x - jloor( x ) 
E(n1(t+l))=floor(x1)+ µ- ~floor(x) • /=µ+~ 

1 

J- L (x 1 -jloor(x 1 )) 

(12) 

}=I 

where: 

x1 , x1 - an expected value of offspring in the roulette selection (9), denoted as x1 or x1 for 

shortening the formula (12); 

all other symbols like in formula (9) and (11). 

• Toumament selection is a method, where µ times a competition between two (sometimes 

more) randomly chosen individuals is conducted and a better one is connected to the 
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descendant population. The expected value of the 1-th individual offspring shows the 

fonnula (13): 

E ( I) (µ+A, - I+ Il - (µ+A, - /)I 
I I + = µ • -"-----(-µ.:..+_A._)~1'----'-- (13) 

where: 

Et (t+ I) - an expected value ofoffspring of 1-th individual in thet+ 1 iteration, IE (l..µ+>..); 

µ - the size of parent population; 

A. - the size of offspring population; 

k - the size of the toumament (number of randomly chosen individuals, fonn which the best 

is a winner). 

This list doesn't exhaust the whole domain of different selection methods; also very 

interesting ideas cover ranking selection [2], [9], and many others. Traditional roulette 

approach in stationary evolutionary algorithm provides usually poor results. After long time of 

computations it stabilize oscillating round about some value far off the global extremum. Poor 

properties of the roulette method were criticized in very early works on genetic algorithms [6]. 

Much better results may be achieved using the selection of best individuals. However, this 

method doesn't save a high level of pressure for the population development. The 

deterministic roulette method has a very strong pressing for the population development but il 

quickly loses the diversity of population and consequently the algorithm tenninates at a far 

loca! extremum. The selection by stochastic remainder with repetitions is very similar to 

detenninistic roulette but behaves better, because it assures a higher level of population 

diversity. 

Having analyzed traditional methods of selection il has been found that they may not 

be controlled and adapted. Thus, they do not enable to influence the process of selection and 
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development of population by some extemal factors. Presented in this paper histogram and 

mixed selection methods allow fulfilling this postulate. 

3.2 A new approach 

3.2. l Histogram selection 

In the histogram selection, described by the formula (14), a list of individuals of 

different values of the matching function is created (this list resembles a histogram). 

(14) 

where: 

s - number of values on the list; 

all other symbols have the same meaning as in formula (11); 

The length of this list is usually shorter than a number of individuals in the population. 

Next, a mean value of the matching function is calculated but using only once each value from 

the list, no matter how many individuals are connected with this value. Each individual (or 

rather value from the list) passes to the offspring population adequate number of individuals. 

First, the particular matching function is divided by a sum of all values from the list. Next, 

this quotient is multiplied by a size of base (parent) population and finally rounded to the 

nearest integer va]ue. In case when calculated number is ]ower than the size of base 

population, an appropriate number of best creatures that were rejected in the first phase is 

added to the population. In opposite case some the worst individuals are removed. 

Fluctuations of obtained size of base population are caused by approximations calculated real 

values by integers. 
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The method of histogram selection delivers a number of interesting features. This 

selection is carried out in deterministic way, so there is no possibility of dying out the best 

individuals, which can occasionally happen in case of probability based methods. It also 

enables to maintain the population diversity in a simple manner. In this approach mean value 

of the matching function depends only on existing in the population values of this function, 

not on number of appearances of these values in the population. Thus, the best individuals are 

not advanced excessively. Worse individuals also have got a chance to be selected to new 

population. However, there is a possibility to Jose good individuals described by the same 

matching function values but with completely different genetic code. So the histogram 

selection may be extended to distinguish solutions having the same values of matching 

function but representing different individuals. In case of discrete function optimization, the 

simplest manner to distinguish individuals is to check if their genetic codes differ at least on a 

single position. When optimizing continuous functions it is also possible to check similarity 

of individuals. In this case one should introduce same neighborhood of respective point in 

which two solutions are considered as identical. 

3.2.2 Mixed selection 

As follows from the previous point the histogram selection operates effectively not 

allowing for too early convergence of the algorithm. Its characteristic feature is Iower 

selective pressure towards promoting the best individuals than deterministic roulette. On the 

contrary the deterministic roulette method prominently selects the best solutions which results 

in fast loosing of population diversity and consequently the premature convergence. So these 

two methods have different faults and advantages and a method connecting features of these 

two methods can work better than each of them can do separately. The mixed selection is a 

good solution, which has advantages of both methods. This method consists of two parts: 
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histogram selection and deterministic roulette, which are selected in random during the 

execution of the algorithm. The performance of this method is explained in Table l. 

lteralion µ I ,t µ I ,t 

Histoiram Selecllon Deterministlc Roulelte Method 
1 5,5,4,3,2 I I, 2, 3, 1,4 5,5,4,3,2 I I, 2, 3, I, 4 
2 5, 5, 4, 3, 2 I o, 2, 3, 2, 4 5, 5, 4, 4, 3 I 0, 2,3,2,4 
3 5, 5, 4, 3, 2 I I, 2, 3, 2, 4 5, 5, 4, 4, 4 I I, 2, 3, 2,4 

Deterministlc Roulette Method Histo2ram Selection 
4 5, 5, 4. 4, 3 I 5, 5, 4, 3, 2 I 

Table. 1. An example of the mixed selection peńormance. 

In the table 1 an example of a certain matching function maximization is considered. 

Two possible cases for randomly chosen selection methods are provided. Particular fields of 

the table comprise values of the matching function where each number suits to one individual. 

To simplify and better illustrate advantages as well as faults of two selection methods a lack 

of improvement in this small part of the algorithm was assumed. Such situation occurs very 

often when computations last. In the respective example the population size was µ=A=5 for 

the strategy (µ+).,), The above hypothetical example of evolutionary computations shows 

characteristic properties of the proposed method. The deterministic roulette selection exhibits 

tendency to fi() up the population by identical individuals, on the other hand the histogram 

selection assures to preserve the population diversity. As follows from this example, the 

histogram selection also has the property to repair a composition of too uniform population. 

Both versions of selection (histogram, deterministic roulette) supplement each other. It is 

possible to control the property of selection operation by introducing the probability of 

appearance of particular selection version. The more frequent appearance of the roulette 

selection causes the higher pressure towards promoting the best solutions, which can in some 

cases (when there is a high Ievel of population diversity) speed up the computations. On the 

contrary histogram selection increases the level of the population diversity, paying for it the 
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weaker pressure towards promoting the best individuals. Due to this mechanism it is possible 

to examine given search area more effectively. 

This approach allows adjusting features of the selection operation to current 

requirements of the population. The adaptation of probabilities of selection operations may be 

derived from statistical properties of the population. An idea of this method presents Fig. I (in 

equations Phis=l-pde1), 

1. Jf 3•o(F) < max(F,.,,.. F.,.,, F...,· F.,, • .) thenp,;, =p,;, • a•p.,,; 
2. IJ0,5•o(F) > max(F.,, ••• F,..,, F,.... F.,, • .) then p.,, =p,11*(/ + a); 
3. JJ0,5•o(F) Smax(F.,, .. -Fm1n, F...,. F,.,..) S3•s(F) lhenphu=P•;,*(0,5-p„J•a; 

Fig. 1. The algorithm of automatic tuning probabilities of the mixed selection elements. 

The symbols used in Fig. I mean: Phi, - probability of histogram selection appearance, 

Pd,r - probability of deterrninistic roulette, Fm,an, F mi,,, F max - average, minimal and maxima! 

values of fitness function in the population. 

If particular individuals are described by tao small standard deviation of the matching 

function ( o( F)) with respect to the extent of this function (max( F m,an· F min, F ma.x· F m,an)), then 

it is desirable to increase the probability of appearance of the histogram selection. On the 

contrary the probability of the deterministic roulette selection can be increased. As far as 

parameters of the population are located in some range, considered as profitable we may keep 

approximately the same probabilities of appearance for both methods of selection. In aur 

experiments the statistic parameters of the population: 0.5 and 3.0 have been found 

empirically because they proved the best results. The value of the parameter a has been fixed 

to 0.05. The method of tuning parameters of the selection operation also has been practically 

checked. It has been found that this approach is better than the selection with constant (but 

best found) value of a. 
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4. Experimental results 

4.1 Solved problems 

To assess the utility of the proposed methods a number of experiments were 

performed. Tests were carried out for widely known traveling salesman problem (TSP) of 

1002 cities and for scheduling of time-dependent jobs on a multiprocessor system (1000 

tasks). 

Solutions for TSP were encoded as lists of cities to be visited in an order described by 

the list. To solve this problem severa! genetic operators were used: blind and heuristic. All 

operators were designed to assess problems limitations - the offspring always encoded valid 

solutions. The operators were: 

• mutation - a random exchange of two cities in the list of cities. 

• crossover - starting from the first city of one list, next cites are chosen from one or second 

list to be closer to the previously accepted. 

• inversion - a fragment of the list is used in the reverse order; 

• transposition - a fragment of the list of cities is moved to another part of the list; 

• two-optima) method - exchanges two chosen edges in the route, if it gives a shorter route; 

• neighborhood operator (two versions) - exchanges a city in the route for other, chosen from 

the list of the closest ones in the geometrie sense (a list of severa) closest cities is generated 

for every city during initialization of the algorithm). The „neighborhood-1" operator simply 

exchanges a city from the list (found on the path) with randomly chosen one. The 

„neighborhood-2" operator cuts a close to chosen city from the path, moves all cities 

between them in one position an inserts the city near the chosen one. 

Members of the population for scheduling were coded as lists of tasks waiting for 

processing. Also a graph of time-dependencies was introduced into algorithm as labels of 
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waiting tasks. All operators are designed to assess valid solutions. Only problem-blind 

operators were used (similar to used for TSP): mutation, inversion and transposition. 

4.2 The probability control 

Fig. 2 shows the dependence between a quality of an operator and its frequency of an 

appearance for selected operators (only TSP). All data are collected from the whole 

population (not from one member) so that's why there is no exact proportion between quality 

and frequency (fig. 2b shows a very big jump of frequency and very small increase of quality -

it can be caused by an important improvement of fitness function of one member, which had 

many „children"). li would be difficult to show data from one individual during the iterations, 

because it lives only for one epoch. 
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Fig. 2. The dependence between a quality factor of an operator (at the bottom of 

every picture) and its frequency of appearance (TSP - 1002 cities). 
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Analyzing those pictures clearly can be seen that better behavior of the operator 

effects in an increase of frequency of his appearance and consequently speeds up genetic 

computations (which can be seen from tables 2 and 3). Operators which don't bring any 

income aren't eliminated, but have approximately constant frequency. It is very Iikely that 

they behave in the way like mutation and have exploration properties. They are very 

important, but they can't appear too often, due to possible effect of Ioosing convergence to 

optima! solution. 

In the table 2 an influence of the factor a on the genetic computations ca be 

observed. Data from 25 simulations are collected and a mean values of them are presented 

for different numbers of iterations and va\ues of factor a. 

o 100 500 1000 2000 5000 10000 20000 50000 
const 293042 289893 282191 278390 275278 272749 271492 270593 269693 
a;=O.O 293246 289378 280440 277136 274487 272270 271399 270607 269786 

a;=O,J 293351 287947 279570 276632 274347 272323 271298 270803 269929 

a;=.0,2 293395 288355 279539 275973 273609 271842 271021 270527 269855 

a;=0,3 293258 288106 280058 276872 274388 272401 271577 270975 270434 

a;=0,4 293026 287169 279246 276007 273873 271972 271199 270591 269728 

a;=.0,5 292938 287472 278819 275744 273735 271895 271182 270759 270068 

a;=0.6 293635 288056 278282 275834 273875 272067 271422 270998 270154 

a;=.0,7 292542 286664 278404 275954 273981 272269 271659 271320 270788 

a;=.0,8 292832 286319 277131 275368 273503 271981 271506 271286 270492 

a;=.0,9 293522 286268 276100 274115 272655 271345 270937 270560 269942 

a;=l.O 292957 285490 275853 275602 274751 272768 271235 270858 270359 

Table 2. A comparison of data obtained from 25 simulations (mean value) for several 

numbers of iterations and values of forgetting factor a (TSP). The row labeled 

,,const" shows results obtained using the same probabilities for all operators. 

All simulations were started from solutions obtained from a simple algorithm that 

generates a route taking the closest city to the last visited. Starting from randomly chosen 

cities it gives different solutions and works much faster than random initialization of the 

solution population. A strategy (µ+A) was used with µ=).,=60. The optima! solution for the 
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considered task is known and equals 259045. The best found solution by described 

program is 3% worse after 106 epochs. 

o SO 100 200 S00 1000 2000 S000 10000 20000 
const 2342.1 2125.7 2036.0 1924.7 1740.3 1588.4 1445.5 1301.4 1232.0 1190.6 

a=O.O 2348.6 2128.4 2036.6 1921.6 1744.8 1591.7 1450.3 1304.6 1234.2 1190.7 

a=O.J 2357.6 2134.5 2042.8 1927.6 1739.8 1590.2 1444.5 1301.8 1232.2 1191.I 

a=0.2 2345.1 2136.5 2042.5 1927.6 1742.8 1594.5 1450.9 1305.1 1235.2 1192.1 

a=0.3 2353.9 2121.1 2034.6 1917.3 1732.4 1588.0 1446.9 1302.3 1232.0 1190.9 

a=0.4 2339.0 2119.3 2024.1 1923.8 1744.8 1593.1 1450.4 1304.8 1235.3 1191.5 

a=0.5 2342.5 2138.9 2046.9 1921.2 1744.4 1593.9 1453.5 1301.4 1232.2 1191.1 

a=0.6 2332.3 2108.6 2014.3 1906.9 1732.0 1582.9 1447.9 1299.9 1231.3 1189.7 

a=0.7 2337.4 2115.2 2024.9 19 I 1.4 1736.7 1590.0 145 I.I 1303.3 1235.1 1190.8 

a=0.8 2331.5 2124.9 2025.9 1915.3 1730.9 1588.8 1450.0 1305.4 1233.7 1190.6 

a=0.9 2326.8 2097.4 2006.0 1894.9 1715.9 1571.0 1441.7 1300.1 1234.3 1190.9 

a= 1.0 2344.5 2128.4 2022.7 1888.9 1686.0 1532.1 1413.5 1329.2 1290.3 1257.6 

Table 3. A comparison of data obtained from 25 simulations (mean value) for severa) 

numbers of iterations and values of forgetting factor a (scheduling of 1000 tasks). The 

row labeled „const" shows results obtained using the same probabilities for all 

opera tors. 

Considering data from table 2 and table 3 it is easy to see that the best results and 

the fastest computations can be obtained using aE(0.6 .. 0.9). It should be noticed that 

setting a=O doesn't provide equal values of probabilities for all operators because it doesn't 

eliminate the influence of their behavior. It only provides the smallest period of 

remembering their achievements, which lasts till the next execution of that operator. 

Parameters of simulation for scheduling are the same as in TSP. Optima! solution is 

unknown, best found 1121 (after 106 epochs). Optima) values of a are from the same 

range, but differences between solutions for various a are bigger than in the case of TSP. 

This fact is connected with used operators. For TSP both blind and knowledge-based were 

used and they played the main role in computations. In scheduling only randomly working 
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operators generated improvements and proper probabilities of their appearance are much 

more important than in TSP. 

4.3 The method of controlled selection 

The empirical analysis of selection operation has been provided for two, described 

earlier problems. An analytical description of effects of the selection operation on the 

quality of the evolutionary algorithm is very difficult. Therefore it should be done 

experimentally. Results of simulations are provided in Table 4. 

Schedulln1 of time dependent jobs 
lteratlon I li Ili IV V VI VII Vlll 

o 2341,I 2355,4 2350,1 2331 ,9 2336,3 2353,7 2357,0 2357,3 
100 2154,7 2064,6 2058,7 2108,0 2062,8 2091,5 2075,7 2082,l 
500 1961,4 1760,0 1767,7 1821,2 1767,8 1801,0 1765,1 1772,5 
1000 1854,7 1613,5 1628,6 1661,3 1643,6 1632,6 1609,5 1611,7 
2000 1725,5 1493,7 1528,0 1518,6 1550,0 1489,2 1473,4 1480,l 
5000 1590,8 1424,l 1466,9 1373,7 1480,6 1396,6 1348,4 1352,1 
10000 1581,8 1386,9 1432,5 1306,3 1442,3 1364,8 1287,8 1288,6 
20000 1577,7 1364,3 1402,1 1256,5 1422,7 1341,9 1241,6 1241,7 
25000 1581,4 1358,7 1392,5 1244,2 1413,2 1335,7 1227.3 1229,0 

Travelin2 salesman >roblem 
Iteration I li Ili IV V VI VII VIII 

o 293985,9 292714,2 292920,2 293120,4 292967,8 292977,5 293108,7 292834,0 
100 341619,9 288221,9 288825,4 292679,0 288479,5 290328,l 290314,7 289269,1 
500 461707,2 280190,6 280566,5 285446,8 280392,8 282651,9 282931,2 281813,7 

1000 563016,9 276809,3 277017,5 281450,0 276835,I 278948,1 279693,6 278341,4 
2000 575346,3 274590,4 274153,3 278057,3 273991 ,3 275782,5 276557,0 275499,3 
5000 673394,7 272519,9 272322,5 275068,4 272245,5 272920,8 273336,3 272899,9 
10000 697337,3 272085,2 271452,4 273558,0 271656,8 271561,3 271830,9 271981,I 
20000 683691,8 271998,7 271003,3 272645,0 271451,5 270769,l 270970,9 270972,4 
50000 717214,7 271951,2 270623,8 271634,0 271406,7 270289,0 270240,2 270150,1 

Table 4. Results obtalned for difTerent methods of selection: I • classlcal roulette, II • 

deterministic roulette, III - selection by stochastic remainder method with repetitions, 

IV• tournament selection, V- best individuals selection, VI - histogram selection, VII -

mixed selection with constant probability (phl.r0,45 and Pdei=0,55), VIII- mixed 

selection with automatic tuning of probabilities. 

That results show average values for 30 simulations. In each case results obtained 

for the best individual in given iteration are provided. Except the selection operation all 
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other processes are assumed to have identical parameters. The tables comprise results at 

different stages of evolution to investigate changes in operation of the selection methods. 

As follows from the presented data the mixed selection is superior to the other considered 

methods. It is due to adequate balance between selecting pressure and ability of saving the 

population diversity. Both versions behave in enough similar way. It should be noted that 

deterministic roulette method is fast in initial phase of evolutionary process. However in 

further stages ils advantage is diminished due to too big unification of the population. The 

histogram selection is somewhat slower in initial phase than deterministic roulette and it 

behaves very well in the TSP problem. 

The toumament selection is close to proposed methods and has very good 

parameters, but also is a little bit slower (about 2-4%) than mixed. The stochastic 

remainder method with repetitions resembles deterministic roulette. Selection of best 

individuals method is rather average. Classic roulette is very poor in all presented cases and 

it is widely known that its importance is limited rather for theoretic considerations than 

practical use. 

Promising properties of the mixed selection depend on the probability of its 

components appearance. To find better values of these probabilities a number of 

simulations have been carried out in range (O, 1) with step O.I. Results of simulations are 

presented in the table 5. One may notice that good parameters for the mixed selection are 

located in the range 0.4<p,,;,<0.6 (pd,,=1-ph;,) especially for scheduling problem, where 

only blind operators were used and a method of selection plays the main role in 

development of population. lt has been observed that the best values for this problem are in 

vicinity of the point (p,,;,=0,45, Pd,,=0,55). In the case of TSP, there are severa! values of 

Phis and Pd,,. which assure a good behave of algorithm. To solve this problem severa! 
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knowledge based operators were used and selection is not the only one factor, which 

directs the population. 

Schedulinl! of time dependent lobs 
P.~ Pdń o 500 1000 2000 5000 10000 250000 
10 o.o 2343,7 1772,2 1626,4 1487,0 1399,2 1366,3 1339,4 
09 01 2337,7 1773,7 1626,4 1491,8 1375,3 1314,4 1264,5 
08 02 2330,1 1759,9 1609,8 1476,9 1359,8 1303,0 1247,2 
07 03 2358,6 1790,8 1634,4 1490,4 1354,6 1289,3 1230,9 
06 04 2362,5 1761 ,6 1612,2 1475,4 1360,3 1298,6 1239,7 
os os 2334,4 1772,3 1611,6 1468,1 1343,6 1287,3 1229,3 
04 06 2344,3 1759,6 1598,8 1475,5 1343,5 1281,4 1223,8 
03 07 2355,6 1754,5 1600.5 1462,1 1336,8 1280,2 1225,9 
0,2 0,8 2336,0 1751 ,2 1595,1 1468,0 1351,6 1300,1 1246,6 
0,1 0,9 2338,5 1741 ,9 1590,8 1472,1 1363,8 1309,3 1251,4 
o.o I.O 2329,6 1755,9 1610,l 1481,5 1410,3 1379,1 1345,2 

Travelinl! salesman nroblem 
Phi, Pdri o 500 1000 2000 5000 10000 250000 
10 00 293022,1 277965,1 275016,6 273035,9 271311,6 270792,8 270725,1 
09 01 292851,7 278039,0 275299,7 273235,3 271814,0 271131,8 270770,8 
08 02 292709,4 279030,7 275583,0 273388,9 271634,6 271089,5 270729,2 
07 0,3 292532,3 278236,7 275771,7 273884,7 272192,5 271638,5 271425,7 
06 04 292526,l 278653,2 276049,3 274289,7 272505,8 271714,0 271106,4 
os os 293037,0 279175,8 276299,6 274511,1 272901,5 271964,5 271505,1 
04 06 293456,6 279016,6 276748,7 274525,0 272961 ,3 272096,0 271217,3 
0,3 0,7 294227,5 277955,7 274835,8 273062,0 271609,l 271039,0 270527,3 
02 08 292850.5 276754,4 274105,8 272713,7 271666,7 271177,8 270856,0 
0,1 0,9 293057,8 277903,6 275011 ,4 273538,0 272243,0 271964,4 271377, l 
o.o 1,0 292867,9 277188,l 275059,4 273288,6 272100,4 271897,6 271870,1 

Table 5. A comparison of the mixed selection peńormance for different probabilities 

5. Conclusions 

Described methods, which improve the controlling of the evolutionary algorithm 

are not limited only to problems shown in this paper and may be widely used for 

optimization the performance of the evolutionary algorithm. They assure a speedup of the 

computations and a better finał solution than using traditional methods, based on constant 

probabilities for genetic operators. 

Further possibility of development of described methods is by applying principles 

of evolutionary programming, which gives not only the possibility of adapting parameters 
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of operators, but also evolutionary searching for new operators, better adjusted to the 

specific of solved problem. 
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