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Quasi-perfect elasticity 
11. Experimental evidence 

A. PAGLIETTI (CAGLIARO 

T:HE AIM of the present article is to show that the theory of quasi-perfect materials developed 
in [6] has experimental support. First of all, we shall prove that this theory is nearer than the 
classic theory to the experimental results about adiabatic temperature variations of elastic 
materials. We shall demonstrate next that the temperature of a quasi-perfect material has to 
increase as a result of adiabatic cycles of deformation and that, moreover, a quasi-perfect material 
can behave in an elastic way only if its deformation does not exceed certain limits. However 
realistic such a behaviour is, it is not implied by the classic theory. The analysis we present is 
not merely qualitative; qualitative results are accompanied by formulae for quantitative com
putation. A discussion on isothermal and adiabatic elastic moduli is also introduced. This 
may, we hope, be useful for a clearer understanding of the rather confusing experimental data 
on the subject. The problem of the experimental determination of free energy and entropy is 
briefly discussed. 

Celem niniejszej pracy jest wykazanie, i:e teoria quasi-idealnych material6w opracowana w [6] 
posiada fizykalne uza.sadnienie. Przede wszystkim wykai:emy, i:e teoria ta jest blii:sza wynikom 
doswiadczalnym otrzymanym przy adiabatycznych zmianach temperatury material6w sprl(i:y
stych nii: teoria klasyczna. Wykai:emy nastl(pnie, i:e temperatura w materiale quasi-idealnym 
wskutek adiabatycznych cykli odksztalcenia musi wzrastac i i:e ponadto quasi-idealny material 
moi:e zachowywac si~ w spos6b sprl(i:ysty wtedy, gdy jego odksztalcenie nie przekracza pewnej 
granicy. Chociai: takie zachowanie siC( materialu jest realistyczne, to jednak nie jest implikowane 
przez teoril( klasyczn~. Analiza, kt6r~ przedstawiamy, nie jest jedynie jako8ciowa; wynikom 
jako5ciowym towarzys~ formuly dla obliczen ilo5ciowych. ZaJ~czona jest r6wniei: dysktisja 
na temat izotermicznych i adiabatycznych modul6w sprl(i:ystych. Wszystko to, mamy nadziejl(, 
poslui:y dla Jepszego zrozumienia raczej sprzecznych danych doswiadczalnych na ten temat. 
Przedyskutowany zostal w skr6cie r6wniez problem doswiadczalnego okre8lenia energii swo
bodnej i entropii. 

Uem.ro HaCTosn.QeH pa6oTbi HBJIHeTCH ~oKaaaTeJILCTBo Toro, trro Teopru~ KBa3HJIHHeHm.IX Ma
TepHaJIOB, pa3BHBaeMaH B [6), HMeeT ci>H31NeCKOe 060CHOBaHHe. llpe~e BCero llOKa>KCM, 
trro 3Ta TeopHH 6oJiee 6JIH3Ka 3KcnepHMeHTaJILHbiM peayJILTaTaM, no.nyqeHHLIM npH ~a6a
TINeCKHX H3MeHeHHHX TeMnepaTYPbi ynpyrHX MaTepHaJIOB, tteM KJiaCCINeCKaH TeopHJI. 3aTeM 
llOKa>KeM, trrO TeMnepaTYPa B KBa3H~eaJILHOM MaTepHaJie, BCJie~CTBHe a~a6aTINeCKHX 
l.Ufi<JIOB ~ect>opMaJ.Url{, ~OJI>KHa B03paCTaTL H trrO KpOMe 3TOrO KBa3HH~eaJILHbiH MaTepHaJI 
MO)I{eT BeCTHCL ynpyrHM o6pa30M TOr~a, KOr~a ero ~ect>opMa.QHH He npeBLICHT HeKOTOpOro 
npe~eJia. XOTH TaKoe nose~eHHe MaTepHaJia peaJIHCTHttHo, o~aKo He BLITeKaeT H3 KJiacCH
tteCKoH TeOpHH. AllaJIH3, KOTOpbiH npe~CTaBHM, He HBJIHeTCH TOJILKO KatteCTBeHHbiM, Kalle
CTBeHHbie pe3yJILTaTbi COnpOBO~aiOTCH ct>opMyJiaMH ~JUI KOJIINeCTBeHHbiX paCtteTOB. llpH
JIO)I{eHO TO>Ke o6cym~eHHe H30TepMINeCKHX H a~a6aTINeCKHX MO~JieH ynpyrOCTH. Bee 
3TO, Ha~eeMCH, llOCJIY>KHT ~JUI Jiyqwero llOHHMaHHH ~OBOJILHO llOnyTaHHbiX 3KCnepHMeH
TaJILHbiX ~aHHbiX Ha 3TY TeMy. 06~eHa TOme B COKpai.QeHHH npOOJieMa 3KCnepHMCHTaJIL

HOrO onpe~eJieHHH cso6o~oH 3HeprHH .. H 3HTpOnHH. 

1. Introduction 

IN THE PREVIOUS article [6] the theory of quasi-perfect materials was developed as a gener
alization of the classical theory of perfect materials and the motivations for such a gener
alization were discussed. We didn't show, however, why the theory we proposed is exempt 
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786 A. PAGUETII 

from the objections which can be raised to the classical theory, nor did we point out the 
experimental support to our approach. This task is worked out in the present article which, 
therefore, has to be considered as a complement to the previous one. The same definitions 
and notations adopted in [6] will be mantained throughout this paper. 

It has been known for a long time that a material undergoing a deformation process 
suffers, in general, changes in its temperature. For a perfect material in the range of infinites
imal deformations the theoretical determination of the variation of temperature consequent 
to an adiabatic deformation is due to KELVIN [7] and [8], and leads to a formula [see Sect. 3, 
Formula (3.1)] which has been accepted up till now. For a number of materials the experi
mental check of this formula dates back to a famous paper by JouLE [3], in which the rise 
or the fall in temperature was found to exceed, almost systematically, that foreseen by 
Kelvin. Although Joule concluded that Kelvin's theory was completely verified, nonetheless 
it is the above systematic-though slight-discrepancy between theory and experimental 
results which opens the way to proving the validity of our hypotheses. Indeed, as will be 
shown in this paper, the theory of quasi-perfect materials enables to foresee temperature 
variations greater than those calculated through Kelvin's formula. Our theory, therefore, 
will appear nearer to the results obtained by Joule. 

We have been unable to find recent repetitions of the experiments reported in [3]. 
Those performed at the end of the last century are not well fitted to our ends. They were 
done with the aim of pointing out the existence of thetmo-mechanical effects, rather than 
of comparing the latter with the inferences of Kelvin. For this reason precise information 
about some physical characteristics (like density, thermal expansion coefficient, specific 
heat) of the tested materials often lacks. On the other hand, a considerable amount of 
experimental work in this (.;entury has dealt with the determination of adiabatic moduli 
of elastic materials. Clearly, these experiments are equivalent to those of Joule because 
they give a description of the same phenomenon in terms of different quantities. It would 
be arduous, however, to deduce the variation of temperature due to an adiabatic process 
from data regarding adiabatic moduli. As pointed out recently by BELL [1, pp. 377-380], 
only experiments with the best precision available today may give a meaningful correlation 
between adiabatic and quasi-static (isothermal) moduli. Such a correlation is essential 
to calculate the temperature variations in an elastic material during an adiabatic process 
from the values of its isotermal and adiabatic moduli. As yet, no sufficiently precise experi
ments have been performed for the materials we are looking at. 

Agreement with the experimental results of Joule is not the sole reason why we rely 
on the theory of quasi-perfect materials. As will be shown in Sect. 5, this theory leads 
us to predict that an elastic material undergoes an increase in temperature when it performs 
an adiabatic closed cycle of deformation. The heating of an elastic material following a 
rapid loading-unloading process is a well-known phenomenon. For perfect materials, 
however, this phenomenon has up till now been explained by introducing the somewhat 
artificial hypothesis that both the loading and the unloading adiabatic phase of the cycle 
are followed by an isotermal process at constant deformation. Clearly, such a hypothesis 
cannot be easily accepted when very · fast cycles are considered. We remain, therefore, 
rather disappointed as we learn that if a cycle of deformation occurs so fast as to approxi
mate an adiabatic situation, no heating of the material can oceur. On the contrary, when 
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our approach is followed, not only are we able to find a reason for the increase in tempera
ture but also we have a means of calculating it. 

Finally, we shall show in Sect. 7 how the elastic range of the materials under considera
tion can te deduced in the grounds of thermodynamical arguments. We shall point out, 
moreover, that the values of the limit deformations at the boundary of the elastic range 
are related to the isothermal and adiabatic moduli at zero strain. It will tecome apparent, 
therefore, that the constitutive equations of a quasi-perfect material imply, in agreement 
with the experimental evidence, a limit to the deformations which an elastic material can 
undergo without yielding or breaking. In this way a great step can te made towards predic
ting the yield limit through non-destructive experiments. 

2. lsentropic and adiabatic temperature variations 

TNe shall henceforth refer to the formulae established in [6] by introducing between 
the parentheses containing their reference numters tte symbol I. Consider an element 

of material in a state of deformation Fat temperature 0. Let F*dt be an isentropic loading 
deformation increment. By introducing Eq. ((4.10), I) and ((5.14), I) in Eq. ((7.5), I) we 
obtain 

(2.1) 

If we denote Oie the time derivative of 0 during this process, we can express Eq. (2.1) in 
the form 

(2.2) 0
·, 1 _, 
ie = - -Sjt. 

Cv 

Similarly, by considering the isentropic unloading deformation increment - F*dt we can 
deduce from Eqs. ((4.11), I), ((5.15), I) and ((7.7), I). 

(2.3) 0
·, 1 _, 
ie =--Sit; 

Cv 

the meaning of the symbol Oi~ is obvious. The relations (2.2) and (2.3) solve the problem 
of finding the temperature changes produced by an isentropic process in a quasi-perfect 
material. 

We shall now pursue the analogous analy~is for adiabatic processes. Observe, first of 
aJl, that Eq. ((7.3), I) is valid for every loading process (not necessarily an adiabatic 
one) and that by means of Eq. ((5.14), I) it can be written as 

(2.4) e = tr[op~'YF1+0tr[(cp~'YFJ+c"8. 

On the other hand, the analogous relation valid for every unloading deformation incre
ment can be obtained from Eqs. ((7.6), 1), ((7.7), I) and ((5.15), I) and reads 

(2.5) i = tr[(i'F~")~FJ+tr[(cF-~"YFl+coo'. 
Consider then a generic adiabatic loading deformation increment F*dt. The relation (2.4) 
can be written as 

(2.6) 
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788 A. PAGLIBTI'I 

where F* and IJ are to be understood as constrained in such a way as to be relevant to an 
adiabatic process. If we introduce Eqs. ((4.10), I) and ((7.11), I) in Eq. (2.6) and if we 

denote explicitly O~d the quantity IJ which appears in Eq. (2.6), we get 

(2.7) • 1 { 1 • • } O~d = - -sit+ - tr(TF- 1 F*)- tr [ ( optP'YF*] . 
c, f! 

A similar reasoning for the adiabatic unloading deformation increment - F*dt leads 
from Eqs. (2.5), ((4.11), I) and ((7.11), I) to the relation 

(2.8) IJ~:, = _!__{-si:- _I tr(TF- 1F*)+tr[(o~'')TF*)}. 
Cu f! 

The relations (2. 7) and (2.8) give the temperature variations caused by an adiabatic de
formation process in a quasi-perfect material. 

From Eqs. (2. 7), (2.2) and ((2.9), I) we can deduce that 

(2.9) 

Similarly from Eqs. (2.8), (2.3) and ((2.15), I we obtain 

(2.10) 0~:, ~ Oi~. 

3. Comparison with Kelvin's formula and Joule's experiments 

For perfect materials in the range of small deformations KELVIN [7] and [8] derived 
a formula relating temperature changes to adiabatic increments of deformation. This 
formula can be expressed as (cfr. [2] for a modem derivation) 

. 0 
(3.1) o.d = - -tr(PL), 

f!oC, 

where eo is the mass density in the initial stress-free configuration, L = FF'-1 and Pis the 
second-rank tensor defined by 

(3.2) 

In Eq. (3.2) E is the infinitesimal strain tensor 

(3.3) - } T E=-(F+F)-1 
2 

and 'l' = P'(E, 0) is the free energy of the perfect material, a quadratic homogeneous 

function of E (remember that for small deformations every perfect material can be con
sidered as a linear elastic material). If the material is isotropic and if we denote rx the thermal 
expansion coefficient (positive if an increment of 0 produces an increment of volume), 
then pis given by 

(3.4) 
M p = /Jl = -- rtl, 

l-2v 

where Pis a scalar, M is the isothermal Young's modulus and vis the isothermal Poisson's 
ratio. 

http://rcin.org.pl



QuASI-PERFECT ELASTICITY. 11 789 

Our previous formulae (2. 7) and (2.8) are valid for a class of materials which is wider 
than that considered by Kelvin. For perfect materials both formulae (2.7) and (2.8) re
duce to 

(3.5) • 1 { 1 A r·} Bad=- -sit+- Wacr-tr[(oF'P) F] , 
c, f! 

where~ is the free energy of the perfect material. We shall now demonstrate that in the 
range of small deformations- the only one in which Eq. (3.1) holds- the relation (3.5) 
is completely equivalent to Eq. (3.1). For a perfect material Eqs. (2.4) and (2.5) reduce to 

(3.6) e = tr[(op~)rF]+Btr[(op~)rFJ+c,O, 
where 

(3.7) 

is the entropy of the perfect material. Writing Eq. (3.6) for an adiabatic deformation 
increment and remembering Eq. ((7.11), I), we can express Eq. (3.5) in the form 

' 1 A ' 0 

(3.8) Bad= - { -Sit+Btr[(Op1])TF]+c,Bacr}. 
c, 

Since for perfect materials Eqs. (2.2) and (2.3) yield 

(3.9) 

Eq. (3.8) becomes 

(3.10) 

From this and from Eq. (3. 7) we get 

(3.11) 
0 B A' B A 0 B A 

Bad =- tr[(o8oF'f')rF] =- tr[F(o8opVJ)TFF- 1] =- tr[F(o8oJ1P)TL]. 
~ ~ ~ 

As a consequence of the frame-indifferent character of~, it can be shown (see [10, p. 309]) 
that 

(3.12) 

where 'P is an appropriate function of E and B, while E is the strain tensor defined by 

(3.13) 

For infinitesimal deformations E and E coincide. Since the reference configuration is 
supposed to be stress-free, if we multiply from the left both sides of Eq. (3.12) by F, if we 

remember that for infinitesimal deformations F = 1 + i + E (where"':R = - :Rr is the infini
tesimal rotation tensor), and if we expand 1jj in power series of E, then, we can easily obtain 
from Eq. (3.12) the relation 

(3.14) 
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790 A. PAGLIEITI 

Here of course the equality sign holds to within small quantities of the same order of 

magnitude as sup (IEI2, IRI2
). From Eqs. (3.11)3 and (3.2) we get, finaJiy, 

(3.15) 
. () 
oad = --tt(~L). 

(!oCv 

That is, in the range of infinitesimal deformations the relation (3.5) coincides with Kelvin's 
formula (3.1 ). . . 

We shall henceforth denote 0~~> the value of Oad calculated by means of Eq. (3.1). 
Since we have seen that Eq. (3.1)-when valid-is equivalent to Eq. (3.5) we may substitute 
(3.5) for (3.1) in the forthcoming reasoning. Consider an element of material in a certain 
state of deformation Fat temperature 0. Suppose we make it follow an adiabatic loading 

deformation increment Fdt. If we consider the material as perfect, we can apply Eq. (3.5) 
to calculate the variation of() during this process. Since for perfect materials T = eF( opfJ )T 
and since for an infinitesimal deformation increment starting from a given value of 
F and 0 we have that Wad = Wit = etr[(opfJ)rF], we obtain 

(3.16) 

On the other hand, if the hypothesis of perfect material is not introduced, the quantity Bad 
has to be calculated by means of Eq. (2.7). By subtracting Eq. (3.16) from Eq. (2.7) and 
remembering Eq. ((4.8), I) we obtain 

(3.17) (J·, o'<K> 1 ( _, .) 1 { 1 [(~ "')rFJ· \ ad- ad=- -Sit+Sit =- --Wit+tr uFfP J' 
Cu Cu !! 

From Eq. (3.17) 1 and from Eq. ((4.12), I) we get 

(3.18) (J• I _.. (}• (K) 
all::::::::: ad • 

A similar reasoning for the adiabatic unloading deformation increment - Fdt leads to 

(3.19) (J•, (J• (K) 1 ( -, ) 1 l 1 (( ~ " ")TF]• } ad- ad =- -Sit +su =- --Wit+tr UFf/J • 
C0 Cv !! 

From Eqs. (3.19) and ((4.13), I) we get 

(3.20) ()., ~ o· <K> 
acl r ad· 

In view of the hypotheses on a and b made in [6, Sect. 3] the equality sign in the relations 
(3.18) and (3.20) can hold only at the reference state or for values of strain which are at 
the boundary of the elastic range. Therefore, for states of deformation within the elastic 
range the relations (3.18) and (3.20) are, in general, strong inequalities. 

The above results can be checked experimentally if we compare them with the experi
ments of JouLE [3] and [4]. It has to be said, however, that Joule's papers are concerned 
only with loading processes. For unloading processes we have been unable to find adequate 
experimental works. As observed in the Introduction, the experiments of Joule give values 

of 0.11 which are systematically in slight disagreement with those foreseen by Kelvin. Let 

8~~ denote the value ofOacr measured by Joule. For uniaxial increment of traction in axially-
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loaded rods Joule found that~~~> < 0~~> < 0 for steel and for a number of other materials 
with a: > 0. Similar experiments for vulcanized rubber in situations in which a: < 0 (re
member the anomalous behaviour of rubber as far as the thermal expansion coefficient 

is concerned) showed that 0 < 0~~> < 0~~> . These results are collected in [3, Sect. 93]. 
Joule also performed experiments in simple compression. The latter, however, do not 
seem sufficiently accurate. Joule himself pointed out a possible source of error in his 
compression experiments on specimens of vulcanized rubber (cfr. [3, Sects. 115-116]). 
Since specimens of the same shape were used in all his compression tests, it seems likely 
that an analogous error also affects (at least under large compressive forces) the results 
on the other materials he tested. For small compressive forces, however, Joule's experiments 
on wrought iron(*) are still in agreement with the relation (3.18); see [3, Sects. 94-95]. 
The same can be said for the compression experiments on vulcanized rubber (cfr. [3, Sect. 
114]) provided that we confine our attention to the results relevant to small loads and 
remember that the anomaly of the thermal expansion coefficient of rubber disappears in 
compression (that is a: > 0 for every value of the compressive force). In a subsequent work 
Joule performed experiments on compression of water. The results are reported in 
[4, Table 1]. The latter show that at temperatures for which water has a positive thermal 

expansion coefficient the relation 0 < 0~~> < 0~~> is almost always verified for loading 
deformation increments. At temperatures for which water has a negative expansion coeffi-

cient, the same experiments show that 0~~> < 0~~> < 0. These results on water are again 
in complete agreement with the relation (3.18) and, therefore, afford further support to 
the hypothesis of quasi-perfect elasticity. 

4. Adiabatic and isothermal Young's moduli 

Confining our attention to the case of infinitesimal deformations, consider an isotropic 
thermoelastic material for which the stress-strain relation is given by the familiar linear 
equation 

(4.1) 

or, equivalently, by 

(4.2) 

In these relations M and , are respectively the isothermal Young's modulus and the iso

thermal Poisson's ratio already introduced in the previous Section; E is the infinitesimal 
stress tensor (3.3) and L10 is defined by 

(4.3) AO = 0-00 • 

Oo is the absolute temperature relevant to the stress-free reference configuration. 

(*) Joule did not perform compression experiments on steel. 
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Consider a right cylinder of material with the axis paralfel to the x 1 -axis of a reference 
system which for simplicity's sake will be assumed to be rectangular. Since we are consid
ering infinitesimal deformations, the superposition principle holds. We can, therefore, 
suppose that the cylinder is in a stressed state represented by a certain stress tensor 0T and, 
notwithstanding this, we can refer to the initial configuration when we consider further 
increments of deformation. To avoid complicated formulae, we shall assume that 0T has 
the following form: 

(4.4) 0 T11 = T and 0 Tu = 0 for [i,j] :1= [I, 1) 

where, of course, (i,j) e {I, 2, 3}. We shall denote °F and 0E respectively the deformation 
gradient and the infinitesimal strain tensor relevant to the state of stress 0T. Let the cylinder 
be in the stressed state 0T and suppose we increase the tension at the bases of the cylinder 
by applying an infinitesimal force dT (per unit area) directed along the exis and uniformly 
distributed over the bases. The components of the homogeneous stress field 1T induced 
in the body by dT are 

(4.5) 1 T11 = dT and 1 Tii = 0 for [i,j] :1= [I, 1]. 

The strain tensor 1 E produced by dT when the latter is applied in an isothermal way is 
given by 

(4.6) 

(4.7) 1E-22 -- 1£-33 -- - Mv dT, 1E- - 0 cor ,·-'- 1· ij - 11 -r ' 

as follows from Eqs. (4.5) and (4.2) because in this process LIO = 0. On the other hand, 
if dT is applied when the body is thermally insulated, we have 

(4.8) 

where dOad is the variation of temperature produced by dT whereas dt is the infinitesimal 
time interval in which the process takes place. If we assume that the body is made up 
of a perfect material, Kelvin's formula applies. From Eq. (3.1), from Eqs. (4.6) to (4.8) 
and from Eq. (3.4) we can, therefore, obtain 

• ex 
(4.9) LIO = Oif>dt = -00 -- dT. 

(!oCv 

Inserting Eqs. (4.9) and (4.5) in Eq. (4.2) we can calculate the components of the strain 

tensor 2E which are produced in the cylinder when dT is applied adiabatically: 

(4.10) 

(4.11) 

- I · K I cx2 
2E11 = M +ccO~d>dt =-M dT-00 --· dT, 

(!oCv 

- - v cx2 
2£ 22 = 2£ 33 = -- dT-00 --dT, 2Eii = 0 for i :/= j. 

M (!oCv 

Since the adiabatic Young's modulus is defined by 

(4.12) 
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we get from Eqs. (4.10) the following relationship: 

(4.13) 

which was deduced in 1878 by Kelvin in his article on Elasticity in the Encyclopedia Britan
nica [9]. The index (K) attached to Mad reminds us that Mad is calculated on the assumption 

that the material is a perfect elastic one, that is on the assumption that Oad = 0~~> . 
Let us discuss now the case in which the material is quasi-perfect. Consider again the 

above cylinder under the deformation process produced by dT and assume, for the time 
being, that this process is a loading deformation process. If dT is applied adiabatically, 
we can repeat an analogous reasoning to that done to arrive at Eqs. (4.10) and we get 

(4.14) 

In this relation 3 E11 is the (1, I)-component of the strain tensor 3E which is produced 
by the adiabatic loading dT. By means of Eq. (3.17) we can express Eq. (4.14) in the form 

(4.15) 

Here the index 0 attached to ( o~')T means that this derivative has to be calculated at the 
state of deformation relevant to the stress 0T. Remembering Eq. (4.10) 1 we get from 
Eq. (4.15) 

(4.16) - - cx{l ,..r·j 3£ 11 = 2£ 11-- - Wit+tr[(iJFfP')oF] dt. 
Cv (!o 

From this relation, from Eq. (4.12) and from Eq. (4.13) we obtain 

(4.17) M~ = M!x> - ~ diT {-
1 Wjt-tr[(o~')~F]Jdt, 

ad ad ' Cv (!o 

where M~d denotes the adiabatic Young's modulus relevant to the loading process of the 
quasi-perfect material. Since the process we are considering starts from a state in which 
the stress tensor is 0T, we can deduce from the relations (4.4) that for this process 

(4.18) d 0 dT 
wit t = Tu M· 

To calculate the quantity tr[(o~')~F]dt which appears in Eqs. (4.15) to (4.17), observe 

that Fdt is the deformation gradient consequent to the application of dT. Therefore, since 
dT does not produce any rotation of the cylinder and since we are considering infinitesimal 
deformations, we have 

(4.19) 

By exploiting the relations ( 4.19) we can write 

(4.20) tr[(iJFfJ')~F]dt = tr[(iJFfJ')~ 3E] 

or, equivalently, 

(4.21) 
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In this relation °F is the deformation gradient relevant to the state of stress 0T. Since 0T 
does not cause any rotation of the cylinder, we have 

(4.22) 

We can, therefore, infer from Eq. (4.21) the following relations: 

(4.23) tr[(opVJ')~F]dt = tr[°F(op"')~ °F-1 3E] = 

= tr[°F(op"')~(l+ 0E)- 13E] = tr[°F(op"')~ 3E]. 

The relation (4.23)3 follows from the relation (4.23h since 0E3E is a negligible quantity 
for infinitesimal deformations. Since the only non-vanishing component of 0T is 0 T11 , 

it follows from Eq. ((3.22), I) that the only non-vanishing component of °F(op~')~ is 
[°F(op~')~] 11 • We can therefore deduce from Eqs. (4.23)3 and (4.14) that 

( 4.24) tr[( Opi>')~F] dt = [°F( ap i>'l;\"lu 3 Eu = [°F( Opi>');n u ( 'Z + ,.O~,dt). 
Introducing Eqs. (4.24) and (4.18) in Eq. (4.17) we finally get 

•1 1 

Mif = M<K> - cex M {OTll- eo[OF(op~')~u} 
ad ad eo V 

(4.25) 

to within negligible quantities. A similar procedure for unloading processes would lead 
to the analogous relation 

( 4.26) M1, = M1<K> + cex M {o Tu- eo [oF( Op~")~]u}, 
ad ad• eo V 

where M~:, is the adiabatic Young's modulus relevant to unloading processes. 
From Eqs. (4.25), (4.26) and ((3.21), I) we can deduce that for ex > 0 

(4.27) 

When ex < 0 the inequality sign in the above relations has to be reverted. The relations 
(4.25) to (4.27) offer another clue for an experimental check of the proposed theory. 
As mentioned in the Introduction, however, no sufficiently accurate experiments have 
been as yet performed. We think it better, therefore, to refrain from discussing the available 
experimental results. 

S. Adiabatic loading-unloading cycles 

Let an element of material be in a state of deformation Fat temperature 0. Consider 

two opposite deformation increments, say F*dt and - F*dt and suppose that F*dt is a 
loading deformation increment. If both these increments are performed adiabatically, 
we can argue from Eqs. (2.9), (2.10), (2.2) and (2.3) that the temperature variations they 
produce are as follows: 

(5.1) ()·, ......._ 1 _, 
ad.:;:; --Sit 

Cv 
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and 

(5.2) ()
. ,, 1 _, 
ul ~ --Sit• 

Cv 
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Since the behaviour of the materials we are considering is for many respects very near 

to that of a perfect material, we have to expect the differences between T, (!F(op~') and 
eF(op~"Y to be small. Thus we can reasonably argue from Eqs. ((4.8), I) and ((4.9),1) 
that s,; and sit' have the same sign of the quantity sit when the latter is respectively relevant 
to loading or to unloading deformations. Since the amount of heat absorbed by the body 
during an isothermal deformation increment is equal to the amount of heat lost by the body 
during the opposite deformation increment(*), it turns out that sit and s;: are quantities 

of opposite sign when calculated for F-l< and - F*, respectively. From this observation and 

from Eqs. (2.7) and (2.8) we can, moreover, argue that 0~:1 and O~'cr too assume values 

of opposite sign when calculated for F* and - F*, respectively. 
We have seen in Sect. 2 that a quasi-perfect material undergoing an adiabatic deforma

tion process suffers changes in its temperature. We want to demonstrate here that the 
positive variation of temperature relevant to a certain adiabatic deformation increment 
is always greater than the absolute value of the negative variation of temperature relevant 
to the opposite adiabatic deformation increment. This implies, clearly, that the temperature 
of a body at the end of an adiabatic deformation cycle between two different states of 
deformation must be greater than the temperature possessed by the body at the beginning 
of the cycle. As observed in the Introduction, this result is much more realistic than that 
foreseen by the theory of perfect materials. According to the latter, indeed, no temperature 
variation is brought about by an adiabatic closed cycle of deformation. The analysis which 
follows should, therefore, provide further support to the hypothesis of quasi-perfect 
elasticity. 

Consider a quasi-perfect material (e.g. non cold-worked mild sted) with a positive; 
thermal expansion coefficient. This material absorbs heat during the isothermal loading . . 
increment t,*dt and loses heat during the isothermal unloading - F*dt. From the above 
remarks on the sign of Sit, sii and si: we can argue that in this case 

(5.3) s'. > o and -s;; < o, 
and that, consequene , • 

(5.4) J~cr < 0 and O~'cr > 0. 

Since sit relevant to F'*dt is equal and opposite to Sit relevant to - F*dt, we can easily 
infer from Eqs. (5.3), ((4.12), I) and (4.13, I) that 

(5.5) (sMsiD ~ - 1. 

On the other hand, keeping in mind the inequalities (5.3) and (5.4) we can deduce from the 
inequalities (5.1) and (5.2) that 

(5.6) co~.;o~:.> ~ CSit!SiD. 

(*) This is a direct consequence of the energy conservation principle and of our assumptions on e 
and f. 
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Finally, from the inequalities (5.5) and (5.6) we get 

(5.7) 

The relations (5.4) and (5.7) prove that for opposite adiabatic deformation increments the 
positive variation of temperature is greater than the negative one. Since an adiabatic cycle 
between any two states of deformation is composed of opposite deformation increments, 
it turns out that the temperature at the end of the cycle must be greater than that at the 
beginning. Observe that from the hypotheses on a and b introduced in [6, Sect. 3] the 
equality sign in the inequality (5.7) cannot hold during all the cycle. 

The case of a material with rx < 0 (e.g. vulcanized rubber under appropriate tensile 
forces) can be studied in the light of the previous one. Instead of the inequalities (5.3) 
and (5.4) we have in this case 

(5.8) 

and 

(5.9) 

sit < o, -s;: > o 

o~d > o, o~:. < o. 
From the relations (5.8), ((4.12), I) and ((4.13), I) we can arrive at 

(5.10) (~~fSi:) ~ - 1 . 

On the other hand, from the inequalities (5.1), (5.2), (5.8) and (5.9) we can derive 

(5.11) 

Finally, from the inequalities (5.10) and (5.11) we get 

(5.12) 

which proves that also when rx < 0 the positive variation of temperature caused by an 
adiabatic increment of deformation is greater than the absolute value of the negative 
variation of temperature caused by the opposite deformation increment. 

6. On the experimental determination of free energy and entropy 

Information about ~,, ~" and, hence, about fl and rj" can be exrerimentalJy obtained 
in a number of ways. The formulae (3.17) and (3.19) relate op~' and cp~" to the experi-

mentally measurable quantities o~d, o~:. and Wit· Analogously, Op~' and Op~" can be 
determined by means of Eq s. ( 4.25) and ( 4.26) once the adiabatic elastic moduli are experi
mentally determined. We shall discuss in this section how ~', ~", fl and fl' can be deter
mined from experimental measurements of the amount of heat Sit absorbed in the 
unit time during an isothermal deformation process. 

Consider an isothermal loading process. From the first principle of thermodynamics 
( ( 4.2), I) it can be easily seen that sit can be always expressed as 

(6.1) sit= sit(F,O,F) = tr(HF). 

Here 

(6.2) 
A A 1 

H = H(F, 0) = (ope)T- -F-1T . e 
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is a second-rank tensor which can be determined from Eq. (6.1) once sit(F, 0, F) is known 
from experiments. Introducing Eqs. ((3.8), I), ((6.3), I) and (6.1) in Eq. ((4.6), I) we can 
deduce the relation 

(6.3) 

Since Eq. (6.3) is valid for arbitrary loading deformation increments, we get from it 

(6.4) Ooo(op"')r- (op~')r + _!__ F- 1T+H = o. 
e 

This relation represents 9 linear differential equations in the unknown components [ opfJ']ii 
of the tensor-valued function op tp'. Observe that each of these differential equations involves 
only one component of op"' at a time. These equations can, therefore, be integrated with 
respect to () independently of each other and allow us to find op"'. A further integration 
with respect to F gives fJ' (F, 0) provided that the compatibility conditions for the existence 
of a unique function fJ' (F, 0) are met. Finally, r]' (F, 0) can be determined from (6.3). The 
analysis for the determination of fJ" and ~" is completely analogous and will not be re
peated. 

7. Thermodynamical deductioa of the elastic range 

To oonclude this paper we shall advance some ideas about the way in which the elastic 
range of a quasi-perfect material can be determined by means of non-destructive experi
ments. This section, however, does not attempt to be definitive. Its main importance is 
that it shows how a relation between quantities calculated in the elastic range on the one 
hand and yield limits on the other can be inferred. Hitherto, the existence of such a rela
tion has been seldom suspected. 

Consider for simplicity's sake an axially-loaded thin rod. In this case a standard pro
cedure allows us to simplify the analysis so that a full one-dimensional situation can be 
considered. This will be emphasized by adopting light-face letters for the quantities which, 
being tensors, have been previously denoted by bold-face letters. Let 0 be constant and 

consider in the (T, F)-plane the curves T = T(F, 0) and T* = eF(opvJ'). Suppose that 
these two curves intersect at a point [0 T, 0 F]. By means of the thermodynamical arguments 
set forth in [5, Sect. 6] it can be easily shown that the body cannot suffer deformations 

greater than 0F keeping the stress-strain relation f = T(F, 0) unaltered. 
A discussion on whether or not the material can really reach the state 0F without 

suffering previous plastic strains, as well as a discussion on whether or not an intersection 

between T and eF( op fJ') exists, would lead far away from the scope of the present article. 
We shall be content here to assume that a point such as [0 T, 0F] exists and that this point 

can be attained through the stress-strain relation T = T(F, 0). We shall suppose, moreover, 

that for a given 0 the function T = T(F, 0) is represented in the (T, F)-plane by a straight 
line. This occurs, for instance, when non cold-worked mild steel is considered. In such 
circumstances, since the stress-strain response has to change when F > 0F, the behaviour 
of the material cannot be elastic for F > 0 F. Therefore, 0 F must be the yield limit . 

... 
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Since materials like non cold-worked mild steel can, for many purposes, be approxi

mated to perfect materials, we have to expect that the curve eF( op~') is very near to T(F, 0). 
It appears reasonable, therefore, to approximate eF(op~') to a parabola whose axis is 

perpendicular to the straight line represented by T(F, 0). This parabola, moreover, has 
to pass through the point [T = 0, F = 1] in order to meet ((3.22), 1). It turns out that 
the curve eF(opVJ') is completely determined once its tangent at the point [T = 0, F = 1] 
is known. This tangent may be obtained by means of Eq. (4.25) once the adiabatic modulus 
M~4 relevant to a state 1 F very near to F = 1 is determined from experiments. When this 
adiabatic modulus is known, it, is therefore, an elementary task to find the second inter-

section of the parabola eF( op~') with the line T(F, 0) ·that is to determme the yield limit 

0 F. If the parabolic approximation for eF(op~') is not sufficient, the previous reasoning 
does not essentially change: we have simply to determine the values of M~4 for a greater 
number of states of deformation in the elastic range. 

Ackowledgment 

The support of a N.A.T.O. Fellowship at the Oxford Mathematical Institute from 
the lstituto di Scienza delle Costruzioni, Universita di Cagliari, Italy, is gratefully 
acknowledged. 

References 

l. 1. F. BELL, The experimental foundations of solid mechanics, Handbuch der Physik, 6, a/1, Springer
Verlag, Berlin 1973. 

2. Y. C. FUNG, Foundations of solids mechanics, Englewood Cliffs, Prentice-Hall, New Yersey 1965. 
3. 1. P. JoULE, On some thermo-dynamic properties of solids, Phil. Trans. Roy. Soc., 149, 91-131, London 

1859. 
4. 1. P. JoULE,: On thermal effects of compressing fluids, Phil. Trans. Roy. Soc., 149, 133-136, London 

1859. 
5. A. PAGLIETI'I, Thermodynamical bounds to the elastic behaviour of thermoelastic matierals [To appear]. 
6. A. PAGLIEITI, Quasi-perfect elasticity. I. Theoretical foundations, Arch. Mech., 29, 5, 659-672, 1977. 
7. W. THOMSON (Lord Kelvin), Dynamical theory of heat, part Ill, Phil. Mag., 4, 4, 168-176, 1852; Cfr. 

Papers, 1, 200-210. 
8. W. THOMSON (Lord Kelvin), On the alteration of temperature accompanying changes of pressure in 

fluids, Proc. Roy. Soc., 8, 556-569, 1857; Cfr. Papers, 3, 236-239. 
9. W. TllOMSON (Lord Kelvin), Elasticity, Encyclopedia Britannica, 9th ed. 1878; Cfr. Papers, 3, 1-112. 

10. C. TRUESDELL and W. NoLL, The non-linear field theories of mechanics, Handbuch der Physik, 3, 3, 
Springer-Verlag, Berlin 1965. 

ISTITUTO DI SCIENZA DELLE COSTRUZIONI 
UNIVERSITA. DI CAGUARI,ITALY. 

Received October 11, 1976. 

http://rcin.org.pl




