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Abstract
In the paper a class of random knapsack problems with many con-
straints is considered. It is assumed that some of the problem coeffi-
cients are realizations of mutually independent uniformly distributed ran-
dom variables. The asymptotic growth of the optimal solution values of
m—constraint, n—variable; m—fixed, n — oo, random knapsacks is inves-
tigated for the variety of possible instances of the problem.

1 Introduction

Let us consider a multi-constraint knapsack problem:

n
zopr(n) =max ) ¢ - z;
i=1
) n (1)
subject to > aji-z; < bj(n)
=1
where j=1,..m, z;=0 or 1

As usual, it is assumed that;

m<n, ¢,a;>0 bi(n)20,i=1,...,n,j=1,...,m

We may also assume that:
0 < bi(n) < ba(n) € oo Sbm(n) € aji. (2)
i=1

The assumption that bi(n) < b2(n) < .... < b(n) is not restricting the gener-
ality of considerations. Moreover, the assumption that 0 < b;(n) < Y i, aji,
for every 5 = 1, ...,m, is supposed to allow avoiding the trivial and degenerated
problems. More precisely, when b;(n} > >°_ a;; then the j-th constraint is
always fulfilled and therefore it may be removed from the problem formulation,
otherwise if b;(n) = 0 then (1) has only the trivial solution zopr(n) = 0.




The multi-constraint knapsack problem (1) is well known to be AP hard,
moreaver, when m > 2 it is NP hard in the strong sense (see Garey and
Johnson (3}]). When m = 1 then (1) becomes the classical (one-constraint)
binary knapsack problem (see Martello and Toth {6]).

The papers by Frieze and Clarke [2], Mamer and Schilling {5], Schilling (8]
and [9] investigate the asymptotic value of zgpr(n) for the random model of
(1), where b;(n) =1, j = 1,... ,m. Papers by Szkatuta [10] and {11] deal with
the random model of the multi-constraint knapsack problem, where b;(n) are
not restricted to be equal to 1. Papers by Meanti, Rinnooy Kan, Stougie and
Vercellis [7], Lee and Oh [4] consider more general random models of (1) but
only for m = 1,2 the analytical results describing the growth of zopr(n) were
obtained.

The aim of the present paper is to analyse the growth of the asymptotic
value of zppr(n) for the class of random multi-constraint knapsack problems
with some right-hand-sides of the constraints being possibly small or moderate
and other ones pretty large. As the consequence of this result and previous
results of the author a theorem describing asymptotic behaviour of the zopr(n)
for practically all combinations of values of by(n), ba(n), ..., bn(n) was proved,
making the random model of (1) complete in the sense that nearly every possible
instance of the problem may be analysed.

The rest of the paper is organized as follows. Section 2 introduces basic
definitions and recalls previous results of the author, which will be exploited
in the subsequent section. Section 3 contains the main results of the paper.
Finally, in section 4 we discuss the results obtained in the paper.

2 Definitions and basic results

The following definitions are necessary for the further presentation:
Definition 1 We denote V,, = Yy, where n — oo, if
Yo -(1-0(1)) <V, €Y, (1+0(1))
when V,,, Y, are sequences of numbers, or
Jim P{Ya-(1-0(1)) S Va< Y- (1+0(1))} =1
when V,, is a sequence of random variables and Yy, is a sequence of numbers or
random variables, where lim.,_,o 0(1) = 0 as usual.
Definition 2 We denote Vo, <Y, (Vo = Wa) of
Va<(1+0(1)) Yo (Va2 (1—0(1)) W)
when Vi, Y, (Ws) are sequences of numbers, or
Jim P{Ve < (14 0(1)) - Yah = 1( lim P(Va > (1 = o(1)) - Wn} = 1)
when Vy, is a sequence of random variables and Y, (W, ) is a sequence of numbers
or randomn variables, where limn—.o0 0(1) = 0.
Definition 3 We denote Vi, = Y, if there exist constants ¢’ 2> ¢ > 0 such that
¢ YazVazd Ya

where Y, Vi, are sequences of numbers or random variables.




Both relations = and 22 mean that Y, is an appraximation of V;,. Relation =
ignores all terms asymptotically smaller than V;, e.g. n = n+a-n* + b, where
a,b and a < 1 are constants. Relation £ also ignores all terms asymptotically
smaller than V,, but it additionally neglects the constant multiplier, e.g. n =
¢c-n+a-n*+b, where ¢ > 0, a, b and a < 1 are constants.

The following random model of (1) will be considered in the paper:

e mis an arbitrary fixed positive integer,n — 00,i =1,...,n,7=1,... ,m.

e ¢;, aj; are realizations of mutually independent random variables and
moreover ¢;, a;; are uniformly distributed over (0,1].

e 0< 5K bi(n) <ba(n) € oo < bin(n) < n/2, BEL > B gy every
n 2 1 and all bj(n) are deterministic, where § is a constant.

Under the assumptions made about ¢;, a;;, and taking into account (2) the
following always hold
n n
0< z0pr(n) € Zci <n, §<bi(n) < Zaj‘- <n, i=1,...,m. (3)
i=1 i=1

Moreover, from the strong law of large numbers it follows that
n n
> e~ E(a)-n=n/2 Y aj~E(@n) n=n/2
i=1 i=1

Therefore, it is justified to enhance formula (3) in the following way:
0< zopr(n) Xn/2, 0< 6 < bi(n) < ba(n) < ... € bm(n) X n/2. (4)

Formula (4) shows that random model of the multi-constraint knapsack prob-
lem (1) is complete in the sense that nearly all possible instances of the problem
are considered. Moreover b;(n) is allowed to take variety of functional forms like
b1(n) = v-n*, where ¥ > 0, 0 € a < 1, constants, or b (n) = v-log(n) and many
others. In this respect the model where b, (n) = bo(n) = .... = ba(n) = 1 is just
a very special case. Taking into account that 3}, a;; & n/2 assumption about
non-increasing monotonicity of b, (n) with respect ton , i.e. b—‘gﬂ < b—"(l’;—";ll, for
all n 2 1, is quite logical.

The growth of zopr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, m, ¢, aji, bj(n), wherei=1,... ,n, j=1,...,m

We have assumed that c;, a;; are realizations of the random variables and there-
fore their impact on the zppr(n) growth is in this case indirect. Moreover, we
have assumed that m is an arbitrary fixed positive integer and n — oco. The aim
of the probabilistic analysis is to investigate asymptotic behaviour of zppr(n)
when n — oo, The impact of the right-hand-side values - b, (n), ba(n),....bm(n)
- is well illustrated by the Lagrange function and the problem dual to (1), see
Averbakh [1}, Meanti, Rinnooy Kan, Stougie and Vercellis [7], Szkatuta [10] and
[11]. Due to the very complicated formulas, impossible to handle in the general
case, the papers by Szkatula [10] and [11] investigate only two important special
cases of values of by (n), ba(n),...,b;m(n). For random model of (1) here considered
some these results may be presented as follows:




o Case of small and moderate values of b1(n), by(n),...,bm(n), see Szkatula
[10]. If there exists a constant n, > 1 such that for ell n > n,

by(n) - bn(n)
(m+2)!

8 < bi(n) < by(n) € oo bm(n) € “*(/"""(") ®)

then

zopr(n) &~ (m+1)- m+§/"‘ b1(n) (1:2(:)2)| 'bm("). (6)

o In the Szkatula [11] case of very large values of by(n),b2(n),...,bm(n) was
considered. Both results allow to consider the case of the classical one-
constraint (with m = 1) knapsack problem, where:

copr(my ~ 4 VEEE if 6 < by (n) <
opPT\N
5-(§+6.b,(n).(1—9%‘22)) 2 <by(n) < B

n
-4

™

3 Probabilistic analysis

In the previous section important partial results describing special cases of
by (n), ba(n),...,.bm(n) - right-hand-sides values of the multi-constraint knapsack
problem (1) - were recalled. In this section we present two theorems describing
behaviour of zppr(n) - the optimal solution value of (1) for the ”complete”
random model of (1), i.e. for the variety of possible combinations of right-hand-
sides values, 0 < § € b1(n) < bo(n) € ... < bp(n) < n/2.

Theorem 1 Let c;, aj; be the realizations of the mutually independent random
variables uniformly distributed over (0,1], all b;(n) deterministic, and m 21 a
fiwed integer. If there ezist constants 6 > O,ng 2 1, 1 < m' < m, where m’ is a
mazimum value such that

migs [T b1(n) - ba(n) ... b (n)
§ £ bi(n) <. Khme(n) € (/ 2! < 8)

€ bma1(n) € . Kbm(n), forall n 2o,

then

zopr(n) & ™ H/n-bi(n) by(n) - ... b(n). 9)

Proof. Let us consider the following relaxations of (1):

G- Ti

o8

—

Zopr(n) = max

il

(10)

subject to aji - z; < bj(n)
1

.
JI

where j=1,..,.m/, z;=0or 1

"




and
n
24pr(n) = male ¢ T
=
n
subject to Y aji-zi € b(n)
i=1 11
where j=1,..,m, z;= 0 or 1, (a1
() =bj(n), j=1,..,m,

bj(m) = /Rt =l 1,
Let us observe that m’ < m and &(n) < bj(n), j =1, ..., m. Hence we have
25p7(n) € 20Pr(n) € 25p7(n). (12)

Taking into account that problem (10) satisfies (5), where m is replaced by m’,
we obtain from (6)

zppr(n) = (m' +1) - m'+\1/ﬂ o) ‘(:,(’:_)2.)'!” D7), (13)
We have
m+\1/n () () ) _ \/n 51(1) - b2(7) - by (m)
(m+2)! m+2)l :

Problem (11) satisfies (5), where b;(n) are replaced by b}(n), j = 1,...,m, and
therefore from (6) we have

2hpp(n) = (m4+1)- ™ +\1/"' “bi(n) (:(:)2)' : bvv-’("). (14)

From (12), (13) and (14) it follows that (9) is true. =

From Theorem 1 we may learn that the values of b,(n), b2(n), ..., by (n) -
the right-hand-sides, n and m’ have substantial influence on the asymptotic
value of zopr{(n), while from this point of view values of bm41(n), ..., bm(n)
are practically redundant. It does mean that in any case behaviour of b;(n) has
serious influence on the asymptotic growth of zopr(n). Theorem below consider
the asymptotic relationship between values of n, m, b;(n) and zopr(n).

Theorem 2 Letcy, aj; be the realizations of mutually independent random vari-
ables uniformly distributed over (0,1}, m > 1 a fized integer, all b;(n) determin-
istic, § € bi(n) € ... € bm{n) < n/2, b—’}‘ﬂl > b—"(‘%_*i—ll, ng 2 1, a constant.
Ifbi(n) < ZFT:-_ZTI’ for all n 2 ng then

() 7 < sorrle) o () 0
n n n
Otherurise, if b)(n) > Z”_’%ﬁy for alln > 1 then

zopr(n) Xn or ('r(nm-i;:l)T)ln < 20pr(n) < g (16)




Proof. Let, for some n*, n* > 1, we claim that b—'}",'—-l < (—ml‘;rm and

9&%2 > #217 This claim is however in obvious contradiction with the

assumption —-\%.—l > 1"—'%2 So if the inequality

b 1
) < ()
is true for » = ny, then it is also true for all n > ny. On the other hand
if we have 22 > —at and 8Tl el then (17) is fulfilled for all
n > n*. It means that either there exists ng such that (17) holds for all n > nq
or by(n) > oy foralln 2 1.
When (17) holds we consider the following relaxations of (1):

n
zppr(n) =max ) ¢ - z;

i=1
n
subject to Y aji -z < by(n) (18)
i=1
where j=1,...m, z;=0or 1
and
n
zppr(n) =max 3" c; -z
i=1
< (19)

subject to Y ari-zi € bi(n)
=1
where z;=0or 1

Let us observe that due to (4) and Theorem assumptions we have b (n) < bj(n),
j = 1,...,m. Moreover (19) is one-constraint knapsack problem with set of
feasible solutxons containing all feasible solutions of the original problem (1).
Therefore the following holds

Z'(n) < zopr(n) € 25pr(n).

From (6), (7) and since b,(n) < (m%j‘! < 2, for all m, m > 1, we have:

zopr(n) ~ (m+1)- ™% lg;bj_"—(;;—) and z5pp(n) ~ \/——Z_nsﬂ(l)’

which proves that (15) is true.
Otherwise, when b;(n) > (m+2)" for all n 2> 1, we consider the following

relaxation of problem (1)

2ppr(n) = max Z G Ty

3.—
subject to Z aji Ti € (_,#2)] (20)
where j7=1,..,m, ;=0 or 1.

From (4) and since T"H-ﬂ bi(n) < ba(n) < ... < bm(n) < § we have

26pp(n) < zopr(n) X

wl:




Problem (20) satisfies (5), where b;(n) are replaced by Im_:2)_!' j=1,..,mand
therefore from (6) we obtain

sorr(m) ~ LT,

proving (16). m

Wkhen b,(n) < F:T?)_l then (8) is satisfied for m’ = 1. There may also exist
m’ > 1 satisfying (8). Let m’ be chosen as the maximum value satisfying (8)
for all n > ng. Then (15) may be enhanced by the stronger approximation (9).
Below we present example and corollaries allowing interpretation of the received
results.

Example 1 Let b;(n) = n®, where 0 < o < 1. Then (15) could be written as:
n T < zopr(n) S n°F .
Since é < #1— < 1 above formula may be relaxed as follows:
n(3+750) =< zopr(n) X n".
Corollary 1 If by(n) = o(n) then zopr(n) = o(n
Corollary 2 Ifb1(n) & n then zopr(n) =n
Proof of the corollaries follows immediately from (15) and (16).

4 Concluding remarks

Theorems 1 and 2 allow us to observe how asymptotic behaviour of zppr(n)
- optimal solution value of the multi-constraint knapsack problem (1) is influ-
enced by the problem coefficients, n,m, b;(n),bz(n), ..., bm(n) and, indirectly,

by Ciy Qjie
If there exist 1 < m’ < m such that (8) is fulfilled, then in practice the con-
straints m’+1,... ,m are redundant and have negligible influence on the asymp-

totic growth of zppr(n). Therefore, we may claim that asymptotic growth of
zppr(n) is directly influenced by the number of decision variables n, the number
of non-redundant constraints m’ and the values of b (n) < bo(n) < ... < bn(n)
of the right-hand-sides of (1).

An interesting observation consist in that if some of the non-redundant right-
hand-side values (at least b;(n)) are growing substantially slower than n/2, e.g.
when b (n) < 74y then values of b(n) and possibly m' and b(n), ..., bne(n)
have strong influence on the asymptotic growth of value of 20 pr(n), see (15) or

9).

On the other hand, when all of b;(n) < bz(n) < .... < ba(n) are big enough,
for example Fn—-'LT)' < by(n), then the number of constraints m as well as values
of by(n), ..., b (n) have relatively small impact on growth of zppr(n).

Instead of using relation = we may formulate the results through relation
<, see (16). Then (9) may be replaced as follows

(m+1) ™%/ '—(—L(—u—mﬂ'b' - J::..:;;i'b 8 < 20pr(n) < (M +1) ™4/ —Ll(—ﬁ-)-;—‘“i—z"'b‘ z f::wb An)




Theorems 1 and 2 are based on a relatively weak measures of appraximation,
namely < or = However the paper provides interesting results describing,
for the first time in the literature, the asymptotic behaviour of zopr(n) - the
optimsl solution value of the multi-constraint kunapsack problem (1) for the
"complete” random model of {1} which covers nearly all possible instances of
the problem.
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