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Abstract 

In the paper e. class of re.odom kne.pse.ck problems with many con­
straints is considered. It is assumed that some of the problem coeffi­
cients are ree.Iizations of mutually independent uniformly distributed ran­
dom variables. The asymptotic growth of the optimal solution values of 
m-constraint, n-varia.ble; m-fixed, n-.. oo, random knapsacks is inves­
tige.ted for the variety of possible inste.nces of the problem. 

1 Introduction 

Let us consider a multi-constraint knapsack problem: 

zopr(n) = max f c; · x, 
i= l 

subject to fa;,· x, ,;;; b;(n) 
i =l 

where j = l, ... ,m, x, = O or l 

As usual, it is assumed that: 

We may also assume that: 

O< b1(n),;;; ~(n),;;; .... ,;;; bm(n) ,;;; La,,. 
i=l 

(1) 

(2) 

The assumption that b1(n) ,;;; b2(n) ,;;; ... . ,;;; bm(n) is not restricting the gener­
ality of considerations. Moreover, the assumption that O < b,(n) ,;;; 1::7=, a;,, 
for every j = 1, ... , m, is supposed to allow avoiding the trivia! and degenerated 
problems. More precisely, when b;(n) > L~=I ai, then the j-th constraint is 
always fulfilled and therefore it may be removed from the problem formulation, 
otherwise if b1(n) = O then (1) has only the trivia! solution zopr(n) = O. 



The multi-constraint knapsack problem (1) is well known to be NP hard, 
moreover, when m ;;, 2 it is NP hard in the strong sense (see Carey and 
Johnson [31). When m = 1 then (1) becomes the classical (one-constraint) 
binary knapsack problem (see Martello and Toth [6]) . 

The papers by Frieze and Clarke [2], Mamer and Schilling (5j , Schilling [Bj 
and [9j investigate the asymptotic value of zoPT(n) for the random model of 
(1), where bj(n) = 1, j = l, ... , m. Papers by Szkatuła [10] and [11] deal with 
the random model of the multi-constraint knapsack problem, where b,(n) are 
not restricted to be equal to l. Papers by Meanti, Rinnooy Kan, Stougie and 
Vercellis [7], Lee and Oh [4j consider more generał random models of (1) but 
only form= 1, 2 the analytical results describing the growth of zoPT(n) were 
obtained. 

The aim of the present paper is to analyse the growth of the asymptotic 
value of zopT(n) for the claas of random multi-constraint knapsack problems 
with some right-hand-sides of the constraints being possibly small or moderate 
and other ones pretty large. Aii the consequence of this result and previous 
results of the author a theorem describing asymptotic behaviour of the zoPT(n) 
for practically all combinations of values of b1 (n), /J.i(n), .. .. , bm(n) was proved, 
making the random model of (1) complete in the sense that nearly every possible 
instance of the problem may be analysed. 

The rest of the paper is organized as fo!lows. Section 2 introduces basie 
definitions and recalls previous results of the author, which will be exp!oited 
in the subsequent section. Section 3 contains the main results of the paper. 
Finally, in section 4 we discuss the resulta obtained in the paper. 

2 Definitions and basie results 

The fol!owing definitions are necessary for the further presentation: 

Deflnition l We denote V,."" Y,.., where n-+ oo, if 

Y,.. · (1- o(l)) ~ V,. ~ Y,.. · (1 + o(l)) 

when V,., Y,.. are sequences of numbers, or 

,..l_!_.m
00 

P(Y,.. · (1 - o(l)) ~V,.~ Y,.. · (1 + o(l))} = 1 

when V„ is a sequence of rondom variables and Y,.. is a sequence of numbers or 
rondom variables, where lim,.._00 o(l) = O as usual. 

Deflnition 2 We denote V,. :::$ Y,.. (V„ t W,.) if 

V,. ~ (1 + o(l)) · Y,.. (V,. ;;, (1 - o(l)) · W,. ) 

when V,., Y,.. (W,.) are sequences of numbers, or 

lim P{V,.. ~ (1 + o(l)) · Y,..} = 1 ( lim P{V,..;;, (1 - o(l)) ·W,.)= 1) 
-00 -oc 

when V„ is a sequence of rondom variables and Y,.. (W,.) is a sequence of numbers 
or rondom variables, where lim,.._00 o(l) = O. 

Deflnition 3 We denote V,. ~ Y,.. if there exist constants c" ;;, r! > O such that 

c' · Yn :::::5 Vn ::::5 c" · Yn 

where Y,.. , V„ are sequences of numbers or rondom variables. 
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Both relations "' and ~ mean that Y„ is an appraximation of V,.. Relation "" 
ignores all terms asymptotically smaller than V,., e.g. n "' n+ a· n"' + b, where 
a, b and c, < 1 are constants. Relation ~ also ignores all terms asymptotically 
smaller than V,., but it additionally neglects the constant multiplier, e.g. n '=!! 
c • n+ a • n"' + b, where c > O, a, b and c, < 1 are constants. 

The following random model of (1) will be considered in the paper: 

• mis an arbitrary fixed positive integer, n-, oo, i= 1, . . . , n, j = 1, ... , m. 

• c,, a;, are realizations of mutually independent random variables and 
moreover e;, a;, are uniformly distributed over (O , 1}. 

• O < /j ,:;; b1(n) ,:;; b-i(n) ,:;; .... ,:;; bm(n) ,:;; n/2, ~ ;,, b'i':-it), for every 
n ;,, 1 and all b; (n) are deterministic, where 6 is a constant. 

Under the assumptions made about e;, a;,, and taking into account (2) the 
following always hold 

n 

O,:;; zon(n),:;; Le;,:;; n, 6,:;; b;(n),:;; La;,,:;; n , j = 1, ... ,m. (3) 
i=l i=l 

Moreover, from the strong law of large numbers it follows that 

L c, "=' E(c1) ·n= n / 2, La;; "=' E(a11 ) • n = n / 2. 
i::::l 1=1 

Therefore, it is justified to enhance formula (3) in the following way: 

O,:;; zoPT(n) j n/2, O< /j,:;; b1(n),:;; b-i(n),:;; .... ,:;; bm(n) j n/2. (4) 

Formula ( 4) shows that random model of the multi-constraint knapsack prob­
lem (1) is complete in the sense that nearly all possible instances of the problem 
are considered. Moreover b1 (n) is allowed to take variety of functional forrns like 
b1 (n) =-y•n"',where-y > O, O,:;; a,:;; l,constants,orb1 (n) =-y-Jog(n) and many 
others. In thls respect the model where b1(n) = b-i(n) = .... = bm(n) = 1 is just 
a very special case. Taking into account that :[;;'.:1 a;, "' n / 2 assumption about 

non-increasing monotonicity of b, (n) with respect to n, i.e. ~ ,:;; b'/.':.it), for 
all n ;,, 1, is quite logical. 

The growth of zoPT(n) - value of the optima! solution of the problem (1) 
may be influenced by the problem coefficients, namely: 

n 1 m, c.:, aji, b,(n), where i= 1, ... 1 n, j = 11 ••• , m. 

We have assumed that e;, a;, are realizations of the random variables and there­
fore their impact on the zopT(n) growth is in thls case indirect. Moreover, we 
have assumed that m is an arbitrary fixed positive integer and n _, oo. The aim 
of the probabilistic anaiysis is to investigate asymptotic behaviour of zoPT(n) 
when n ___, oo. The impact of the right-hand-side values - b1 (n), b-i(n), .. . ,bm(n) 
- is well illustrated by the Lagrange function and the problem dual to (1), see 
Averbakh [l], Meanti, llinnooy Kan, Stougie and Vercellis [7], Szkatuła [10] and 
[11]. Due to the very complicated formulas, impossible to handle in the generał 
case, the papers by Szkatuła [10] and [Il] investigate only two important special 
cases of values of b1(n) ,b-i(n), ... ,bm(n). For random model of (1) here considered 
some these results may be presented as follows: 
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• Case of small and moderate va.lues of b1 (n), b-i(n), ... ,bm(n), see Szkatuła 
[10). H there exists a constant no ;;, 1 such that for all n;;, n 0 

m+• n• b1(n) · b,z(n) · ... · bm(n) (
5
) 

(m+2)! 

then 

( ) ( 1) 
rn+• n· b1(n) · b,z(n) · ... · bm(n) 

ZoPT n "'m+ · (m+ 2)! . (6) 

• In the Szkatuła [11) case ofvery large va.lues of b1(n) ,½(n), ... ,bm(n) was 
considered. Both results allow to consider the case of the classical one­
constraint (with m = 1) knapsack problem, where: 

{~ zopr(n)"' 3 
b 

¼ · (~ +6·b1(n) · (1- ~)) 

3 Probabilistic analysis 

ifó$b1(n):Si, 

iq $b1(n) :S l 
(7) 

In the previous section important partia! results describing special cases of 
b1(n), b-i(n), ... ,bm(n) - right-hand-sides values of the mu!ti-constraint knapsack 
problem ( 1) - were recalled. In this aection we present two theorems describing 
behaviour of ZoPT(n) - the optima! solution value of (1) for the "complete" 
random model of (1), i.e. for the variety of possible combinations of right-hand­
sides values, O< Ó ~ b1(n) ~ b-i(n) ~ .... ~ bm(n) ~ n/2. 

Theorem I Let c;, a;, be the realizations of the mutually independent rondom 
variables uniformly distributed over ( O, 1), all b; (n) deterministic, and m ;;, l a 
fixed integer. If there exist constants ó > O, no ;;, 1, 1 ~ m' ~ m, where m' is a 
maximum value such that 

Ó ,;: b(),;: .::b,().::m'+•n·b1(n)·b-i(n)· ... ·bm'(n),;: (B) 
- 1n .._, ... .._, m n~ (m+2)! ~ 

~ bm•+1(n) ~ ... ~ bm(n), Jor all n;;, no, 

then 

zoPT(n) ~ ,.'+{In· b1 (n)· b-i(n) · ... · bm,(n). (9) 

Proof. Let us consider the following relaxations of (1): 

n 

z0PT(n) =max~ c; · x, 
i=l 

subject to f: a;; · x; ~ b;(n) 
(10) 

1=1 
where j = 1, ... , m', x, = O or 1 
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and 

Zopr(n) = max f: C; · X; 
1~1 

subject to I; a;;· x; ~ b'.f (n) 
i=! (11) 

where j = 1, ... ,m, Xi= O or 1, 
b'.f(n) = b;(n), j = 1, ... , m', 
b"( ) _ m'+•/n•b1 (n)•b,(n)• ... ·bw,(n) . _ 1 + l 

j n - V (m+2)1 ' J - m , ... , m . 

Let us observe that m' ~ m and llj(n) ~ b;(n). j = 1, ... , m. Hence we have 

ZC)PT(n) ~ ZoPT(n) ~ ZoPT(n). (12) 

Taking into account that problem (10) satisfies (5), where mis replaced bym', 
we obtain from (6) 

zóPT(n) a:: (m' + 1) · 

We have 

m+• n· bnn) · b',j(n) · ... · b',:.(n) 
(m+2)! 

n· b1(n) · b:i(n) · ... · bm,(n) 

(m'+2)! 

,.'+• n· b1(n) · b:i(n) · ... · bm,(n) 
(m+2)! 

(13) 

Problem (11) satisfies (5), where b,(n) are replaced by b1(n), j = 1, ... , m, and 
therefore from (6) we have 

11 ( ) _ ( l). m'+• n· b1(n) · IJ..i(n) · ... · bm,(n) 
zoPT n - m+ (m+2)! . (14) 

From (12), (13) and (14) it follows that (9) is true. • 
From Theorem 1 we may learn that the values of b1(n), b-i(n). ... , bm,(n) • 

the right-hand-sides, n and m' have substantial influence on the asymptotic 
value of zoPT(n), while from this point of view values of bm'+1(n). ... , bm(n) 
are practically redundant. It does mean that in any case behaviour of b1 (n) has 
serious influence on the asymptotic growth of zoPT(n). Theorem below consider 
the asymptotic re!ationship between values of n, m, b1(n) and zopr(n). 

Theorem 2 Let c;, a,; be the realizatioru of mutually independent random vari­
ables uniformly distributed over (O, 1}. m ;;, 1 a fixed integer, all b;(n) determin­

istic, 6 ~ b1(n) ~ .... ~ bm(n) ~ n/2, ~ ;;, b,~~4;1>, no ;;, 1, a constant. 
ff b1(n).;; (m;2)!' for all n;;, no then 

(15) 

n 
Othe:rwise, ifb1(n) > (m+

2
)!' for al/n;;, l then 

zopr(n) S!! n or 
(m+l)·n n 

(m + 2)! :::, zoPT(n) j 2 (16) 
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Proof. Let, for some n•, n• ~ 1, we claim that b,~~-) ,,;; (m>:;2)1 and 

b,~~~ill > c:::.t2\ 1. This claim is however in obvious contradiction with the 

assumption bi~~-) ~ b,~~~il). So if the inequality 

(17) 

is true for n = no, then it is also true for all n ~ n0. On the other hand 
if we have b,~~-l > (m>:;2)! and b,~~~;1l ,.; c::.•.t,tJ! then (17) is fulfilled for all 
n> n•. It means that either there exists no such that (17) holds for all n~ n 0 

or b1(n) > (m~2 )1' for all n~ 1. 

and 

When (17) holds we consider the following relaxations of (1): 

n 

ZoPT(n) = max E c,. x, 
i=l 
n 

subject to I:; aj,· x, ,,;; b1(n) 
i=l 

where j=l, ... ,m, x,= O or 1 

n 
ZoPT(n) = max E c,. X; 

i=l 
n 

subject to I:; ah • x, ,,;; b1 (n) 
i=l 

where x, = O or 1 

(18) 

(19) 

Let us observe that due to (4) and Theorem assumptions we have b1(n) ,;;; bj(n), 
j = 1, ... , m. Moreover (19) is one--constraint knapsack problem with set of 
feasible solutions containing all feasible solutions of the original problem (1 ). 
Therefore the following holds 

z'(n) ,;;; ZOPT(n) ,,;; ZoPT(n). 

From (6), (7) and since b1 (n) ,,;; (m~2)! ,;;; ~. for all m, m ~ 1, we have: 

, () ( ) -+•n·bf(n) d 11 ( ) ~ ✓2 - n·b1(n) 
zoPT n "' m + 1 · (m + 2)! an z0 PT n ~ 3 , 

whlch proves that (15) is true. 
Otherwise, when b1 (n) > (m~2J!' for all n ~ 1, we consider the following 

relaxation of problem (1) 

n 

•oPT(n) = max EC;. x, 
i~l 

subject to _L a1, · X; < (m~2)1 
i=l 

where j = l, ... ,m, Xi= O or 1. 

From (4) and since (m~2)1 ,;;; b1(n) ,;;; ~(n) ,;;; .... ,,;; bm(n) ,;;; ~ we have 

ZoPT(n) ,;;; ZoPT(n) j i 

6 
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Problem (20) satisfies (5) , where b1(n) are replaced by (m~2)!, j = 1, ... , m and 
therefore from (6) we obtain 

, (m+l) •n 
zoPT(n) "' (m + 2)! , 

proving (16). • 
When b1 (n) ,,; (m~2)1 then (8) is satisfied for m' = 1. There may also exist 

m' > 1 satisfying (8). Let m' be choaen as the maximum value satisfying (8) 
for all n~ n0 • Then (15) may be enhanced by the stronger approximation (9). 
Below we present example and corollaries allowing interpretation of the received 
results. 

Example 1 Let b1 (n) ~ n°, when, O,,:; o,,:; 1. Then (15} could be written as: 

n~::::, zoPT(n)::, n"łl. 

Since ½ ,,:; m":.i ,,:; 1 above formula may be relaxed as foUows: 

n(l!+;.n)::, zoPT(n)::, n"łl . 

Corollary 1 lfb1(n) = o(n) then zoPT(n) = o(n) 

Corollary 2 ff b1(n) ~ n then zoPT(n) ~ n 

Proof of the corollaries follows immediately from (15) and (16) . 

4 Concluding remarks 

Theorems 1 and 2 allow us to observe how asymptotic behavioUI of zopr(n) 
- optima! solution value of the multi-constraint knapsack problem (1) is influ­
enced by the problem coefficients, n, m, b1 (n), b:l(n) , ... , bm(n) and, indirectly, 
by Ci, Oji• 

If there exist 1 ,,:; m' < m such that (8) is fulfilled, then in practice the con­
straints m' + 1, ... , mare redundant and have negligible influence on the asymp­
totic growth of zoPT(n). Therefore, we may claim that asymptotic growth of 
zoPT(n) is directly influenced by the number of decision variables n , the number 
of non-redundant constraints m' and the values of b1 (n) ,,:; b-i (n) ,,:; .... ,,:; bm, (n) 
of the right-hand-sides of (1). 

An interesting observation consist in that if some of the non-redundant right­
hand-side values (at least b1(n)) are growing substantially slower than n/2, e.g. 
when b1(n) ,,; (m~2)!' then values of b1(n) and possibly m' and b:l(n), ... , bm•(n) 

have strong influence on the asymptotic growth of value of zoPT(n), see (15) or 
(9). 

On the other hand, when all of b1(n),,; b-i(n),,; .... ,,; bm(n) are big enough, 
for example (m~2)i < b1 (n), then the number of constraints mas well as values 
of b-i(n) , ... ,bm(n) have relatively small impact on growth of zopr(n). 

Instead of using relation ~ we may formulate the results through relation 
::,, see (16). Then (9) may be replaced as follows 

( + 1) .. •., / n-b,(n)·b-, (n)•.·b,..,(n) -< ( ) -< ( , + l) ,..'+1 / n•b,(n) ·b-,(n)•.·bm,(n) 
m V (m+2)! - ZQPT n - m V (m'+2)! . 
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Theorems 1 and 2 are based on a relatively weak measures of approximation, 
namely j or :!. However the paper provides interesting results describing, 
for the first time in the litcrature, the asymptotic behaviour of zoPT(n) - the 
optima! solution value of the multi-conatraint knapsack problem (1) for the 
"complete" random model of (1) which covers nearly all possible instances of 
the problem. 
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