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Abstract—This paper discusses the use of context based fuzzy optimization approach to maximize
profit in the context of joint quantity-price bidding in today’s deregulated electricity market. The
proposed method is innovative because it utilizes sets of empirical (market) data that reflect
functional dependence between the input and output variables. The paper describes the structure of
the fuzzy system and its components: the context variables, the input membership function and the
output membership function, as well as the use of aggregation operators in aggregating the context
variables. The paper also presents a numerical example to demonstrate the application of the

proposed method and compare the result with analytical solution.

Index Terms—Aggregating operators, Deregulated electricity market, Fuzzy optimization,

Strategic bidding

I. INTRODUCTION

THE introduction of competition in the electricity industry is aimed to improve efficiency in production,
transmission and consumption of electrical energy. Restructuring is also intended to attract players and
investments in the markets as well as to ensure competitive electricity price. Electricity industry reform has

been the theme throughout electricity markets around the globe since 1990s.
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The Australian National Electricity Market (NEM) has undergone restructuring progressively since 1998.
The market consists of inter-connected electricity networks on the Eastern side of Australia, including
Australian Capital Territory, New South Wales, South Australia, Victoria, Queensland and Tasmania.
Generating companies (gencos) in each power network region produce electrical energy traded into the
spot “pool” whereby the spot price for electricity is calculated by the central dispatch operator. Gencos
compete by providing dispatch offers while market customers submit dispatch bids, detailing the price and
demand quantity to be supplied. The central operator determines which gencos are required to satisfy
demand at what time, and at what production level. The objective of this scheduling process is to offer the
supply quantity while minimizing the cost in meeting the demand based on the offer and bid prices. The
clearing price to match supply and demand (or the spot price) is calculated using the bid stacking method
[1]: the central operator stacks the cumulative supply offers in increasing price order against decreasing
price stack of demand-bids.

Previous research {2], [3] suggested that an optimal strategy to bidding in a perfectly competitive market
is bidding at marginal costs. In real life operation, such a strategy is not necessarily profitable for the
suppliers. The electricity market is not perfectly competitive, but closer to an oligopoly system. Because of
the rather large market shares, generators can exercise market power. A supplier can withdraw some of its
capacity from the market but gain more profit since its offer bid can outweigh its loss of market share. The
success of a generator in exercising its market power depends on an accurate assessment of market
conditions such as load forecasts, network constraints and the bidding behavior of rival generators. In some
market mechanisms, a generator must internalize its dispatch scheduling and unit commitment in a bid
formulation. Optimal bidding strategies are fundamental to the survival of generators in a competitive
electricity market. There have been a number of studies of optimal bidding strategies in competitive
electricity markets: using residual demand analyses [4]-[10], using estimation of market parameters by
probability distribution functions [11]-[15], Dynamic Programming [16]-[18], Genetic Algorithm [19]-[26]

and other heuristic approaches [27]-[31]. This paper introduces a systematic bidding strategy for gencos in




TFS-2006-777?
formulating its daily bid using a fuzzy methodology. The proposed strategy is innovative because it is able
to handle uncertainty in market parameters, such as load demands and expected trading prices, using

membership functions and aggregating operators.

II. CONTEXT BASED FUZZY SYSTEM

A. Context-based Fuzzy System

Up to date the literature presents use with two common approaches to develop models, namely the
mathematical model and the empirical models. Each method has its own advantages and disadvantages, and
thus is suitable for different type of problems and environments. For modeling the electricity spot market,
we propose the empirical approach to develop the market model because the market is a complex system
featuring non linear characteristics. Mathematical models cannot capture the underpinning factors without
drawing many limiting assumptions. Often simplified model, such as using linearised constant for loss
factor at nodal points, is not desirable because the accuracy of the system suffers tremendously, not to
mention the impact of such model on pricing issue and other aspects in the market operation.

A context based fuzzy approach has been introduced in {32]). Unlike conventional fuzzy systems which
are based on fuzzy rules, the context based fuzzy system extracts implicit rules from the market data and
uses the empirical data to define the functional dependence between the input and the output. Each data set
serves as a rule that carry certain weight depending on the relevant context. In effect, we do not need to
compute large data sets because only selected data sets defined by the specified context are relevant for
processing. The input to the contextual fuzzy system consists of context variables denoted by Xy and input
variable U. The context variables serve as the means to filter the data sets according to pre-defined context
while the input variable serves as the independent variable to determine the output. Fig. 1 illustrates the

proposed context based fuzzy approach to determine bidding strategy of gencos in the deregulated

electricity market.
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In short, the proposed context based fuzzy system has been designed to extract meaningful relationship
between the input and the output variables using the empirical data set. The retrieval process involves
selection of data sets based on their degree of relevance to a given context. This context may be defined by

more than one context variable.

B. Context Membership Function

Context variables allow some leeway to describe uncertainty surrounding a particular variable by means
of context membership function. For example, in specifying the temperature of the day for the purpose of
predicting the load demand and formulating supply bid curve, “temperature is about 35 degree Celcius” is
more precise than “high”, “medium” or “low” temperatures. In some cases, the uncertainty can be
statistically estimated using normal (Gaussian) probability density functions that can be transformed
directly into Gaussian-type membership functions. The transformation can be done easily because both
functions employ the same parameters: mean value (center), and standard deviation (sigma). A Gaussian
type membership function can be expressed as a normalized normal probability density function: a
Gaussian type membership function always has a maximum value of one while a normal probability
density function always has a total area of one. So, in the above example, the temperature variation
expressed using the word “about” can be quantified into Gaussian type membership functions with peak
(mean) value of 35 degree Celcius.

In short, context variables assign values between zero and one to each element of empirical data based on
its adherence to a given context. These weights are set by membership functions of the context variables.
Data that adhere more closely to the given context will have more weights than those that are less relevant.
Fig. 2 illustrates the extraction of relevant data from the empirical data set based on a context membership
function Around-5. The empirical data consists of 100 data points that are uniformly distributed between 0
and 10. The context variable 4round-5 is defined by a Gaussian type membership function with a center of

5 and a sigma of 0.5. The weighted data, which is filtered by the context membership function 4round-5, is
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shown in Fig. 2(c).

In some cases, the object to be modeled could be time-varying. Therefore, a time-based context variable,
in which more recent data has more influence than older data, can be added to make the contextual fuzzy
system adaptive to a time-varying system. Addition of new data to the model is very straightforward since

it only requires re-filtering data sets by the context membership functions.

A. Aggregating Context Variables
Several context membership functions can be aggregated using fuzzy connectives. A range of fuzzy

connectives with different degree of compensation has been documented in [33]. The aggregation operators
include all triangular norms (AND operators) and triangular cononms (OR operators). The selection of
which aggregation operation to use depends on the context. A set of context variables can be combined into
a single context by an aggregating operator. For example, combining context variables X, Xy,..X,, defined
by AND method can be expressed as follows:

W=X,NnXxN.. NX

The AND method can be implemented by using triangular norms such as logical product, Hamacher
product, algebraic product, Einstein product, bounded product or drastic product. Each of these operators
has different degree of compensatory. It was found in [33] that the logical product has the greatest degree
of compensatory while the drastic product produces least degree of compensatory. The choice of fuzzy
operator is usually determined on a per-case basis. For example, if the algebraic product operator is used in

place of the AND method, then the weight assigned by the aggregate context w to the i data set is given as:

M
w, = [ [ (x,) fori=1,2,...N 1)

k=l

where 1, is the membership function of the context variable x,; x, is the i" data for the context

variable x,; M is the total number of context variables; and N is the total number of data sets. The result of
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the aggregation is normalized in order to have a normal fuzzy set.

It is noted that the function of context variables is to define fuzzy relations between the inputs and
outputs by weighting the data sets according to their adherences to a pre-defined context. In some cases,
however, the context can be too stringent; as a result, there are not enough activated data sets to define the
input-output relationship clearly. In order to activate more data sets, the context membership functions
should be relaxed. Intuitively, the context membership functions that have weaker correlations with the
output are relaxed more than those that have stronger correlations. This relaxation will allow for more data
sets to be activated at a given context so that the system becomes more robust.

A coefficient of correlation which measures a linear association between two variables can be used as an
indicator of the strength of the correlation between the context and the output variables. It is noted that the
function may not be necessarily linear, but it must be linear in the context variables. The standard

correlation coefficient between the context variable x; and the output variable y is given as:
N
Z(xi'.i =X )i - )
_ i=| —
n=— Tz — =1,2,. M 2)
Z(xk,l-fk) Z()’i -y)
i=) i-1

where x,;is the i element of the context variable x,; X, is the mean of the context variablex, ; y, is the

" element of the output variable; y is the mean of the output variable; NV is the total number of data sets;
and M is the number of context variables. It is suggested in [34] that, in order to have a stable correlation
coefficient (that is, a small standard error), the sample size must be greater than 30.

For the context variable x, , a coefficient of relaxation denoted by p, is defined as:

— T Vforf>] 3)

max{n,r,,.r,}

P =

where £ is the relaxation factor that modifies the relaxation coefficient at different strengths. It is noted

that the correlation coefficients are normalized so that the context membership function which has

strongest correlation is not relaxed (that is, o, =1).
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Given the relaxation coefficients, the context membership functions that are relaxed using a fuzzy hedge
More or Less and is defined as:
U = (Mg )™ 4)
where uy, is the relaxed membership function of the context variable x,; sz, is the membership
function of the context variable x, ; and p, is the relaxation coefficient for the context variable x, .

In some cases, there are functions that have a nonlinear relationship between the context variables and
the output. Since a correlation coefficient defines a linear association, it cannot be used directly to measure
data sets that have a non-linear relationship. Therefore, the calculation of the coefficient must be done
locally where the non-linear function is locally approximated by a linear function. It is done by calculating
the correlation coefficient only on data sets with weights above a given threshold value.

The local correlation coefficient 7, for the context variable x, is defined as:
Y —_ —
Z"i (x; = X)Wy =)
i=l

N N
\/zvi(xk,l -5 Z‘G(J’i -»?

=1,2,,.M (5)

n =

where

liw, 2a
v, =
0w, <«

and w, is the weight assigned to each data set by the aggregate context membership function, and a is the

minimum support level of the membership function in order to activate the data sets.

This is based on the assumption that, in the sub-space defined by the context membership functions, the

function is relatively smooth and can be approximated by a linear function.

B. Input Membership Function

The input Membership Functions (MF) can be of any type as long as they are symmetric and have a

single maximum point (for example, Gaussian or triangular). In general, however, Gaussian-type
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membership functions are preferred since they are more natural in handling empirical data.

The width of the membership function depends mainly on the smoothness of the function being
approximated and the density of data at a region of interest. For example, a wide membership function is
not suitable for approximating a function with high nonlinearity as it tends to over-generalize the function.
On the other hand, a narrow membership function may fail or over-fit the function in a region with a low
density. In general, for a region with a high density of data, the width of the input membership function
could be made relatively narrow. In addition, in a region with low density, the width must be sufficiently
wide to have an adequate coverage of the empirical data.

A method to determine the width of the input MF is to use a standard sigma-count, which measures the
coverage of a membership function. Hirota and Pedrycz [35] used the standard sigma count to serve as a
plausible measure of granularity that effectively summarized the number of elements embraced (at least
partially) by a given fuzzy set. For normal fuzzy sets, the standard sigma count over a continuous variable x
is defined as:

o(4) = [p,(x)dx )

where A is the fuzzy set defined over a universe of discourse X. Similarly, the sigma count of the input

membership function over a set of input data (discrete) is defined as:
N
aU)=2 uy () )
i=1

where U is the input fuzzy number, », is the i input data, and M is the number of rows.

In the proposed fuzzy model, however, the empirical data is filtered by the context membership function.
Therefore, the coverage of the input membership function must be measured only on the filtered data, not

on all data. Accordingly, the standard sigma count is modified and given as:

F@) =2 min{a, (). w,) @®
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where & is the modified sigma count, and w; is the weighting factor as defined by the context variable

W for the i data.

It is noted that the minimum operator (also known as a logical product operator) is used here since the
modified sigma count measures the absolute coverage of the empirical data by both the input and context
membership functions.

In order to have a balanced support on both wings, the modified sigma count is calculated at three

parts: 5(U), o(U, ) and G(U,.,,). Itis noted that U is the input fuzzy number; Uy and U, are the left

and right wings of the input fuzzy number (as shown in Fig. 3). The minimum support on each wing is set
to a certain value (for example, 10% of the total sigma count). This guarantees that the coverage of the
input membership function on the empirical data is not one-sided but supported on both sides. Additionally,
in order to handle input near boundaries where one-sided coverage is inevitable, an additional rule is added

to reduce the threshold values on the wing close to the boundaries so that the width will not be

unnecessarily wide.

In order to handle data with a non-uniform probability density function, an adaptive mechanism with a
set of rules is introduced to adjust the width of the input membership function. Initially, the width is set to
the minimum and then gradually expanded until the membership function has a sufficient coverage of the
empirical data. The process of adjusting the width of the input membership function is summarized in the
following steps:

L. Initialization: the width is initialized with a pre-defined minimum value.

2. Evaluation: the coverage of the input membership function is evaluated on three parts: total, left and
right, using the modified sigma count given in (8). Then they are checked against a set of threshold
values: minimum total sigma count, minimum sigma count on the left wing, and minimum sigma
count on the right wing.

3. Expansion: If any one of the three conditions is not satisfied and the current width is still less than the
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maximum value, then the width is expanded by a given percentage (for example, 10%) and Step 2 is
repeated.

To test the robustness of the proposed adaptive input membership function, a fuzzy model is built to
approximate a nonlinear function based on unevenly-spaced empirical data. The nonlinear function is given
as:

y=4sin (10In(u)) + 10 :uin {1,10] %

where the empirical data for u is a row vector of fifty logarithmically-equally-spaced points between
decades 10° and 10",

Fig. 4 shows the performance of fuzzy systems for three different kinds of input membership functions:
narrow, wide and adaptive. Each was evaluated based on the measured absolute errors (as shown in Fig.
4b), indicating how well they approximated the nonlinear function. The wide membership function
performed well only in the region with low frequency of changes, but over-generalized the function in the
region with high frequency of changes. On the contrary, the narrow membership function performed well
in the region with high density of empirical data but over-fitted the function in the region with low density
of empirical data. The adaptive membership function overcame these problems by properly adjusting its
width based on the level of density of the empirical data in the region of interest. As indicated by smaller
absolute errors, the proposed adaptive membership function outperformed both narrow and wide

membership functions.

C. Output Membership Function

The output of the contextual fuzzy system is a membership function constructed from the empirical data
» weighted by the context w and the input 2, (u) . In other words, the output membership function can be
viewed as a projection of the input membership function to a stochastic function represented by a set of

input-output data filtered by the context variable. This approach is similar to translating a fuzzy number



TFS-2006-727?
through a fuzzy relation using the compositional rule of inference [36].

If the output membership function is chosen to be of Gaussian-type, then the parameters can be estimated

using the weighted normal fitting. Consequently, the center is defined as:

) A= — (10)

and the sigma is given as:

(1n

sigma

where

z; = ¢ —norm{y, (u;), w;}

and w, is the weight for the i element assigned by the context; and w; is the i element of the input data,
and g, is the input membership function. The determination of t-norm to be employed in the operation is
determined on a per-case basis.

In those cases in which the resulting outputs are not symmetric, non-symmetric membership functions
such as triangular or two-sided Gaussian should be used in place of Gaussian-type membership functions.

However, this may involve more complex computations.

III. NUMERICAL EXAMPLE
In this section, a numerical example is presented to show the implementation of the proposed technique
to solve an optimization problem. The example also shows the effects of the relaxation of context
membership functions and the choice of fuzzy connectives on the fitness of the model. This section is
composed of two main parts: the definition of the mathematical model, and the development and

optimization of the contextual fuzzy model.
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A. Mathematical Model
The mathematical model of the nonlinear system is defined as:
y=-u’ + 10u + ulx; + 0.5%3) © uxpxzx; €[0,10] (12)

The system has three context variables x;, x; and x3 where x3 is an irrelevant context variable. It is
important to know that x; is more dominant than x, because the unit coefficient of x; is twice that of x;
while both have the same range. It is also noted that the function is linear in the context variables. This
means that, for a fixed input, the output is simply a linear combination of the context variables.

If x; and x; are assumed to be known, then the optimum value of # for maximizing the output y can be
derived from (12) and it is given as:

_ 10 X+ O,sz
2

u*

(13)

For example, if x; =4 and x,;= 2, then the optimum value of # = 7.5 which gives a maximum output (y =
56.25).

This model is actually a simplified version of a profit maximizing problem for generators participating in
competitive electricity markets. The input variable u corresponds to the output level of a generator; the
context variables x;, X; and x3 are the regional load demands; and the output y is the profit earned by the
generator.

A regional load demand usually has a daily profile that can be estimated accurately using a normal
probability density function based on its historical data. Individual generators offer their capacities in the
form of supply functions. At any given trading period, the intersection between the aggregate supply
function and the actual demand will determine the price of electricity for this trading period. An individual
generator can maximize its profit by strategically adjusting its supply function based on the load forecast
and the expected behaviors of its competitors [37]-[39].

A detailed description of the spot pricing mechanism in competitive electricity markets is described in













































