218/2002

RB/22/2002

Raport Badawczy Research Report

Stochastic Integrals with Respect to Hilbert Space Valued Semimartingales

P. Nowak

Instytut Badań Systemowych Polska Akademia Nauk

Systems Research Institute Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

- 01-447 Warszawa
- tel.: (+48) (22) 8373578
- fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę: Prof. dr hab. inż. Olgierd Hryniewicz

Warszawa 2002

Stochastic Integrals with Respect to Hilbert Space Valued Semimartingales

Piotr Nowak

Systems Research Institute, Polish Academy of Sciences ul. Newelska 6, 01-447 Warsaw, Poland. e-mail: pnowak@ibspan.waw.pl

1 Basic definitions and notations

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in T}, P)$ be a probability space with filtration. We assume that $T = [0, t_{\infty}], t_{\infty} < \infty, \mathcal{F}_0$ contains all sets of measure P zero and $\mathcal{F}_t = \bigcap_{s>t} \mathcal{F}_s$ for each $t \in T$. Let **R** be the space of the real numbers and let **H** be a real separable Hilbert space with the norm $\|.\|_{\mathbf{H}}$.

Definition 1 An H-valued stochastic process X is a semimartingale if it admits a representation as a sum X = M + Y, where M is a locally square integrable martingale and Y is a cadlag process of bounded variation.

Definition 2 An H-valued stochastic process $(X_t)_{t\in T}$ is said to be quasi-left continuous (see [1]), if for each $\varepsilon > 0$ there exists $\delta > 0$ such that for all stopping times $\tau_1, \tau_2 : \Omega \to T \quad P(|\tau_1 - \tau_2| > \delta) < \delta \Rightarrow P(||X_{\tau_1} - X_{\tau_2}||_{\mathbf{H}} > \varepsilon) < \varepsilon$.

We define a truncation function $\theta : \mathbf{H} \to \mathbf{H}$ by the formula:

$$\theta(h) = \begin{cases} \frac{h}{\|h\|_{\mathbf{H}}} & \text{for } \|h\|_{\mathbf{H}} > 1\\ h & \text{for } \|h\|_{\mathbf{H}} \le 1 \end{cases}.$$

We denote by $\mathbf{L}_{0}^{\mathbf{H}} = \mathbf{L}_{0}^{\mathbf{H}}(\Omega, \mathcal{F}, P)$ the space of **H**-valued Bochner measurable random variables with the *F*-norm $\|Y\|_{0}^{\mathbf{H}} = E\theta(\|Y\|_{\mathbf{H}})$. If $\mathbf{H} = \mathbf{R}$, we denote $\mathbf{L}_{0}^{\mathbf{H}}$ by \mathbf{L}_{0} .

Definition 3 We shall say that an H-valued process X satisfies condition (b), if for arbitrary $\varepsilon > 0$, there exists s > 0, such that

$$P\left(\sum_{k=1}^{n}\left\|E\left(\theta\left(X_{t_{k}}-X_{t_{k-1}}\right)|\mathcal{F}_{t_{k-1}}\right)\right\|_{\mathbf{H}}>s\right)\leq\varepsilon,$$

for every finite sequence $\pi = \{0 = t_0 < t_1 < \dots < t_n = t_\infty\}$.

Let \mathcal{L} be the space of bounded linear operators from **H** to **H** with the norm $\| \|_{1}$, \mathcal{HS} be the space of Hilbert-Schmidt operators from **H** to **H** with the norm $\| \|_{2}$ and \mathcal{N} be the space of nuclear operators from **H** to **H** with the norm $\| \|_{1}$.

For a function $f : [0, t_{\infty}] \to \mathbf{B} ((\mathbf{B}, \|.\|_{\mathbf{B}})$ is a Banach space) of finite variation Var(f), the symbol $\|df_s\|_{\mathbf{B}}$ denotes the measure on $T = [0, t_{\infty}]$ described by the formula $\|df_s\|_{\mathbf{B}} ([0, t]) = Var(f \cdot I_{[0, t]})$ for $t \leq t_{\infty}$.

If $(\mathbf{B}_1, \|.\|_{\mathbf{B}_1})$ and $(\mathbf{B}_2, \|.\|_{\mathbf{B}_2})$ are Banach spaces, then (\Re) denotes the class of functions $f : \mathbf{B}_1 \to \mathbf{B}_2$ such that

- 1. $\exists_{c>0} \forall_{x \in \mathbf{B}_1} \| f(x) \|_{\mathbf{B}_2} \le c;$
- 2. $\exists_{r>0} \forall_{x:||x||_{\mathbf{B}_{1}} < r} f(x) = 0;$
- 3. $\exists_{\kappa>0} \|f(x) f(y)\|_{\mathbf{B}_2} \le \kappa \|\theta(x-y)\|_{\mathbf{B}_1}, x, y \in \mathbf{B}_1.$

We denote by \mathcal{R}_0 the following family of predictable rectangles:

$$\mathcal{R}_0 = \{ (s,t] \times A : s < t, s, t \in T \text{ and } A \in \mathcal{F}_s \}.$$

2 Definition of an abstract integral

In this Section we repeat the relevant material concerning general theory of integration from Kwapien's lectures.

Let Z be an arbitrary set, \mathcal{A}_0 be an algebra of its subsets, F be a complete linear metric space with metric p and $m: (Z, \mathcal{A}_0) \to (\mathbf{F}, p)$ be an additive set function.

We denote by $S^{\mathbf{R}}$ a linear space of the form $f(z) = \sum_{i=1}^{n} \alpha_i I_{A_i}(z)$, where $\alpha_i \in \mathbf{R}$ and $A_1, A_2, ..., A_n \in \mathcal{A}_0$. Let $S_1^{\mathbf{R}} = \{f \in S^{\mathbf{R}} : \|f(z)\| \le 1 \ \forall z \in Z\}$. For every $f \in S^{\mathbf{R}}$ we define

$$\int_{Z} f(z) m(dz) = \sum_{i=1}^{n} \alpha_{i} m(A_{i})$$

and $\rho(f) = \sup_{v \in S^{\mathbf{R}}} p\left(\int_{Z} v \circ f dm, 0\right)$. We also define, for arbitrary $A \subset Z$,

$$m^{*}(A) = \inf_{A \subset \bigcup_{i=1}^{\infty} C_{i}, C_{i} \in \mathcal{A}_{0}} \sup_{B \subset \bigcup_{i=1}^{\infty} C_{i}, B \in \mathcal{A}_{0}} p(m(B), 0).$$

In the remainder of this section we assume that the following condition holds:

$$(C^{*\mathbf{R}})$$
 If $\{f_n\}_{n=1}^{\infty} \subset S_1^{\mathbf{R}}$ and $m^*(\lim_{n\to\infty} f_n \neq 0) = 0$, then $\rho(f_n) \xrightarrow[n\to\infty]{} 0$.

Definition 4 We shall say that a real measure μ on \mathcal{A} is called a control measure of m if $\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{C\in\mathcal{A}_0} \mu(C) < \delta \Rightarrow m^*(C) < \varepsilon$.

Definition 5 We shall say that a function $f : \mathbb{Z} \to \mathbb{R}$ is m-integrable, if there exists $\{f_n\}_{n=1}^{\infty} \subset S$ such that

- (i) $m^*\left(\left\{z \in Z : f_n(z) \xrightarrow[n \to \infty]{n \to \infty} f(z)\right\}\right) = 0$
- (ii) $\rho(f_n f_m) \to 0 \text{ for } m, n \to \infty.$

Let us assume that f is *m*-integrable. Since (F, p) is a complete space and

$$p(\int_{\mathbf{Z}} f_n dm, \int_{\mathbf{Z}} f_m dm) \le \rho(f_n - f_m) \to 0 \text{ for } m, n \to \infty,$$

there exists $I(f) \in F$ such that $\int_{\mathbb{Z}} f_n dm \xrightarrow[n \to \infty]{} I(f)$ in F. We define

$$\int_{\mathbf{Z}} f(z) m(dz) := I(f).$$

From $(C^{*\mathbf{R}})$ it follows that the integral does not depend on the choice of $\{f_n\}_{n=1}^{\infty} \subset S^{\mathbf{R}}$.

3 Integration with respect to real valued semimartingales

In this Section we recall the description of the space of real predictable processes, which are integrable with respect to a real quasi-left continuous semimartingale. This description was made by Kwapień and Woyczyński in [2] and [3].

We follow the notation used in Section 2. Let $Z = T \times \Omega$, $\mathcal{A}_0 = \mathcal{R}_0$, $F = L_0$, $p(F, G) = ||G - F||_0$ and let $m : \mathcal{R}_0 \to L_0$ be defined by the formula

$$m\left((s,t]\times A\right) = \left(X_t - X_s\right)I_A, \ s,t \in T, \ A \in \mathcal{F}_s.$$

Let $(\pi_n)_{n=1}^{\infty}$ be a nested normal sequence of partitions of T of the form

$$\pi_n = \left\{ 0 = t_0^n < t_1^n < \dots < t_{k_n}^n = t_\infty \right\},\,$$

i.e., $\forall_{m \geq n} \pi_n \subset \pi_m$ and $\lim_{n \to \infty} \max_{i \in \{1, 2, \dots, k_n\}} \left| t_i^n - t_{i-1}^n \right| = 0$. Let $\mathcal{F}_k^n = \mathcal{F}_{t_k^n}$ and $d_k^n = X_{t_k^n} - X_{t_{k-1}^n}$ for $k = 1, 2, \dots, k_n$.

Let \hat{X} be a quasi-left continuous semimartingale. Equivalently, X satisfies condition (b) (see [3], Theorem 9.5.1). Then Jacod-Grigelionis characteristics are defined as follows.

The first characteristics is a continuous process $(B_t)_{t\in T}$ of bounded variation, defined as the uniform limit in probability of the sequence of processes

$$B_{n}(t) = \sum_{k:t_{k}^{n} \leq t} E\left(\theta\left(d_{k}^{n}\right) | \mathcal{F}_{k-1}^{n}\right).$$

The second characteristics is a random measure μ on $\mathcal{B}(T \times \mathbb{R} \setminus \{0\})$ such that for each $f : \mathbb{R} \to \mathbb{R}, f \in (\mathfrak{R})$,

$$\lim_{n \to \infty} \sum_{k: t_k^n \le t} E\left(f\left(d_k^n\right) | \mathcal{F}_{k-1}^n\right)(\omega) = \int_{\mathbf{R} \setminus \{0\}} \int_0^t f\left(x\right) \mu\left(ds, dx, \omega\right) \quad \text{in } P.$$

The third characteristics is the nondecreasing continuous process $(C_t)_{t\in T}$ defined by the formula $C(t) = W(t) - \int_{\mathbf{R}\setminus\{0\}} \int_0^t \theta^2(x) \, \mu(ds, dx, \omega)$, where W(t) is the uniform limit in P of the sequence $W_n(t) = \sum_{k:t_k^n \leq t} E\left(\theta^2(d_k^n) \mid \mathcal{F}_{k-1}^n\right)$. The existence of the above limits follows from [3], Theorem 9.3.1. The space of predictable processes, which are integrable with respect to X, is analytically described by using (B, C, μ) .

Let us define a random measure ν on T by the formula

$$\nu\left(ds,\omega\right) = \left|dB_{s}\right| + \left|dC_{s}\right| + \int_{\mathbf{R}} \theta^{2}\left(\left|x\right|\right) \mu\left(ds, dx, \omega\right),$$

where $|dB_s|$ and $|dC_s|$ are measures defined according to the definition of $||df_s||_{\mathbf{B}}$ in Section 1. We also define predictable processes $b(s,\omega)$, $c(s,\omega)$ and a predictable random measure $\hat{\nu}(s, dx, \omega)$ such that $dB_s = b(s)\nu(ds)$, $dC_s = c(s)\nu(ds)$ and $\mu(ds, dx) = \hat{\nu}(s, dx)\nu(ds)$. Let ν be the measure on $\mathcal{B}(T) \otimes \mathcal{F}$ defined by the formula $\nu(dt, d\omega) = \nu(dt, \omega) P(d\omega)$. Moreover,

let for $s \in T$ and $x \in \mathbf{R}$,

$$\begin{split} k\left(s,x,\omega\right) &= \int_{\mathbf{R}} \theta\left(|x\left(u\right)|\right)^{2} \hat{\nu}\left(s,du,\omega\right) + c\left(s,\omega\right)x^{2},\\ \mathbf{l}\left(s,x,\omega\right) &= \int_{\mathbf{R}} \left(\theta\left(xu\right) - x\theta\left(u\right)\right)\hat{\nu}\left(s,du,\omega\right) + b\left(s,\omega\right)x,\\ l\left(s,x,\omega\right) &= \sup_{|y| < |x|} \mathbf{l}\left(s,y,\omega\right) \text{ and } \phi\left(s,x,\omega\right) = k\left(s,x,\omega\right) + l\left(s,x,\omega\right). \end{split}$$

For each process $F \in S^{\mathbf{R}}$, we define the following random variable

$$\Phi_X(F) = \int_T \phi(s, F(s, \omega), \omega) \nu(ds, \omega).$$

We also introduce the space $L_{rnd}^{\varphi}(d\nu)$ of ν a.e.-equivalence classes of real predictable processes F such that $\Phi_X(F) < \infty$ a.s. with modular $\psi(F) = \|\Phi_X(F)\|_0$. $L_{rnd}^{\varphi}(d\nu)$ is a complete modular space.

We repeat the main theorem ([3], Theorem 9.4.1) describing the space of predictable processes.

Theorem 6 Let X be a quasi-left continuous process. Then the additive set function m generated by X on \mathcal{R}_0 extends to a stochastic measure on the predictable σ -field \mathcal{P} if and only if it satisfies condition (b). In this case v is a control measure of m and a predictable process F is integrable with respect to X if and only if $F \in L^{\varphi}_{rnd}(d\nu)$. Moreover, for a predictable step process F, the modular $\rho(F)$ is small if and only if $\psi(F)$ is small.

4 Integration with respect to Levy processes

At the beginning we recall the notion of Levy process.

Definition 7 We call an **R**-valued cadlag stochastic process $(X_t)_{t \in T}$ a Levy process if

- a) $X_0 = 0 \ a.s.;$
- b) for each $n \ge 1$ and each collection $t_0, t_1, ...t_n$, $0 \le t_0 < t_1 < ... < t_n$, the variables $X_{t_0}, X_{t_1} X_{t_0}, ..., X_{t_n} X_{t_{n-1}}$ are independent;

c) for all $s \ge 0$ and $t \ge 0$,

$$X_{t+s} - X_s \stackrel{a}{=} X_t - X_0;$$

Definition 8 for all $t \ge 0$ and $\varepsilon > 0$,

$$\lim_{s \to t} P\left(|X_s - X_t| > \varepsilon \right) = 0.$$

If X is a Levy process, then there exist constants b, c > 0 and a positive measure $\bar{\nu}(dx)$ on $\mathcal{B}(\mathbf{R})$ such that $B_t = bt$, $C_t = ct$ and $\mu(ds, dx) = \bar{\nu}(dx) ds$ with $a = \int_{\mathbf{R}} \theta^2(x) \bar{\nu}(dx) < \infty$.

Definition 9 Let X be a Levy process. Let $h : \mathbf{R} \to \mathbf{R}$ be an arbitrary bounded function with bounded support satisfying the equality h(x) = x in a neighborhood of 0. The notation $X^{\sim}(b, c, \overline{\nu})_h$ means that

$$Ee^{iuX_t} = \exp\left[\left(ibu - \frac{cu^2}{2} + \int_{R\setminus\{0\}} \left(e^{ixu} - 1 - iuh(x)\right)\bar{\nu}(dx)\right)t\right]$$

The characteristics $(b, c, \bar{\nu})_h$ are called the Levy-Khinchin characteristics. We will use them to describe Levy processes. Let us mention the following remark (Remark 8.2.2) from [3]:

Remark 10 If X is a stochastically continuos process with independent increments, then the Levy-Khinchin formula holds:

$$Ee^{iuX_t} = \exp\left(iB_t u - \frac{C_t u^2}{2} + \int_{R\setminus\{0\}} \int_0^t \left(e^{ixu} - 1 - iu\theta\left(x\right)\right) \mu\left(ds, dx\right)\right).$$
(1)

Taking into account the above considerations, the formula 1 implies

$$Ee^{iuX_t} = \exp\left[\left(ibu - \frac{cu^2}{2} + \int_{R\setminus\{0\}} \left(e^{ixu} - 1 - iu\theta\left(x\right)\right)\bar{\nu}\left(dx\right)\right)t\right], \quad (2)$$

i.e., $X^{\sim}(b,c,\bar{\nu})_{\theta}$.

Therefore, $\nu(ds) = \kappa ds$ and $\hat{\nu}(s, dx) = \frac{1}{\kappa} \bar{\nu}(dx)$ for $\kappa = |b| + c + a$. Obviously, $b(s) = \frac{b}{\kappa}$, $c(s) = \frac{c}{\kappa}$,

$$k(s,x) = \bar{k}(x) = \frac{1}{\kappa} \left(\int_{\mathbf{R}} \theta^2 (xu) \bar{\nu} (du) + cx^2 \right) \text{ and}$$
$$l(s,x) = \bar{l}(x) = \frac{1}{\kappa} \sup_{|y| < |x|} \left(\int_{\mathbf{R}} \left(\theta (yu) - y\theta (u) \right) \bar{\nu} (du) + by \right)$$

and finally

$$\Phi\left(F\left(s,\omega\right)\right) = \int_{T} \left[\int_{\mathbf{R}} \theta^{2}\left(F\left(s,\omega\right)u\right)\bar{\nu}\left(du\right) + cF^{2}\left(s,\omega\right) + \sup_{|y| < |F(s,\omega)|} \left(\int_{\mathbf{R}} \left(\theta\left(yu\right) - y\theta\left(u\right)\right)\bar{\nu}\left(du\right) + by\right)\right] ds.$$

As an example we describe a space of X-integrable processes for X being α -stable Levy process ($\alpha \in (1, 2]$).

Definition 11 We call a Levy process $(X_t)_{t\in T}$ an α -stable Levy process ($\alpha \in (0,2]$) if for each a > 0 there exists $d \in \mathbf{R}$ (dependent on a in general) such that $\{X_{at}, t \in T\} \stackrel{Law}{=} \left\{ a^{\frac{1}{\alpha}} X_t + dt, t \in T \right\}$.

In the remainder of this section we denote the function $xI_{\{|x|\leq 1\}}$ by h(x). Let $\alpha \in (1, 2]$ and let X be an α -stable Levy process with the Levy measure

$$\bar{\nu}\left(dx\right) = \left(\frac{r_1 I_{\{x<0\}} + r_2 I_{\{x>0\}}}{|x|^{\alpha+1}}\right) dx, \ r_1, r_2 \ge 0.$$

If $\alpha \in (1, 2)$ then $X^{\sim} (b_x, 0, \overline{\nu})_x$. If $\alpha = 2$ then $X^{\sim} (b_h, c, 0)_h, c \neq 0$.

Let us describe the space of predictable, X-integrable processes.

$$\bar{k}(x) = \begin{cases} \frac{1}{\kappa} \int_{\mathbf{R}} \theta^2(xu) \,\bar{\nu}(du) = \frac{2(r_1+r_2)}{\kappa\alpha(2-\alpha)} |x|^{\alpha} & \text{for } \alpha \in (0,2) \\ \left(\frac{2(r_1+r_2)}{\kappa\alpha(2-\alpha)} + \frac{c}{\kappa}\right) |x|^2 & \text{for } \alpha = 2 \end{cases}$$

and, for |y| > 1,

$$\frac{1}{\kappa} \left(\int_{\mathbf{R}} \left(\theta \left(yu \right) - y\theta \left(u \right) \right) \bar{\nu} \left(du \right) + by \right) \\
= \frac{\left(r_2 - r_1 \right)}{\kappa \alpha \left(1 - \alpha \right)} \left(\left| y \right|^{\alpha} - \left| y \right| \right) \operatorname{sgn} \left(y \right) + \frac{by}{\kappa} \quad \text{for } \alpha \in (0, 2] \setminus \{ 1 \}.$$

1. Let $\alpha \in (1, 2)$. Then $b_x = b - \frac{r_2 - r_1}{\alpha(1 - \alpha)}$. Since $r_1 > 0$ or $r_2 > 0$,

$$L_{rnd}^{\varphi}\left(d\nu\right) = \left\{ \mathcal{P}\text{-measurable } F: \int_{T} |F\left(s,\omega\right)|^{\alpha} ds < \infty \ a.s. \right\}.$$

2. Let $\alpha = 2$. Then $b_h = b + r_2 - r_1$.

$$L_{rnd}^{\varphi}\left(d\nu\right) = \left\{ \begin{array}{l} \mathcal{P}\text{-measurable } F \colon \int_{T} |F\left(s,\omega\right)|^{2} ds < \infty \ a.s. \right\}.$$

5 Integration with respect to Hilbert space valued semimartingales

Let $(X_t)_{t\in T}$ be a quasi-left continuous semimartingale with values in **H**. Our main goal in this section is recall the characterization of the space of \mathcal{L} -valued predictable processes, which are integrable with respect to X. This characterization was made in [5], and therefore we repeat the relevant material from this paper. Some theorems and definitions from [4] and [5] had to be shorten to adopt them to this presentation.

We follow the notation used in Section 2. Let $Z = T \times \Omega$, $\mathcal{A}_0 = \mathcal{R}_0$, $F = \mathbf{L}_0^{\mathbf{H}}$, $p(F,G) = ||G - F||_0^{\mathbf{H}}$ and let $m : \mathcal{R}_0 \to L_0$ be defined by the formula $m((s,t] \times A) = (X_t - X_s) I_A$, $s, t \in T$, $A \in \mathcal{F}_s$. We replace the spaces $S^{\mathbf{R}}$ and $S_1^{\mathbf{R}}$ by $S^{\mathcal{L}}$ and $S_1^{\mathcal{L}}$, where each $f \in S^{\mathcal{L}}$ has the form $f(z) = \sum_{i=1}^n \alpha_i I_{A_i}(z)$ with $\alpha_i \in \mathcal{L}$ and $A_i \in \mathcal{R}_0$. We also replace the condition $(C^{*\mathbf{R}})$ by $(C^{*\mathcal{L}})$ in the obvious way. Then, for every $f \in S^{\mathcal{L}}$, we define $\int_Z f(z) m(dz) = \sum_{i=1}^n \alpha_i(m(A_i)).$

Let $(\pi_n)_{n=1}^{\infty}$ be a nested normal sequence of partitions of T defined in Section 3. To define Jacod-Grigelionis characteristics we introduce the following

auxiliary processes.

$$B_{n}(t) = \sum_{k:t_{k}^{n} \leq t} E\left(\theta\left(d_{k}^{n}\right) | \mathcal{F}_{k-1}^{n}\right),$$

$$W_{n}(t) = \sum_{k:t_{k}^{n} \leq t} E\left(\left\|\theta\left(d_{k}^{n}\right)\right\|_{\mathbf{H}}^{2} | \mathcal{F}_{k-1}^{n}\right),$$

$$V_{n}(t) = \sum_{k:t_{k}^{n} \leq t} E\left(\theta\left(d_{k}^{n}\right) \otimes \theta\left(d_{k}^{n}\right) | \mathcal{F}_{k-1}^{n}\right),$$

$$P_{n}(t) = P_{n}^{f}(t) = \sum_{k:t_{k}^{n} \leq t} E\left(f\left(d_{k}^{n}\right) | \mathcal{F}_{k-1}^{n}\right), \text{ for a fixed } f: \mathbf{H} \to \mathcal{HS}, f \in (\Re).$$

The next theorem, being a combination of two theorems from [4], is extremely useful in the proof of the existence of Jacod-Grigelionis characteristics.

Theorem 12 If X an H-valued quasi-left continuous semimartingale, then, for each $t \in T$, the limits in probability

$$B(t) = \lim_{n \to \infty} B_n(t),$$

$$W(t) = \lim_{n \to \infty} W_n(t),$$

$$V(t) = \lim_{n \to \infty} V_n(t),$$

and

$$P\left(t\right) = \lim_{n \to \infty} P_n\left(t\right)$$

exist; they are continuous processes, and the convergence is uniform on T.

We are now in a position to define the characteristics.

Definition 13 The first characteristic of X is the process $(B(t))_{t\in T}$. The second characteristic is the measure μ defined on $\mathcal{B}(T \times (\mathbf{H} \setminus \{0\}))$ by condition: $\lim_{n\to\infty} \sum_{k:t_k^n \leq t} E\left(f\left(d_k^n\right) | \mathcal{F}_{k-1}^n\right)(\omega) = \int_{\mathbf{H} \setminus \{0\}} \int_0^t f(x) \, \mu\left(ds, dx, \omega\right)$, in probability, for each function $f: \mathbf{H} \to \mathcal{HS}$ belonging to (\mathfrak{R}) . The third characteristic of X is the process $(C(t))_{t\in T}$ defined by formula

$$C(t) = V(t) - \int_{\mathbf{H} \setminus \{0\}} \int_{0}^{t} \theta(x) \otimes \theta(x) \mu(ds, dx, \omega).$$

The characteristics B and C are continuous processes of bounded variation. Moreover, $\int_{\mathbf{H}} \int_{0}^{t} \|\theta(x)\|_{\mathbf{H}\setminus\{0\}}^{2} \mu(ds, dx, \omega) < \infty$ a.s. We define a random measure ν on $\mathcal{B}(T)$ as follows.

$$\nu\left(ds,\omega\right) = \left\|dB_{s}\right\|_{\mathbf{H}} + \left\|dC_{s}\right\|_{1} + \int_{\mathbf{H}} \theta^{2}\left(\left\|x\right\|_{\mathbf{H}}\right) \mu\left(ds,dx,\omega\right),$$

where $\|dB_s\|_{\mathbf{H}}$ and $\|dC_s\|_1$ are measures defined in Section 2 for $\mathbf{B} = \mathbf{H}$ and $\mathbf{B} = \mathcal{N}$ respectively. We also define predictable processes $b(s, \omega)$ with values in \mathbf{H} , $c(s, \omega)$ with values in \mathcal{N} , and a predictable random measure $\hat{\nu}(s, dx, \omega)$ such that $dB_s = b(s)\nu(ds)$, $dC_s = c(s)\nu(ds)$ and $\mu(ds, dx) =$ $\hat{\nu}(s, dx)\nu(ds)$. Their existence is a consequence of Radon-Nikodym property of \mathbf{H} and \mathcal{N} . Let v be the measure on $\mathcal{B}(T) \otimes \mathcal{F}$ defined by the formula $\nu(dt, d\omega) = \nu(dt, \omega) P(d\omega)$. Moreover, let for $s \in T$ and $x \in \mathcal{L}$,

$$\begin{aligned} k\left(s, x, \omega\right) &= \int_{\mathbf{H}} \theta\left(\left\|x\left(u\right)\right\|_{\mathbf{H}}\right)^{2} \hat{\nu}\left(s, du, \omega\right) + tr\left(xc\left(s, \omega\right) x^{*}\right), \\ \mathbf{H}\left(s, x, \omega\right) &= \int_{\mathbf{H}} \left(\theta\left(xu\right) - x\theta\left(u\right)\right) \hat{\nu}\left(s, du, \omega\right) + x\left(b\left(s, \omega\right)\right), \\ l\left(s, x, \omega\right) &= \sup_{\substack{r \in \mathcal{L}^{1} \\ r \in \mathcal{L}^{1}}} \left\|\mathbf{H}\left(s, rx, \omega\right)\right\|_{\mathbf{H}}. \end{aligned}$$

Additionally, let $\phi'(s, x, \omega) = k(s, x, \omega) + l(s, x, \omega)$ and $\phi''(s, x, \omega) = \theta(||x||_{\mathbf{H}}^2)$. For a process $F \in S^{\mathcal{L}}$, we define the following random variables

$$\Phi'_{X}(F) = \int_{T} \phi'(s, F(s, \omega), \omega) \nu(ds, \omega),$$

$$\Phi''_{X}(F) = \int_{T} \phi''(s, F(s, \omega), \omega) \nu(dt, \omega) \text{ and }$$

$$\Phi_{X}(F) = \Phi'_{X}(F) + \Phi''_{X}(F).$$

We introduce the space Ψ of v a.e.-equivalence classes of \mathcal{L} -valued predictable processes F such that $\Phi_X(F) < \infty$ a.s. with modular $\psi(F) = \|\Phi_X(F)\|_0$.

We formulate the main result from [5], which describes the space of X-integrable processes.

Theorem 14 Let $(X_t)_{t\in T}$ be a quasi-left continuous semimartingale with values in a separable Hilbert space **H**. Then *m* extends to a measure on \mathcal{P} and v is a control measure of *m*. Moreover, a predictable \mathcal{L} -valued process *F* is integrable with respect to *X* if and only if *F* belongs to Ψ .

References

- J. Jacod, A.N. Shiryaev, *Limit theorems for stochastic processes*, Grundlehren der Mathematischen Wissenschaften 288, Springer-Verlag, Berlin-New York, 1987.
- [2] S. Kwapień, W.A. Woyczyński, Semimartingale integrals via decoupling inequalities and tangent processes, Probab. Math. Statist. <u>12(2)</u> (1991), 165–200 (1992).
- [3] S. Kwapień, W.A. Woyczyński, Random series and stochastic integrals: single and multiple, Probability and its Applications, Birkhauser Boston, Inc., Boston, MA, 1992.
- [4] P. Nowak, On Jacod-Grigelionis Charcteristics For Hilbert Space Valued Semimartingales, Stochastic Analysis And Applications. <u>20(5)</u> (2002), 963–998.
- [5] P. Nowak, Integration With Respect To Hilbert Space-Valued Semimartingales Via Jacod-Grigelionis Characteristics, accepted for publication in Stochastic Analysis And Applications.





