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1 Basic definitions and notations 

Let (0, :F, (:Ft\ET, P) be a probability space with filtration. We assume that 

T = [O, too], too < oo, :Fo contains all sets of measure P zero and Ft = n:F, 
s>t 

for each t ET. Let R be the space of the real numbers and let H be a real 
separable Hilbert space with the norm 11 -IIH• 

Definition 1 An H-valued stochastic process X is a semimartingale if it 
admits a representation as a sum X = M + Y, where M is a locally square 
integrable martingale and Y is a cadlag process of bounded variation. 

Definition 2 An H-valued stochastic process (Xt)tET is said to be quasi-left 
continuous (see {1]}, if for each€ > 0 there exists 8 > 0 such that for all stop
ping times Ti, T2 : 0-> T P (Jr1 - T2I > 8) < 8 • P (IIXr, - X,..JIH > c) < 
€ . 

We define a truncation function 0 : H -> H by the formula: 

0 (h) = { llht for llhllH > 1 
h for llhllH ~ 1 

We denote by Llf = Llf (0, :F, P) the space of H-valued Bochner measurable 
random variables with the F-norm IIYJI: = E0 (IIYIIH). IfH = R, we denote 
L"fi1 by Lo. 

Definition 3 We shall say that an H-valued process X satisfies condition 
(ii), if for arbitrary€> 0, there exists s > 0, such that 

for evenJ finite sequence 1r = {O = to < t1 < ... < tn = t00}. 

Let £ be the space of bounded linear operators from H to H with the 
norm 1111, 1-tS be the space of Hilbert-Schmidt operators from H to H with 
the norm II 11 2 and N be the space of nuclear operators from H to H with 
the norm 1111 1 -
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For a function f : (0, t00] --> B ((B, 11 -IIB) is a Banach space) of finite 
variation Var(!), the symbol lld/.llB denotes the measure on T = [0, t00 ] 

described by the formula lld/,1!8 ((0, t]) = Var (f · I10,1J) fort :'::'. t00 • 

If (B1, 11-lls.) and (B2, ll-1! 82 ) are Banach spaces, then UR) denotes the 
class of functions f : B 1 --> B 2 such that 

1. 3c>O 'v':reB1 II/ (x)lls2 :'::'. c; 

2. 3r>O 'v':r:11:rlle, <r f (x) = O; 

3. 3,.>o II/ (x) - f (y)ll82 :'::'. "110 (x - y)l! 8 ,, x, YE B1 . 

We denote by Ro the following family of predictable rectangles: 

Ro= {(s, t] x A : s < t, s, t ET and A E .r,}. 

2 Definition of an abstract integral 

In this Section we repeat the relevant material concerning general theory of 
integration from Kwapien's lectures. 

Let Z be an arbitrary set, Ao be an algebraof its subsets, F be a 
complete linear metric space with metric p and m: (Z,Ao)--> (F,p) be an 
additive set function. 

We denote by SR a linear space of the form f (z) = E7=1 a;IA, (z ), where 
Ci; E Rand A1, A2, ... , An E Ao- Let sr = {f E SR: II/ (z)II :'::'. 1 'v'z E Z} . 
For every f E SR we define 

1 f (z) m (dz)= :t a;m (A;) 
z i=I 

and p(f) = SIIPvesrP Uz VO fdm, o) . We also define, for arbitrary AC z, 

m*(A) = inf sup p(m(B),0) . 
AcLJ;':1c,, c,eAo ncLJ;':1c,, BeAo 

In the remainder of this section we assume that the following condition holds: 
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Definition 4 We shall say that a real measure µ on A is called a control 
measure of m if \:/0 0 36>0 \:/cEAi µ (C) < 6 => m• (C) < €. 

Definition 5 We shall say that a function f : Z -> R is m-integrable, if 
there exists Un} ;:'=1 C S such that 

(i) m•({zEZ:fn(z)n~0 J(z)}) =0 

(ii) P Un - f m) -> 0 form, n-> oo. 

Let us assume that / is m-integrable. Since (F,p) is a complete space 
and 

p(fz fndm, lz !mdm) ~ p Un - fm) -> 0 for m, n-> oo, 

there exists I(!) E F such that fz fndm -> I(!) in F. We define 
n-oo 

1 f (z) m (dz) :=I(!). 

From ( c•R) it follows that the integral does not depend on the choice of 
{/n};:'=l CSR. 

3 Integration with respect to real valued semi
martingales 

In this Section we recall the description of the space of real predictable pro
cesses, which are integrable with respect to a real quasi-left continuos semi
martingale. This description was made by Kwapien and Woyczynski in [2] 
and [3] . 

We follow the notation used in Section 2. Let Z = T x n, Ao = Ro, 
F = Lo, p (F, G) = IIG - Fll0 and let m: Ro-> Lo be defined by the formula 

m ((s, t] x A)= (X1 - X,) h s, t ET, A E :F,. 

Let ( -rr n);:'=1 be a nested normal sequence of partitions of T of the form 
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i.e., v'm2'.n 7rn C 7rm and Jim maxiE{l,2, .. ,,kn} jt;' - tf_il = 0. Let Ff: = Ft;; and 

ct;:= Xt;; - Xt;;_, for k :1'7 2, .. . , kn . 
Let X be a quasi-left continuous semimartingale. Equivalently, X satisfies 

condition (11) (see [3], Theorem 9.5.1). Then Jacod-Grigelionis characteristics 
are defined as follows. 
The first characteristics is a continuous process (Bi)tET of bounded variation, 
defined as the uniform limit in probability of the sequence of processes 

Bn (t) = L E (0 (d';:) IF/:-1) • 
k:tt:9 

The second characteristics is a random measureµ on B(T x R\ {O}) such 
that for each f : R----> R, / E (~), 

Jim L E (f (ct;:) IF!:-1) (w) = r 1t f (x) µ (ds, dx, w) in P. 
n-oo k:tj;St jR\{O} 0 

The third characteristics is the nondecreasing continuous process ( Ct\ET de
fined by the formula C (t) = W (t)- JR\{O} J; 02 (x) µ (ds, dx, w), where W (t) 
is the uniform limit in P of the sequence Wn(t) = 'Ek:t;;siE (02 (d';:) IFf:_1) . 

The existence of the above limits follows from [3], Theorem 9.3.1. The space 
of predictable processes, which are integrable with respect to X, is analyti
cally described by using (B, C, µ). 

Let us define a random measure v on T by the formula 

v (ds, w) = ldB,I + ldC,I + L 02 (Ix!)µ (ds, dx, w), 

where ldB,I and ldC,I are measures defined according to the definition of 
lldf,ll 8 in Section 1. We also define predictable processes b(s,w), c(s,w) 
and a predictable random measure ii ( s, dx, w) such that dB• = b ( s) v ( ds), 
dC, = c(s)v(ds) and µ(ds,dx) = ii(s,dx)v(ds) . Let v be the measure 
on B (T) ®F defined by the formula v (dt, dw) = v (dt,w) P (dw). Moreover, 
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let for s E T and x E R, 

k (s, x,w) = L 0 (Ix (u)l)2 C, (s, du,w) + c(s,w) x 2 , 

l(s,x,w) = L (0(xu)-x0(u))v(s,du,w) + b(s,w)x, 

l(s,x ,w)= sup l(s,y,w) andqi(s,x,w)=k(s,x,w)+l(s,x,w) . 
IYl <lxl 

For each process F E SR, we define the following random variable 

<l>x(F)= [qi(s,F(s,w),w)v(ds,w). 

We also introduce the space L~nd (dv) of v a.e.-equivalence classes of real 
predictable processes F such that <l> x ( F) < oo a.s. with modular 1/J ( F) = 
ll<l>x (F)llo• L':,.d (dv) is a complete modular space. 

We repeat the main theorem ([3], Theorem 9.4.1} describing the space of 
predictable processes. 

Theorem 6 Let X be a quasi-left continuous process. Then the additive set 
function m generated by X on Ro extends to a stochastic measure on the 
predictable u-field 'P if and only if it satisfies condition (~) . In this case v is 
a control measure of m and a predictable process F is integrable with respect 
to X if and only if FE L~nd (dv). Moreover, for a predictable step process 
F, the modular p ( F) is small if and only if 'ljJ ( F) is small. 

4 Integration with respect to Levy processes 

At the beginning we recall the notion of Levy process. 

Definition 7 We call an R-valued cadlag stochastic process (X1) 1ET a Levy 
process if 

a) Xo = 0 a.s.; 

b) for each n 2: 1 and each collection to, t 1, ... tn, 0 ::; to < t1 < ... < tn, the 
variables X10 , X1 1 - X10 , •• • , X 1n - Xtn-, are independent; 

5 



c) for alls 2: 0 and t 2: 0, 

Definitipn 8 for all t 2: 0 and i; > O, 

IimP (IX. - Xd > c) = 0. •-t 
If X is a Levy process, then there exist constants b, c > 0 and a positive 
measure iJ (dx) on B (R) such that Bt = bt, Ct= ct andµ (ds, dx) = iJ (dx) ds 
with a= fn 02 (x) D (dx) < oo . 

Definition 9 Let X be a Levy process. Let h : R -+ R be an arbitrary 
bounded function with bounded support satisfying the equality h (x) = x in a 
neighborhood of 0. The notation x- (b, c, v)h means that 

EeiuX, = exp [(ibu - cu2 + { (e•xu - 1 - iuh (x)) D (dx)) t] . 
2 J R\{O} 

The characteristics (b, c, v)h are called the Levy-Khinchin characteristics. We 
will use them to describe Levy processes. Let us mention the following remark 
(Remark 8.2.2} from /3}: 

Remark 10 If X is a stochastically continuos process with independent in
crements, then the Levy-Khinchin formula holds: 

EeiuX, = exp (iBtU- C~u2 + r 1t (eixu -1-iu0(x)) µ(ds,dx)) . 
J R\{O} 0 

(1) 
Taking into account the above considerations, the formula 1 implies 

Ee'ux, = exp [(ibu - cu2 + { (eixu - 1 - iu0 (x)) iJ (dx)) t] , (2) 
2 J R\{O} 

i.e., x- (b, c, v) 0 • 
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Therefore, v (ds) = K-ds and£, (s, dx) = ~iJ (dx) for K- = jbj + c + a. 
Obviously, b(s) = ~. c(s) = ~. 

k (s, x) = k (x) = .!_( f 02 (xu) iJ (du)+ cx2) and 
K, JR 

l (s,x) = l(x) = .!_ sup ( f (0 (yu) -y0 (u)) v (du)+ by) 
K, IYl<lxl JR 

and finally 

<I> (F (s,w)) = 1.[L 02 (F (s,w) u) iJ (du)+ cF2 (s,w) 

+ sup ( f (0 (yu) - y0 (u)) iJ (du)+ by)Jds. 
IYl <IF(s,w)I JR 

As an example we describe a space of X-integrable processes for X being 
a-stable Levy process (a E (1, 2]). 

Definition 11 We call a Levy process (Xt)teT an a-stable Levy process (a E 

(0,2]} if for each a> 0 there exists d ER (dependent on a in general} such 

that {Xat, t ET} L!b_w { a¼Xt + dt, t ET}· 

In the remainder of this section we denote the function xl(lxl::;t}by h (x). 
Let a E (1, 2] and let X be an a-stable Levy process with the Levy measure 

_ (d ) = (r1I{x<O} + r2I{x>O}) d 
v x lxj<>+I x, r1 ,r2:::: 0. 

If a E (1, 2) then x- (b,,, 0, v),,. 
If a= 2 then x- (bh, c, 0)h, c =/ 0. 

Let us describe the space of predictable, X-integrable processes. 

{ 
l f 02 (xu) iJ (du) = 2<ri+r2) lxl 0 for a E (0, 2) 

- ( ) " JR 1<0(2-o) 
k x = (2(r1+r2) + .£) lxj2 for a= 2 

1<0(2-o) " 

and, for jyj > 1, 

~ (L (0 (yu) - y0 (u)) iJ (du)+ by) 

(r2 - r1) by 
= KO (1 - a) (IYIO - lyl) sgn (y) +-;: for a E (0, 2]\ {1} . 
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1. Let a E (1,2) . Then b,, = b- ,;°(i-=."~i· Since r 1 > 0 or r 2 > 0, 

L~,.d(dv)= { 'P-measurableF: ljF(s,w)j"ds<ooa.s.} . 

2. Let a= 2. Then bh = b + r 2 - r 1 . 

L~00 (dv) = { 'P-measurable F: 1 IF (s, w) j2ds < oo a.s.} . 

5 Integration with respect to Hilbert space 
valued semimartingales 

Let (Xt)tET be a quasi-left continuous semimartingale with values in H. Our 
main goal in this section is recall the characterization of the space of .C-valued 
predictable processes, which are integrable with respect to X. This charac
terization was made in [5], and therefore we repeat the relevant material from 
this paper. Some theorems and definitions from [4] and [5] had to be shorten 
to adopt them to this presentation. 

We follow the notation used in Section 2. Let Z = T x 0, Ao = no, 
F = Llf, p (F, G) = l!G - FIi~ and let m : no -> Lo be defined by the 
formula m ((s, t] x A) = (Xt - X,) IA, s, t E T, A E F •. We replace the 
spaces SR and srby sc and sf, where each/ E sc has the form I (z) = 
L~=I aiIA, (z) with a; E £ and Ai E no. We also replace the condition 
(C•R) by (c•c) in the obvious way. Then, for every f E sc, we define 
fz f (z) m (dz)= L~=I ai (m (A;)). 

Let (1r,.):=1 be a nested normal sequence of partitions of T defined in Sec
tion 3. To define Jacod-Grigelionis characteristics we introduce the following 
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auxiliary processes. 

Bn (t) = L E (0 (~) l.rr-1), 

Pn (t) = Pf (t) = L E (f (~) 1;:;_1) , for a fixed f : H -+1iS, f E (~) . 
k:t,::5t 

The next theorem, being a combination of two theorems from [4], is extremely 
useful in the proof of the existence of Jacod-Grigelionis characteristics. 

Theorem 12 If X an H-valued quasi-left continuous semimartingale, then, 
for each t E T , the limits in probability 

B (t) = lim Bn (t), 
n-oo 

W (t) = lim Wn (t), 
n-oo 

V (t) = lim Vn (t), 
n-oo 

and 
P (t) = lim Pn (t) 

n-oo 

exist; they are continuous processes, and the convergence is uniform on T. 

We are now in a position to define the characteristics. 

Definition 13 The first chamcteristic of X is the process (B (t))iET . The 
second chamcteristic is the measure µ defined on l3 (T x (H\ {O} )) by con
dition: limn-co LH;;:9 E (f (~) 1;:;_1) (w) = JH\{O} J; f (x) µ (ds, dx,w), in 
probability, for each function f : H -+ 1iS belonging to (~). The third char
acteristic of X is the process (C (t))tET defined by formula 

C(t)=V(t)- f 1t0(x)®0(x)µ(ds,dx,w) . 
JH\{O} 0 
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The characteristics B and C are continuous processes of bounded varia
tion. Moreover, JHJ; ll0(x)ll~\{o}µ(ds,dx,w) < oo a.s. We define a random 
measure II on B (T) as follows. 

II (ds,w) = l!dBsllH + l!dCsll 1 + L 02 (l!xl!H) µ (ds, dx,w), 

where //dB,IIH and lldCsll 1 are measures defined in Section 2 for B = H 
and B = N respectively. We also define predictable processes b(s,w) with 
values in H, c(s,w) with values in N, and a predictable random measure 
v(s,dx,w) such that dB,= b(s)11(ds), dCs = c(s)11(ds) and µ(ds,dx) = 

£, ( s, dx) 11 ( ds). Their existence is a consequence of Radon-Nikodym property 
of H and N. Let v be the measure on B (T) ® :F defined by the formula 
v(dt,dw) = 11(dt,w)P(dw). Moreover, let for s ET and x E £, 

k(s,x,w) = L 0(llx(u)IIH)2 v(s,du,w) +tr(xc(s,w)x*), 

l(s,x,w)= L(0(xu)-x0(u))v(s,du,w) + x(b(s,w)), 

l(s,x,w) = sup lll(s,rx,w)IIH • 
rE.Cl 

Additionally, let¢/ (s,x,w) = k(s,x,w)+l (s,x,w) and¢" (s,x,w) = 0 (llxll~)
For a process F E sc, we define the following random variables 

<I>'x (F) = [ cp' (s, F (s,w) ,w) v (ds,w), 

<I>~(F)= [¢"(s,F(s,w),w)11(dt,w) and 

<l>x (F) = <I>'x (F) + <I>~ (F). 

We introduce the space([, of v a.e.-equivalence classes of £-valued predictable 
processes F such that <l>x (F) < oo a.s. with modular 'i/J (F) = ll<I>x (F)ll 0 . 

We formulate the main result from [5], which describes the space of X
integrable processes. 

Theorem 14 Let (Xt)tET be a quasi-left continuous semimartingale with val
ues in a separable Hilbert space H. Then m extends to a measure on P and 
vis a control measure of m. Moreover, a predictable £-valued process F is 
integrable with respect to X if and only if F belongs to ([I . 
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