Object structure
Title:

Total solar radiation in Zakopane and at Mount Kasprowy Wierch (Western Carpathians, Poland) in 1986-2015

Subtitle:

Geographia Polonica Vol. 92 No. 2 (2019)

Creator:

Żmudzka, Elwira : Autor ORCID ; Kulesza, Kinga : Autor ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2019

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

total radiation ; cloud cover ; nephological characteristic days ; Tatras ; trend of changes

Abstract:

The differences in the inflow of radiant energy at two stations in the Tatra Mountains were analysed, as well as the role of cloud cover in shaping of radiation conditions (using nephological characteristic days). The average increase in the annual sum of total radiation from Zakopane to Kasprowy Wierch is 193 MJ·m-2 per 1000 m (5.3%). The influence of cloudiness on the inflow of radiant energy to these stations manifests itself i.e. in significantly smaller daily sums of total radiation from mid-May to the end of August at the peak station than at the station lying at the foot of the mountains. For the period 1986-2015, there was an increase of 0.03 MJ·m-2·day-1·year-1 in the annual average daily sums of total radiation in Zakopane, despite a significant increase in the amount of cloud cover in the warm half of the year.

References:

1. ALEXANDERSSON H., MOBERG A., 1997. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology, vol. 17, no. 1, pp. 25-34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.3.CO;2-A
2. BLUMTHALER M., AMBACH W., SALZGEBER M., 1994. Effects of cloudiness on global and diffuse UV irradiance in a high-mountain area. Theoretical and Applied Climatology, vol. 50, no. 1-2, pp. 23-30. https://doi.org/10.1007/BF00864899
3. BOGDAŃSKA B., PODOGROCKI J., 2000. Variability of total solar radiation in Poland in the period 1961-1995. Materiały badawcze, Seria: Meteorologia, 30, Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
4. CHIACCHIO M., EWEN T., WILD M., CHIN M., DIEHL T., 2011. Decadal variability of aerosol optical depth in Europe and its relationship to the temporal shift of the North Atlantic Oscillation in the realm of dimming and brightening. Journal of Geophysical Research, vol. 116, pp. D02108. https://doi.org/10.1029/2010JD014471
5. FEDOROWICZ J., 1926. 50-lecie Stacji Meteorologicznej w Zakopanem. Wierchy, vol. 4, pp. 185-187.
6. FEISTER U., CABROL N., HÄDER D., 2015. UV irradiance enhancements by scattering of solar radiation from clouds. Atmosphere, vol. 6, no. 8, pp. 1211-1228. https://doi.org/10.3390/atmos6081211
7. Haurwitz B., 1945. Insolation in relation to cloudiness and cloud density. Journal of Meteorology, vol. 2, no. 3, pp. 154-166. https://doi.org/10.1175/1520-0469(1945)002<0154:IIRTCA>2.0.CO;2
8. HEIMO A., PHILIPONA R., FRÖHLICH C., MARTY CH., OHMURA A., 1998. The Swiss atmospheric radiation monitoring network CHARM [in:] Papers presented at the WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-98): Casablanca, Morocco, 13-15 May 1998, World Meteorological Organization.
9. HESS M., OLECKI Z., 1984. Variation of total solar radiation in the Carpathian area. Zeszyty Naukowe UJ, Prace Geograficzne, vol. 58, pp. 49-63.
10. KASTEN F., CZEPLAK G., 1980. Solar and terrestrial radiation dependent on the amount and type of cloud. Solar Energy, vol. 24, pp. 177-190. https://doi.org/10.1016/0038-092X(80)90391-6
11. KHALIQ M.N., OUARDA T.B.M.J., 2007. On the critical values of the standard normal homogeneity test (SNHT). International Journal of Climatology, vol. 27, no., 5, pp. 681-687. https://doi.org/10.1002/joc.1438
12. KIMBALL H.H., 1928. Amount of solar radiation that reaches the surface of the Earth on the land and on the sea and methods by which it is measured. Monthly Weather Review, vol. 56, no. 10, pp. 393-399. https://doi.org/10.1175/1520-0493(1928)56<393:AOSRTR>2.0.CO;2
13. KONČEK M. (ed.), 1974. Climate of the Tatras. Bratislava: Veda SAV.
14. KOSSOWSKA-CEZAK U., 1994. O 'monsunie europejskim'. Przegląd Geofizyczny, vol. 39, no. 1, pp. 65-73.
15. KOŻUCHOWSKI K., ŻMUDZKA E., 2002. Atmospheric circulation and its influence on the variability of air temperature in Poland. Przegląd Geograficzny, vol. 74, no. 4, pp. 357-365.
16. KUCHINKE C., NUNEZ M., 1999. Cloud transmission estimates of UV-B erythemal irradiance. Theoretical and Applied Climatology, vol. 63, no. 3-4, pp. 149-161. https://doi.org/10.1007/s007040050100
17. LIEPERT B.G., 2002. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophysical Research Letters, vol. 29, no. 10: 61-1-61-4. https://doi.org/10.1029/2002GL014910
18. LUMB F.E., 1964. The influence of cloud on hourly amount of total solar radiation at the sea surface. Quarterly Journal of the Royal Meteorological Society, vol. 90, no. 383, pp. 43-56. https://doi.org/10.1002/qj.49709038305
19. MARTY C., PHILIPONA R., FRÖHLICH C., OHMURA A., 2002. Altitude dependence of surface radiation fluxes and cloud forcing in the Alps: results from the alpine surface radiation budget network. Theoretical and Applied Climatology, vol. 72, no. 3-4, pp. 137-155. https://doi.org/10.1007/s007040200019
20. MATEER C.L., 1963. On the relationship between global radiation and cloudiness at ocean station P. Archiv für Meteorologie, Geophysik und Bioklimatologie, Series B, vol. 12, no. 3, pp. 482-490. https://doi.org/10.1007/BF02242989
21. MATUSZKO D., 2009. Wpływ zachmurzenia na usłonecznienie i całkowite promieniowanie słoneczne (na przykładzie krakowskiej serii pomiarów). Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.
22. MITCHELL J.M., 1966. Climatic change: Report of a working group of the Commission for Climatology. WMO Technical Note, no. 79, Geneva: World Meteorological Organization.
23. MONTEITH J.R.L., UNSWORTH M.H., 1988. Principles of environmental physics. London: Edward Arnold.
24. MÖSER W., RASCHKE E., 1983. Mapping of global radiation and of cloudiness from METEOSAT image data. Meteorologische Rundschau, vol. 36, pp. 33-41.
25. MUELLER R.W., DAGESTAD K.F., INEICHEN P., SCHROEDTER-HOMSCHEIDT M., CROS S., DUMORTIER D., KUHLEMANN R., OLSETH J.A., PIERNAVIEJA G., REISE C., WALD L., HEINEMANN D., 2004. Rethinking satellite-based solar irradiance modelling the SOLIS clear-sky module. Remote Sensing of Environment, vol. 91, pp. 160-174. https://doi.org/10.1016/j.rse.2004.02.009
26. NIEDŹWIEDŹ T., 2003. Częstość występowania mas powietrznych w Polsce południowej w drugiej połowie XX wieku [in:] K. Błażejczyk, B. Krawczyk, M. Kuchcik, (eds.), Postępy w badaniach klimatycznych i bioklimatycznych, Prace Geograficzne, vol. 188, Warszawa: Instytut Geografii i Przestrzennego Zagospodarowania PAN, pp. 65-74.
27. NOAA, Solar Calculator, https://www.esrl.noaa.gov/gmd/grad/solcalc/ [10 April 2019].
28. OBRĘBSKA-STARKLOWA B., HESS M., OLECKI Z., TREPIŃSKA J., KOWANETZ L., 1995. Klimat [in:] J. Warszyńska (ed.), Karpaty polskie: Przyroda, człowiek i jego działalność, Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.
29. OHMURA A., 2006. Observed long-term variations of solar irradiance at the Earth's surface [in:] Y. Calisesi, R.M. Bonnet, L. Gray, J. Langen, M. Lockwood (eds.), Solar Variability and Planetary Climates. Space Sciences Series of ISSI, vol 23. New York, NY: Springer, pp. 111-128. https://doi.org/10.1007/978-0-387-48341-2_9
30. OLECKI Z., 1989. Bilans promieniowania słonecznego w dorzeczu górnej Wisły. Rozprawy Habilitacyjne UJ, vol. 157, Kraków: Uniwersytet Jagielloński.
31. PAÁL A., 1987. Investigation of relationship between cloudiness and global radiation using METEOSAT images. Pure and Applied Geophysics, vol. 125, no. 1, pp. 109-120. https://doi.org/10.1007/BF00878616
32. PODOGROCKI J., 2002. Z badań usłonecznienia w Warszawie [in:] G. Wójcik, K. Marciniak (eds.), Scientific activities of professor Władysław Gorczyński and their continuation: Climatological Symposium in Nicolaus Copernicus University, 16-17 September 1993, Toruń, pp. 147-152.
33. PFEIFROTH U., KOTHE S., MÜLLER R., TRENTMANN J., HOLLMANN R., FUCHS P., WERSCHECK, M., 2017. Surface Radiation Data Set - Heliosat (SARAH) - Edition 2. Satellite Application Facility on Climate Monitoring.
34. REITER R., MUNZERT K., SLADKOVIC R., 1982. Results of 5-year concurrent recordings of global, diffuse, and UV-radiation at three levels (700, 1800, and 3000 m a.s.l.) in the Northern Alps. Archives for Meteorology, Geophysics, and Bioclimatology, Series B, vol. 30, no. 1-2, pp. 1-28. https://doi.org/10.1007/BF02323391
35. RIMÓCZI-PAÁL A., 1985. Determination of surface global radiation from METEOSAT images using relative brightness as new parameter to characterize the cloudiness. Advances in Space Research, vol. 5, no. 6, pp. 329-332. https://doi.org/10.1016/0273-1177(85)90337-0
36. ROBINSON P.J., 1977. Measurements of downwards scattered solar radiation from isolated Cumulus clouds. Journal of Applied Meteorology, vol. 16, no. 6, pp. 620-625. https://doi.org/10.1175/1520-0450(1977)016<0620:MODSSR>2.0.CO;2
37. RUSSAK V., 1990. Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia. Tellus B: Chemical and Physical Meteorology, vol. 42, no. 2, pp. 206-210. https://doi.org/10.3402/tellusb.v42i2.15205
38. SAUBERER F., DIRMHIRN I., 1958. Das Strahlungsklima [in:] F. Steinhauser, O. Eckel, F. Lauscher (eds), Klimatographie von Osterreich, Vienna: Springer, pp. 13-102, [after] Barry, R. G., 2008. Mountain weather and climate. Cambridge: Cambridge University Press. https://doi.org/10.1007/978-3-7091-5722-0_2
39. SANCHEZ-LORENZO A., WILD M., TRENTMANN J., 2013. Validation and stability assessment of the monthly mean CM SAF surface solar radiation dataset over Europe against a homogenized surface dataset (1983-2005). Remote Sensing of Environment, vol. 134, pp. 355-366. https://doi.org/10.1016/j.rse.2013.03.012
40. SANCHEZ-LORENZO A., CALBO J., MARTIN-VIDE J., 2008. Spatial and temporal trends in sunshine duration over western Europe (1938-2004). Journal of Climate, vol. 21, no. 22, pp. 6089-6098. https://doi.org/10.1175/2008JCLI2442.1
41. SEGAL M., DAVIS J., 1992. The impact of deep cumulus reflection on the ground-level global irradiance. Journal of Applied Meteorology, vol. 31, no. 2, pp. 217-222. https://doi.org/10.1175/1520-0450(1992)031<0217:TIODCR>2.0.CO;2
42. SIDORENKOV N.S., ORLOV I.A., 2008. Atmospheric circulation epochs and climate changes. Russian Meteorology and Hydrology, vol. 33, no. 9, pp. 553-559. https://doi.org/10.3103/S1068373908090021
43. SKIBIŃSKI Z., FEDOROWICZ J., 1938. O promieniowaniu pozafiołkowym w Zakopanem: Pierwsze spostrzeżenia. Polska Gazeta Lekarska, vol. 17, Lwów: [s.n.], pp. 463-465.
44. STENZ E., 1933. Mesures de la radiation solaire dans la Haute Tatra. Archives des Sciences Physiques et Naturelles, vol. 15, Geneve: Institut de Physique de l'Univ.
45. STENZ E., 1933. Zimowy pomiar promieniowania słonecznego w Tatrach. Wierchy, vol. 11.
46. WOJKOWSKI J., 2015. Solar radiation [in:] K. Dąbrowska, M. Guzik (eds.), Atlas of the Tatra Mountains - Abiotic Nature, Zakopane: Tatra National Park.
47. ŻMUDZKA E., 2007. Variability of cloud cover over Poland and its circulatory conditions (1951-2000). Warszawa: Wydawnictwo Uniwersytetu Warszawskiego.
48. ŻMUDZKA E., 2012. Nephological characteristic days - various exclusion criteria and their impact on test results. Przegląd Geofizyczny, vol. 57, no. 1, pp. 21-33.

Relation:

Geographia Polonica

Volume:

92

Issue:

2

Start page:

211

End page:

231

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 0,3 MB

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0145

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

×

Citation

Citation style: