Object structure
Title:

Cloud cover over Spitsbergen and its relation to atmospheric circulation (1983-2015)

Subtitle:

Geographia Polonica Vol. 90 No. 1 (2017)

Creator:

Łupikasza, Ewa ; Lipiński, Oskar

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2017

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

cloud cover ; atmospheric circulation ; Spitsbergen ; Arctic

Abstract:

This paper discusses the cloud cover and its relation to atmospheric circulation over Spitsbergen during 1983-2015. It focuses on monthly and seasonal cloud covers and on the frequency of days with specific cloud cover (cloudless, clear, cloudy and completely overcast sky) and their relation to various circulation types. In the research period the cloud cover characteristics were differentiated over the island on both monthly and seasonal scales, and they strongly depended on the direction of air advection. The highest mean daily cloud cover was reported for circulation types with air advection from the south (S+SWc and S+SWa). The greatest variation in the cloud cover distribution was observed during the polar night (at Svalbard Lufthavn and Ny-Ă…lesund) or in the autumn (Hornsund). The long-term variability in the cloud cover significantly depends on the frequency of N+NEa type (negative correlation) and on S+SWc and W+NWc and Cc+Bc types (positive correlation), particularly in sprin

References:

1. Adamczyk R., Ustrnul Z., 2008. Uwarunkowania cyrkulacyjne zachmurzenia ogólnego w strefie polarnej Europy. Problemy Klimatologii Polarnej, 18, pp. 79-86.
2. Araźny A., 2003. Przebieg roczny wilgotności względnej w Arktyce Norweskiej w okresie 1971-2000, Problemy Klimatologii Polarnej. 13, pp. 107-115.
3. Araźny A., 2008. Bioklimat Arktyki Norweskiej i jego zmienność w okresie 1971-2000. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
4. Bednorz E., Kaczmarek D., Dulik P., 2016. Atmospheric conditions governing anomalies of the summer and winter cloudiness in Spitsbergen. Theoretical and Applied Climatology, vol. 123, nos. 1-2, pp. 1-10.
https://doi.org/10.1007/s00704-014-1326-5 -
5. Beesley J.A., Moritz R.E., 1999. Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. Journal of Climate, vol. 12, no. 2, pp. 395-415.
https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2 -
6. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.- M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheeshs K., Sherwood S., Stevens B., Zhangx Y., 2013. Clouds and Aerosols [in:] T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom – New York, NY, USA: Cambridge University Press.
7. Brümmer, B., S. THIEMANN S., KIRCHGÄSSNER A., 2000. A cyclone statistics for the Arctic based on European Centre re-analysis data. Meteorology and Atmospheric Physics, vol. 75, nos. 3-4, pp. 233-250.
https://doi.org/10.1007/s007030070006 -
8. Curry J.A., Rossow W.B., Randall D., Schramm J.L., 1996. Overview of Arctic cloud and radiation characteristics. Journal of Climate, vol. 9, no. 8., pp. 1731-1764.
https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2 -
9. Eastman R., Warren S.G., 2010. Interannual variations of arctic cloud types in relation to sea ice. Journal of Climate, vol. 23, no. 15, pp. 4216-4232.
https://doi.org/10.1175/2010JCLI3492.1 -
10. IMGW, 2000-2001. Roczniki Meteorologiczne Hornsund. (Edited by M. Miętus), 1982/83-1999/2000, Gdynia: Instytut Meteorologii i Gospodarki Wodnej Oddział Morski.
11. IPCC, 2007. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
12. KAY J.E., GETTELMAN A., 2009. Cloud influence on and response to seasonal Arctic sea ice loss. Journal of Geophysical Research, vol. 114, no. D18204, DOI:10.1029/2009JD011773.
https://doi.org/10.1029/2009JD011773 -
13. Kotarba A., Widawski A., 2008. Satelitarna charakterystyka zachmurzenia ogólnego nad Svalbardem w roku 2007 w powiązaniu z cyrkulacją atmosfery. Problemy Klimatologii Polarnej, 18, pp. 127-140.
14. Kryza M., Szymanowski M., Migała K., 2011. Zastosowanie modelu r. sun do określenia dobowych sum promieniowania rzeczywistego na lodowcu Werenskjolda (SW Spitsbergen). Prace i Studia Geograficzne, 47, pp. 435-442.
15. Lipiński O., Łupikasza E., 2016. Rola cyrkulacji atmosfery w kształtowaniu wielkości zachmurzenia ogólnego na Spitsbergenie (1983-2013). Przegląd Geograficzny, vol. 88, no. 3, pp. 295-315.
https://doi.org/10.7163/PrzG.2016.3.2 -
16. LIU Y., KEY J.R., FRANCIS J.A., WANG X., 2007. Possible causes of decreasing cloud cover in the Arctic winter, 1982–2000. Journal of Geophysical Research, vol. 34, no. 14, L14705, DOI:10.1029/2007GL030042.
https://doi.org/10.1029/2007GL030042 -
17. Marsz A.A., 2013. Cloudiness and sunshine duration [in:] Marsz A.A., Styszyńska A., (ed.), Climate and climate change in Hornsund, Svalbard, Gdynia: Gdynia Maritime University, pp. 101-125.
18. Marsz A.A., Niedźwiedź T., Styszyńska A., 2013. Współczesne zmiany klimatu Spitsbergenu jako podstawa wyznaczania zmian krajobrazowych [in:] Dawne i współczesne geoekosystemy Spitsbergenu, Zb. Zwoliński, A. Kostrzewski, M. Pulina (ed.), Poznań: Bogucki Wydawnictwo Naukowe, pp. 391-413.
19. Marsz A.A., Styszyńska A., 2013. Climate and climate change at Hornsund, Svalbard. Gdynia: Gdynia Maritime University.
20. Matuszko D., Soroka J., 2013. Zachmurzenie Spitsbergenu na podstawie obserwacji w polskiej polarnej w Hornsundzie. Kraków: Instytut Geografii i Gospodarki Przestrzennej. Uniwersytet Jagielloński.
21. MEIER W.N., GERLAND S., GRANSKOG M.A., KEY J.R., HAAS C., HOVELSRUD G.K., KOVACS K., MAKSHTAS A., MICHEL C., PEROVICH D., REIST J.D., VAN OORT B.E.H., 2011. Chapter 9: Sea ice [in:] Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, Oslo: Arctic Monitoring and Assessment Programme (AMAP).
22. Niedźwiedź T., 2003. Słownik meteorologiczny. Warszawa: Polskie Towarzystwo Geofizyczne, Instytut Meteorologii i Gospodarki Wodnej.
23. NIEDŹWIEDŹ T., 2006. Główne cechy cyrkulacji atmosfery nad Spitsbergenem (XII.1950 – IX.2006). Problemy Klimatologii Polarnej, no. 16, pp. 91-105.
24. NIEDŹWIEDŹ T., 2013, Kalendarz typów cyrkulacji dla Spitsbergenu, zbiór komputerowy dostępny w Katedrze Klimatologii. Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego.
25. Niedźwiedź T., 2013. The atmospheric circulation [in:] A.A. Marsz, A. Styszyńska, (ed.), Climate and climate change in Hornsund, Svalbard, Gdynia: Gdynia Maritime University, pp. 57-74.
26. Niedźwiedź T., Łupikasza E., 2015. Dynamika wskaźników cyrkulacji nad Spitsbergenem. Problemy Klimatologii Polarnej, 25, pp. 153-167.
27. Niedźwiedź T., Ustrnul Z., 1989. Wpływ cyrkulacji atmosferycznej na kształtowanie się zachmurzenia w Hornsundzie [in:] A. Olszewski, Dorobek i perspektywy Polskich Badań Polarnych: XVI Sympozjum Polarne, Toruń: Uniwersytet Mikołaja Kopernika, pp. 158-160.
28. PALM S.P., MARSHAK A., YANG Y., SPINHIRNE J., MARKUS T., 2010. The influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. Journal of Geophysical Research, vol. 115, no. D21, DOI: 10.1029/2010JD013900.
https://doi.org/10.1029/2010JD013900 -
29. Polyakov I.V., Walsh J.E., Kwok R., 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society, vol. 93, no. 2, pp. 145-151.
https://doi.org/10.1175/BAMS-D-11-00070.1 -
30. Przybylak R., 2003. The climate of the Arctic. Atmospheric and Oceanographic Science Library, vol.26, Dordrecht: Kluwer Academic Publishers.
31. Przybylak R., 2007. Współczesne zmiany klimatu w Arktyce [in:] A. Styczyńska, A.A. Marsz (ed.), Zmiany klimatyczne w Arktyce i Antarktyce w ostatnim pięćdziesięcioleciu XX wieku i ich implikacje środowiskowe, Gdynia: Wydawnictwo Uczelniane Akademii Morskiej, pp. 93-110.
32. Raatz W.E., 1981. Trends in cloudiness in the Arctic since 1920. Atmospheric Environment, vol. 15, no. 8, pp. 1503-1506.
https://doi.org/10.1016/0004-6981(81)90358-9 -
33. SCHWEIGER A., 2004. Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations. Geophysical Research Letters, vol. 31, no. 12, L12207, DOI: 10.1029/2004GL020067.
https://doi.org/10.1029/2004GL020067 -
34. Schweiger A., Key J.R., 1992. Arctic cloudiness: comparison of ISCCPC2 and NIMBUS-7 satellite-derived cloud products with a surface based climatology. Journal of Climate, vol. 5, no. 12, pp. 1514-1527.
https://doi.org/10.1175/1520-0442(1992)005<1514:ACCOIC>2.0.CO;2 -
35. Soroka J., Matuszko D., 2013. Trudności w wizualnej ocenie zachmurzenia w Hornsundzie. Problemy Klimatologii Polarnej, 23, pp. 147-156.
36. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Malanik J., Barrett A.P., 2012. The Arctic's rapidly shrinking sea ice cover: A research synthesis. Climatic Change, vol. 110, nos. 3-4, pp. 1005-1027.
https://doi.org/10.1007/s10584-011-0101-1 -
37. Turner J., Gareth J.M., 2011. Climate change in the polar regions. Cambridge-New York: Cambridge University Press.
https://doi.org/10.1017/CBO9780511975431 -
38. Ustrnul Z., 2007. Warunki cyrkulacyjne [in:] Matuszko (ed.), Klimat Krakowa w XX wieku, Kraków: Kraków: Instytut Geografii i Gospodarki Przestrzennej. Uniwersytet Jagielloński, pp. 21-40.
39. Vavrus S.J., Bhatt U.S., Alexeev V.A., 2011. Factors influencing simulated changes in future Arctic cloudiness. Journal of Climatology, vol. 24, no. 18, pp. 4817-4830.
https://doi.org/10.1175/2011JCLI4029.1 -
40. Vowinckel E., Orvig S., 1962. Relation between solar radiation income and cloud type in the Acrtic. Journal of Applied Meteorology, vol. 1, no. 4, pp. 552-559.
https://doi.org/10.1175/1520-0450(1962)001<0552:RBSRIA>2.0.CO;2 -
41. Webber G.R., 1994. On the seasonal variation of local relationship between temperature, temperature range, sunshine and cloudiness. Theoretical and Applied Climatology, vol. 50, nos. 1-2, pp. 15-22.
https://doi.org/10.1007/BF00864898 -
42. Wilks D.S., 2006. Statistical methods in the atmospheric sciences. International Geophysics Series, vol. 91, Amsterdam: Elsevier.
43. http://eklima.met.no [5 June 2014]
44. http://hornsund.igf.edu.pl/hornsund.old/swiatlo.html [2 September 2016].
45. http://www.ogimet.com [17 July 2016].

Relation:

Geographia Polonica

Volume:

90

Issue:

1

Start page:

21

End page:

38

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 1,4 MB ; application/pdf

Resource Identifier:

0016-7282 ; 10.7163/GPol.0076

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Rights:

Creative Commons Attribution BY-SA 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-SA 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-SA 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: