Object

Title: Application of the timberline morphometric analysis for detecting snow avalanche paths: A case study of the Tatra Mountains

Subtitle:

Geographia Polonica Vol. 89 No. 1 (2016)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

References:

The upper forest limit is principally controlled by climate factors, mainly temperature but locally also other factors, such as snow avalanches, debris flows, and wind throw. Therefore, the timberline course may be use as a proxy of these drivers. The aim of the study was to employ the morphometric features of the upper forest limit for remote detection of avalanche paths. We introduced the Morphometric Avalanche Index (MAI), which combine simple parameters such as: Perimeter Development, Altitudinal Difference, Elongation Ratio, Area, and the existence forest patches. This tool was tested in four valleys in the Tatra Mountains, wherein 103 known avalanche paths. The employment of MAI resulted in remote identification of 90% of avalanche paths existing and acknowledged in this region. Additionally 28 avalanche paths that had not been previously indicated as such were detected.
1. Adamczyk B., Gerlach T., Obrębska-Starklowa B., Starkel L., 1980. Zonal and azonal aspects of the agriculture forest limit in the Polish Carpathians. Geographia Polonica, vol. 43, pp. 71-84.
2. Allen T.R., Walsh S.J., 1996. Spatial and compositional pattern of alpine treeline, Glacier National Park, Montana. Photogrammetric Engineering and Remote Sensing, vol. 62, no. 11, pp. 1261-1268.
3. Armand A.D., 1992. Sharp and gradual mountain timberlines as a result of species interaction. Ecological Studies, vol. 92, pp. 360-378.
-
4. Bebi P., Kulakowski D., Rixen C., 2009. Snow avalanche disturbances in forest ecosystems – State of research and implications for management. Forest Ecology and Management, vol. 25, no. 9, pp. 1883-1892.
-
5. Bosheng L., 1993. The alpine timberline of Tibet [in:] J. Alden, J.L. Mastrantonio, S. Odum (eds.), Forest development in cold climates, New York: Plenum Press, pp. 511-527.
6. Buccolini M., Coco L., 2013. MSI (morphometric slope index) for analyzing activation and evolution of calanchi in Italy. Geomorphology, vol. 191, no. 2, pp. 142-149.
-
7. BUTLER D.R., MALANSON G.P., WALSH S.J., 1992. Snow-avalanche paths: conduits from the periglacial–alpine to the subalpine – depositional zone. [in:] J.C. Dixon, A.D. Abrahams (eds.), Periglacial Geomorphology. Wiley, London, pp. 185-202.
8. Büntgen U., Frank D.C., Kaczka R.J., Verstege A., Zwijacz-Kozica T., Esper J., 2007. Growth/climate response of a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiology, vol. 27, no. 5, pp. 689-702.
-
9. Büntgen U., Frank D.C., Wilson R., Career M., Urbinati C., Esper J., 2008. Testing for treering divergence in the European Alps. Global Change Biology, vol. 14, no. 10, pp. 2433-2453.
-
10. Carrara P.E., 1979. The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geological Society of America Bulletin, vol. 90, pp. 773-780.
-
11. Chhetri P.K., 2015. Use of high resolution DigitalGlobe satellite imagery to map the alpine treeline ecotone of the Nepal Himalaya. Digital Glob Funadation.
12. Chrustek P., 2008. Using GIS to estimate the avalanche release hazard level: The case of Kasprowy Wierch, Tatra Mts. Annals of Geomatics, vol. 6, no. 1, pp. 41-48.
13. CZAJKA B., KACZKA R.J., GUZIK M., 2010. Zapis lawin śnieżnych w przebiegu górnej granicy lasu w Tatrach Zachodnich. Z badań nad wpływem antropopresji na środowisko, vol. 12, pp. 26-38.
14. Czajka B., Kaczka R.J., Guzik M., 2012. Zmiany morfometrii szlaków lawinowych w Dolinie Kościeliskiej od utworzenia Tatrzańskiego Parku Narodowego [in:] A. Łajczak et al. (eds.), Antropopresja w wybranych strefach morfoklimatycznych – zapis w rzeźbie i osadach. Prace Wydziału Nauk o Ziemi Uniwersytetu Śląskiego, 77, Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego, pp. 126-135.
15. Czajka B., Łajczak A., Kaczka R.J., Nicia P., 2015. Timberline in the Carpathians: An overview. Geographia Polonica, vol. 88, no. 2, pp. 7-34.
-
16. Czajka B., Łajczak A., Kaczka R.J., 2015. Geographical characteristics of the timberline in the Carpathians. Geographia Polonica, vol. 88, no. 2, pp. 35-54.
-
17. Czajka B., Łajczak A., Kaczka R.J., 2015. The influence of snow avalanches on the timberline in the Babia Góra Massif, Western Carpathians. Geographia Polonica, vol. 88, no. 2, pp. 147-162.
-
18. DŁUGOSZ M., 2015. Spływy gruzowe. Map at a scale of 1:100,000 (sheet V.2) [in:] K. Dąbrowska, M. Guzik (eds.), Atlas Tatr. Przyroda nieożywiona, Zakopane: Tatrzański Park Narodowy.
19. Ellenberg H., 1958. Wald oder Steppe? Die natürliche Pflanzendecke Perus. Umschau, vol. 21, pp. 645-648; Umschau vol. 22, pp. 679-681.
20. Ellenberg H., 1959. Typen tropischer Urwälder in Peru. Schweizerische Zeitschrift für Forstwesen, 110, Zürich: Forstverein, pp. 169-187.
21. Fries T.C.E., 1913. Botanische Untersuchungen im nördlichsten Schweden: Ein Beitrag zur Kenntnis der alpinen und subalpinen Vegetation in Torne Lappmark. Vetenskapliga och praktiska undersökningar i Lappland. Flora ich Fauna, 2, Uppsala: Almqvist & Wiksells.
22. GUZIK M., 2008. Analiza wpływu czynników naturalnych i antropogenicznych na kształtowanie się zasięgu lasu i kosodrzewiny w Tatrach. Kraków: Uniwersytet Rolniczy im. Hugona Kołłątaja. Wydział Leśny. Katedra Botaniki Leśnej i Ochrony Przyrody [PhD thesis].
23. Hakanson L., 1981. A manual of lake morphometry. New York: Springer-Verlag Berlin Heidelberg.
-
24. Hess M., 1965. Piętra klimatyczne w polskich Karpatach Zachodnich. Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Prace Instytutu Geograficznego, 33, Kraków: Uniwersytet Jagielloński.
25. Holtmeier F.K., 1974. Geooekologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Wiesbaden: Franz Steiner.
26. Holtmeier F.K., 2005. Relocation of snow and its effects in the treeline ecotone-with special regard to the Rocky Mountains, the Alps and northern Europe. Erde, vol. 136, no. 4, pp. 343-373.
27. Holtmeier F.K., 2009. Mountain timberlines: Ecology, patchiness, and dynamics. Advances in Global Change Research, 36, New York: Springer Science & Business Media.
-
28. Hutchinson G.E., 1957. A treatise on limnology: Vol. 1. Geography, Physics and Chemistry. New York: Wiley.
29. IMHOF E., 1900. Die Waldgrenze in der Schweiz, Gerlands Beitr. Gerland's Beitrage zur Geophysik, vol. 4, no. 3, Leipzig: Engelmann, pp. 241-330.
30. Ives J.D., Mears A.I., Carrara P.E., Bovis M.J., 1976. Natural hazards in mountain Colorado. Annals of the Association of American Geographers, vol. 66, no. 1, pp. 129-144.
-
31. Jodłowski M., 2007. Górna granica kosodrzewiny w Tatrach, na Babiej Górze i w Karkonoszach: Struktura i dynamika ekotonu. Kraków: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego.
32. Jurczak P., Migoń P., Kaczka R.J., 2012. Występowanie i wybrane cechy morfometryczne szlaków spływów gruzowych w Tatrach i Karkonoszach. Czasopismo Geograficzne, vol. 83, no. 1-2, pp. 29-46.
33. Kaczka R.J., Lempa M., Czajka B., Rączkowska Z., Hreško J., Bugar G., 2015. The recent timberline changes in the Tatra Mountains: A case study of the Mengusovská Valley (Slovakia) and the Rybi Potok Valley (Poland). Geographia Polonica, vol. 88, no. 2, pp. 71-84.
-
34. KŁAPOWA M., 1976. Mapa zagrożenia lawinowego w Tatrach – Tatry Zachodnie. Wynik kartowania lawin śnieżnych zimą 1969/1970. Map at a scale of 1:10,000, 8 sheets.
35. Kotarba A., 1992. Natural environment and landscape dynamics of the Tatra Mountains. Mountain Research and Development, vol. 12, no. 2, pp. 105-129.
-
36. Kotarba A., Starkel L., 1972. Holocene morphogenetic altitudinal zones in the Carpathians. Studia Geomorphologica Carpatho-Balcanica, 6, pp. 21-35.
37. Kozak J., 2005. Zmiany powierzchni lasów w Karpatach Polskich na tle innych gór świata. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.
38. Körner C., 2003. Limitation and stress – Always or never? Journal of Vegetation Science, vol. 14, no. 2, pp. 141-143.
-
39. Körner C., 2004. Individuals have limitations, not communities – A response to Marrs, Weiher and Lortie et al. Journal of Vegetation Science, vol. 15, no. 4, pp. 581-582.
-
40. Körner C., 2012. Alpine treelines: Functional ecology of the global high elevation tree limits. Basel-London: Springer Science & Business Media.
-
41. Kulakowski D., Rixen C., Bebi P., 2006. Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbance. Forest Ecology and Management, vol. 223, no. 1-3, pp. 66-74.
-
42. KULLMAN L., 2010. One century of treeline change and stability – Experiences from the Swedish Scandes. Landscape Online,17, pp. 1-31.
-
43. Lara A., Villalba R., Wolodarsky-Franke A., Aravena J.C., Luckman B.H., Cuq E., 2005. Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40'–55 S) in the Chilean Andes. Journal of Biogeography, vol. 32, no. 5, pp. 879-893.
-
44. Lempa M., Kaczka R.J., Rączkowska Z., Janecka K., 2016. Combining tree-ring dating and geomorphological analyses in the reconstruction of spatial patterns of the runout zone of snow avalanches, the Rybi Potok Valley, the Tatra Mountains. Geographia Polonica, vol. 89, no. 1, pp. 31-45.
45. Maggioni M., Gruber U., Stoffel A., 2002. Definition and characterisation of potential avalanche release areas. Proceedings of the ESRI Conference, San Diego.
46. MAP OF THE TATRAS, 1934. Tatra Mountains (Polish part). Photogrametric Map of the National Park (Tatra Mountains, Polish part), 1:20,000, Tourist-skiing edition.
47. MAP OF THE TATRAS, 1999/2000. Tatra National Park – Winter. 1:25,000, Warszawa: Polkart.
48. Marek R., 1910. Waldgrenzstudien in den österreichischen Alpen. Gotha: J. Perthes.
49. MICALLEF A., BERNDT C., MASSON D.G., STOW D.A.,2007. A technique for the morphological characterization of submarine landscapes as exemplified by debris flows of the Storegga Slide. Journal of Geophysical Research: Earth Surface, vol. 112, no. F02001.
50. Niculiţă M., 2015. Automatic extraction of landslides flow direction using geometric processing and DEMs [in:] J. Jasiewicz, Z. Zwoliński, H. Mitasova, T. Hengl (eds.), Geomorphometry for Geosciences, Poznań: Bogucki Wydawnictwo Naukowe, pp. 201-204.
51. Paulsen J., Weber U.M., Körner C., 2000. Tree growth near treeline: Abrupt or gradual reduction with altitude. Arctic, Antarctic and Alpine Research, vol. 32, no. 1, pp. 14-20.
-
52. Pike R.J., 2000. Geomorphometry-diversity in quantitative surface analysis. Progress in Physical Geography, vol. 24, no. 1, pp. 1-20.
-
53. Plesník P., 1959. Die obere Waldgrenze in den Westkarpaten. Wissenschaftliche Zeitschrift der Martin-Luther-Universität, vol. 8, no. 2, Halle-Wittenberg: Martin-Luther-Universität.
54. Price L.W., 1981. Mountain and man. Berkeley-Los Angeles-Paris: University of California Press.
55. Rubner K., 1953. Die pflanzengeographischen Grundlagen des Waldbaus. Radebeul-Berlin: Neumann Verlag.
56. Sarmiento F.O., 2002. Anthropogenic change in the landscapes of highland Ecuador. Geographical Review, vol. 92, no. 2, pp. 213-234.
-
-
57. Schumm S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, vol. 67, no. 5, pp. 597-646
-
58. SHANDRA O., WEISBERG P., MARTAZINOVA V., 2013. Influences of climate and land use history on forest and timberline dynamics in the Carpathian Mountains during the twentieth century [in:] J. Kozak, K. Ostapowicz, A. Bytnerowicz B. Wyżga (eds.), The Carpathians: Integrating nature and society towards sustainability, Environmental Science and Engineering. BerlinHeidelberg: Springer-Verlag, pp. 209-223.
-
59. Sokołowski M., 1928. O górnej granicy lasu w Tatrach. Kraków: Zakłady Kórnickie.
60. Stacey K., Macgregor M., 1999. Learning the algebraic method of solving problems. The Journal of Mathematical Behavior, vol. 18, no. 2, pp. 149-167.
-
61. TACHIKAWA T., KAKU M., IWASAKI A., GESCH D., OIMOEN M., ZHANG Z., DANIELSON J., KRIEGER T., CURTIS B., HAASE J., ABRAMS M., CRIPPEN R., CARABAJAL C., 2011. ASTER Global Digital Elevation Model Version 2 – Summary of validation results. Technical report, Earth Resources Observation and Science (EROS) Center (Geography).
62. TCHOUKANSKI I., 2012. EasyCalculate 10. Plug-in for ArcGIS software, www.ian-ko.com/free/EC10/EC10_main.htm [15 January 2016].
63. Treml V., Banaš M., 2000. Alpine timberline in The High Sudeties. Acta Universitatis Carolinae, Geographica, Praha, 35, pp. 83-99.
64. TREML V., 2007. The effect of terrain morphology and geomorphic processes on the position and dynamics of the alpine timberline. A case study from the High Sudetes, Czech Republic [in:] A.S. Goudie, J. Kalvoda (eds.), Geomorphological variations, Prague: P3K, pp. 298-312.
65. Tribe A., 1992. Automated recognition of valley lines and drainage networks from grid digital elevation models: A review and a new method. Journal of Hydrology, vol. 139, no. 1, pp. 263-293.
-
66. Troll C., 1972. Geoecology and world-wide differentiation of high-mountain ecosystems [in:] C. Troll (ed.), Geoecology of the High-Mountain Regions of Euroasia. Wiesbaden: Steiner, pp. 264-275.
67. Troll C., 1988. Comparative geography of the high mountains of the world in the view of landscape ecology [in:] N.J.R. Alan, G.W. Knap, C. Stadel (eds.), Human impact on mountains, Totowa: Rowman & Littlefield, pp. 36-56.
68. Van Bogaert R., Haneca K., Hoogesteger J., Jonasson C., De Dapper M., Callaghan T.V., 2011. A century of tree line changes in subArctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography, vol. 38, no. 5, p. 907-921.
-
69. Veblen T.T., Hadley K.S., Nel E.M., Kitzberger T., Reid M., Villalba R., 1994. Disturbance regime and disturbance interactions in a Rocky Mountain subalpine forest. Journal of Ecology, vol. 82, no. 1, pp. 125-135.
-
70. Walsh S.J., Butler D.R., Allen T.R., Malanson G.P., 1994. Influence of snow patterns and snow avalanches on the alpine treeline ecotone. Journal of Vegetation Science, vol. 5, no. 5, pp. 657-672.
-
71. Walsh S.J., Butler D.R., Malanson G.P., Crewsmeyer K.A., Messina J.P., Xiao N., 2003. Mapping, modeling, and visualization of the influences of geomorphic processes on the alpine treeline ecotone, Glacier National Park, MT, USA. Geomorphology, vol. 53, no. 1, pp. 129-145.
-
72. Walter H., 1968. Die Vegetation der Erde in ökophysiologischer Betrachtung. Bd. II. Die gemäßigten und arktischen Zonen, Stuttgart: Fischer.
73. Walter H., Medina E., 1969. Die Bodentemperatur als ausschlaggebender Faktor für die Gliederung der subalpinen und alpinen Stufe in den Anden Venezuelas (Vorläufige Mitteilung). Berichte der Deutschen Botanischen Gesellschaft, vol. 82, no. 3-4, pp. 275-281.
74. Wright R.D., Mooney H.A., 1965. Substrateoriented distribution of bristlecone pine in the White Mountains of California. The American Midland Naturalist Journal, vol. 73, no. 2, pp. 257-284.
-
75. Zhao F., Zhang B., Pang Y., Yao Y., 2014. A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere. Journal of Geographical Sciences, vol. 24, no. 2, pp. 226-236.
-
76. Zientarski J., 1985. Wpływ wzniesienia oraz wielkości masywu górskiego na kształtowanie się górnej granicy lasu w Polsce. Poznań: Akademia Rolnicza [PhD thesis].
77. Żmudzka E., 2011. Współczesne zmiany klimatu wysokogórskiej części Tatr. Prace i Studia Geograficzne, 47, pp. 217-226.
78. ŽIAK M., 2012. Lavínová hrozba, bilancia energie a hmoty vo vysokohorskom prostredí. Bratislava: Prírodovedecká fakulta Univerzity Komenského v Bratislave [PhD thesis].
79. Žiak M., Długosz M., 2015. Potencjalne obszary lawinowe. Chart V.3 [in:] K. Dąbrowska, M. Guzik (eds.), Atlas Tatr. Przyroda nieożywiona. Zakopane: Tatrzański Park Narodowy.

Relation:

Geographia Polonica

Volume:

89

Issue:

1

Start page:

91

End page:

111

Format:

File size 3,3 MB ; application/pdf

Resource Identifier:

oai:rcin.org.pl:58258 ; 0016-7282 ; 10.7163/GPol.0048

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Rights:

Creative Commons Attribution BY-ND 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-ND 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-ND 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Object collections:

Last modified:

Sep 5, 2019

In our library since:

Mar 29, 2016

Number of object content hits:

564

All available object's versions:

http://www.rcin.org.pl/igipz/publication/78456

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Objects

Similar

This page uses 'cookies'. More information