Object structure
Title:

Zastosowanie modelu LISEM w badaniach naturalnych przekształceń środowiska = The application of LISEM in studies of natural environment transformations

Subtitle:

Problemy Ekologii Krajobrazu = The Problems of Landscape Ecology, t. 38

Creator:

Kruczkowska, Bogusława ; Kołaczkowska, Ewa ; Regulska, Edyta

Publisher:

Polska Asocjacja Ekologii Krajobrazu ; Polska Akademia Nauk. Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego.

Place of publishing:

Warszawa

Date issued/created:

2014

Description:

Bibliogr. ; Summ. eng. ; 244 p. : il. (color.) ; 24 cm

Type of object:

Book/Chapter

Subject and Keywords:

soil material deposition ; soil erosion ; LISEM

Abstract:

The application of LISEM for water erosion intensity evaluation is very wide. This model can be successfully used by hydrologists, geomorphologists and soil scientists. The simulations results concern not only erosion, but also eroded material deposition. For this reason it is possible to track changes in soil cover and morphometry of the studied area during and after rainfall. This assessment can be used in reconstructions, which takes into account wider intervals and also to forecast future changes. LISEM is created to simulate complex processes induced by rainfall from the moment they start till runoff/rainwater sinks in the studied catchment. Water supply in the form of torrential rain is analyzed for its subsequent movement along the slope. For simulation characteristics of soil properties, rainfall, type of land use and land cover, catchment morphometry was used. This complex information allows to generate the most accurate results of soil erosion and deposition.

References:

1. Arnold J.G., Fohrer N., 2005. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes 19 (3), s. 563-572.
2. Arnold J.G., Williams J.R., Griggs R.H., Sammons N.B., 1990. SWRRB: a basin scale simulation model for soil and water resources management. Texas A & M Press.
3. Arnold J.G., Williams J.R., Griggs R.H., Sammons N.B., 1991. SWRRBWQ: a basin scale model for assessing management impacts on water quality. U.S. Department of Agriculture, Agricultural Research Service, Grassland, Soil and Water Research Laboratory, Temple, Texas.
4. Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R., 1998. Large-area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association 34 (1), s. 73-89.
5. Beasley D.B., Huggins L.F., Monke E.J., 1980. ANSWERS: a model for watershed planning. Transactions of the American Society of Agricultural Engineers 23 (4), s. 938-944.
6. Cochrane T.A., Flanagan D.C., 2004. Effect of DEM Resolutions in the Runoff and Soil Loss Predictions of the WEPP Watershed Model. Soil and Water Division of ASAE 47, s. 1-12.
7. De Roo A.P.J., 1996. The LISEM Project: an introduction. Hydrological Processes 10 (8), s. 1021-1025.
8. De Roo A.P.J., Jetten V.G., 1999. Calibration and validation the LISEM model for two data sets from the Netherlands and South Africa. Catena 37 (3), s. 477-493.
9. Drzewiecki W., Mularz S., 2001. Modelowanie erozji wodnej gleb z wykorzystaniem GIS, Materiały Konferencji Naukowej Nowoczesne technologie w geodezji i inżynierii środowiska", 22 września 2001. Wydział Geodezji Górniczej i Inżynierii Środowiska AGH w Krakowie.
10. Drzewiecki W., Mularz S., 2005. Model USPED jako narzędzie prognozowania efektów erozji i depozycji materiału glebowego. Roczniki Geomatyki 3 (2), Warszawa, s. 45-54.
11. Foster G.R., Lane L.J., 1987. User requirements: USDA-Water Erosion Prediction Project (WEPP), NSERL Report 1. National Soil Erosion Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, West Lafayette.
12. Foster G.R., Lane L.J., Nowlin J.D., Laflen J.M., Young R.A., 1981. Estimating erosion and sediment yield on field-sized areas. Transactions of the American Society of Agricultural Engineers 24 (5), s. 1253-1263.
13. Foster G.R., McCool D.K., Renard K.G., Moldenhauer W.C., 1981. Conversion of Universal Soil Loss Equation to SI metric units. Journal of Soil and Water Conservation 36 (6), s. 355-359.
14. Fullen M., Zhi W.B., Brandsma R.T., 1998. A comparison of texture of grassland and eroded soils from Shropshire, UK. Soil and Tillage Research 46 (3-4), s. 301-305.
15. Gawrysiak L., 2005. An estimation of soil erosion dynamics in arable loess catchment using LISEM model. [w:] W. Zgłobicki, J. Rejman (red.), Human impact on sensitive geosystems. Maria Curie-Skłodowska University Press, Lublin, s. 23-37.
16. Gawrysiak L., 2010. Symulacja spływu powierzchniowego w małych zlewniach z wykorzystaniem modelu LISEM. [w:] Z. Zwoliński (red.), GIS – woda w środowisku. Bogucki Wydawnictwo Naukowe, Poznań, s. 73-85.
17. Hessel R., 2002. Modelling soil erosion in a small catchment on the Chinese Loess Plateau. PhD Thesis. Utrecht University, Utrecht, The Netherlands.
18. Hessel R., van Asch T., 2003. Modelling gully erosion for a small catchment on the Chinese Loess Plateau. Catena 54 (1-2), s. 131-146.
19. Hessel R., Tenge A., 2008. A pragmatic approach to modelling soil and water conservation measures with a catchment scale erosion model. Catena 74 (2), s. 119-126.
20. Hessel R., Jetten V., Baoyuan L., Yan Z., Stolte J. i in., 2003. Calibration of the LISEM model for a small Loess Plateau catchment. Catena 54 (1-2), s. 235-254.
21. Jetten V., 2002. LISEM user manual, version 2.x. Draft version January 2002, Utrecht Centre for Environment and Landscape Dynamics. Utrecht University. The Netherlands.
22. Jetten V., Boiffin J., De Roo A., 1996. Defining monitoring strategies for runoff and erosion studies in agricultural catchments: a simulation approach. European Journal of Soil Science 47 (4), s. 579-592.
23. Klimczak R., 1993. Spłukiwanie na obszarach o zróżnicowanym użytkowaniu – przebieg i rola we współczesnym środowisku morfogenetycznym (zlewnia Młyńskiego Potoku, Pomorze Zachodnie). [w:] A. Kostrzewski (red.), Geosystem obszarów nizinnych. Zeszyty Naukowe PAN. Komitet Naukowy przy Prezydium PAN Człowiek i Środowisko 6, Wrocław-Warszawa-Kraków, s. 61-77.
24. Knisel W.G., 1980. CREAMS: a field scale model for chemicals, runoff and erosion from agricultural management systems. USDA Conservation Research Report 26.
25. Laflen J.M., Lane L.J., Foster G.R., 1991. WEPP – a new generation of erosion prediction technology. Journal of Soil and Water Conservation 46 (1), s. 34-38.
26. Meyer L.D., Wischmeier W.H., 1969. Mathematical simulation of the process of the soil erosion by water. Transactions on American Society of Agricultural and Biological Engineers 12 (6), s. 754-758.
27. Misra R.K., Rose C.W., 1996. Application and sensitivity analysis of process-based erosion model GUEST. European Journal of Soil Science 47 (4), s. 593-604.
28. Mitas L., Mitasova H., 1998. Distributed erosion modeling for effective erosion prevention. Water Resources Research 34 (3), s. 505-516.
29. Mitasova H., Mitas L., Brown W.M., Johnston D.M., 1998. Multidimensional soil erosion/deposition modeling and visualization using GIS. Final report for USA CERL, University of Illinois at Urbana-Champaign.
30. Morgan R.P.C., Quinton J.N., Smith R.E., Govers G., Poesen J.W.A. i in., 1998. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms 23 (6), s. 527-544.
31. Nearing M.A., Foster G.R., Lane L.J., Finckner S.C., 1989. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the American Society of Agricultural Engineers 32, s. 1587-1893.
32. Przewoźna B., 2012. Zmiany właściwości gleb zagłębień bezodpływowych w krajobrazie młodoglacjalnym jako efekt denudacji antropogenicznej i procesów erozyjnych. Maszynopis pracy doktorskiej IGiPZ PAN, Warszawa.
33. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., 1991. RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation 46 (1), s. 30-33.
34. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agricultural Research Service, Agriculture Handbook 703.
35. Schmidt J., Michael A., Schmidt W., von Werner M., 1997. EROSION 2D/3D – Ein Computermodell zur Simulation der Bodenerosion durch Wasser. Sächsisches Landesamt für Umwelt und Geologie, Sächsische Landesanstalt für Landwirtschaft, Dresden.
36. Smolska E., 2002. The intensity of soil erosion in agricultural areas in North-Eastern Poland. Landform Analysis 3, s. 25-33.
37. Smolska E., 2005. Znaczenie spłukiwania w modelowaniu stoków młodoglacjalnych. Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego, Warszawa.
38. Smolska E., 2010. Spłukiwanie gleby na użytkowanych rolniczo stokach młodoglacjalnych na przykładzie Pojezierza Suwalskiego. [w:] T. Ciupa, R. Suligowski (red.), Woda w badaniach geograficznych. Instytut Geografii Uniwersytet Jana Kochanowskiego, Kielce, s. 137-149.
39. Smolska E., Mazurek Z., Wójcik J., 1995. Dynamika procesów geomorfologicznych na stoku pojeziernym jak czynnik środowiskotwórczy. Zeszyty Naukowe PAN. Komitet Naukowy przy Prezydium PAN Człowiek i Środowisko 12, s. 205-220.
40. Stasik R., Szafrański C., 2005. Zmiany w pokrywie glebowej erodowanych terenów Pojezierza Gnieźnieńskiego. Acta Agrophysica 5 (2), s. 447-454.
41. Stolte J., Liu B.Y., Ritsema C.J., van den Elsen H.G.M., Hessel R., 2003. Modelling water flow and sediment processes in a small gully system on the Loess Plateau in China. Catena 54 (1-2), s. 117-130.
42. Szpikowski J., 1998. Wielkość i mechanizm erozji wodnej gleb na stokach użytkowanych rolniczo w zlewni młodoglacjalnej (Górna Parsęta, Chwalimski Potok). Bibliotheca Fragmenta Agronomica 4A, s. 113-124.
43. Szpikowski J., 2002. Contemporary processes of soil erosion and the transformation of the morphology of slopes in agricultural use in the postglacial catchment of the Chwalimski Potok (upper Parseta, Drawskie Lakeland). Quaestiones Geographicae 22, s. 79-90.
44. Williams J.R., Renard K.G., Dyke P.T., 1984. EPIC: a new model for assessing erosion's effect on soil productivity. Journal of Soil and Water Conservation 8, s. 381-383.
45. Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses – a guide to conservation planning. U.S. Department of Agriculture. Agricultural Handbook 537.
46. Woodruff N.P., Siddoway F.H., 1965. Wind erosion equation. Soil Science Society of America, Proceedings 29, s. 602-608.
47. Woolhiser D.A., Smith R.E., Goodrich D.C., 1990. KINEROS, a kinematic runoff and erosion model: documentation and user manual. U.S. Department of Agriculture. Agricultural Research Service ARS-77.
48. Van Rompaey A., Krasa J., Dostal T., Govers G., 2003. Modeling sediment supply to rivers and reservoirs in Eastern Europe during and after the collectivisation period. Hydrobiologia 494 (1), s. 169-176.
49. Young R.A., Onstad C.A., Bosch D.D., Anderson W.P., 1989. AGNPS: A non-point source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation 44 (2), s. 168-173.

Relation:

Problemy Ekologii Krajobrazu

Volume:

38

Start page:

149

End page:

160

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 1,8 MB ; application/pdf

Resource Identifier:

9788361590552

Source:

CBGiOŚ. IGiPZ PAN, call no. 151.035 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Rights Reserved - Free Access

Terms of use:

Copyright-protected material. May be used within the limits of statutory user freedoms

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Access:

Open

×

Citation

Citation style: