Object structure
Title:

Ruchy masowe na obszarze wieloletniej zmarzliny wyspowej w dobie zmian klimatu (Olchon, wschodnia Syberia)* =Mass movements in an isolated area of permafrost in the era of climate change (Olkhon, East Siberia)

Subtitle:

Przegląd Geograficzny T. 87 z. 3 (2015)

Creator:

Tyszkowski, Sebastian ORCID ; Kaczmarek, Halina ; Słowiński, Michał ORCID ; Kozyreva, Elena ; Brykała, Dariusz ORCID ; Rybčenko, Artiom ; Babičeva, Viktoria A.

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2015

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

Olkhon Island ; Baikal ; cryogenic landslides ; permafrost degradation ; active layer ; climate change

Abstract:

W pracy przedstawiono charakterystykę współczesnych osuwisk kriogenicznych rozwijających się na obszarze wyspy Olchon na jeziorze Bajkał (wschodnia Syberia). Przeanalizowano parametry morfometryczne i budowę geologiczną tych form oraz czynniki ich rozwoju z uwzględnieniem obserwowanych na tym obszarze zmian klimatu oraz spiętrzenia jeziora Bajkał.

References:

1. Anisimov O.A., Lobanov V.A., Reneva S.A., 2007, Analysis of changes in air temperature in Russia and empirical forecast for the first quarter of the 21st century, Russian Meteorology and Hydrology, 32, 10, s. 620-626. doi: 10.3103/s1068373907100020.
http://dx.doi.org/10.3103/S1068373907100020 -
2. Banach M., Kaczmarek H., Tyszkowski S., 2013, Rozwój osuwiska w strefie brzegowej sztucznych zbiorników wodnych na przykładzie osuwiska centralnego w Dobrzyniu nad Wisłą, zbiornik włocławski, Przegląd Geograficzny, 85, 3, s. 397-415.
3. Berkin N.S., Makarov A.A., Rusinek O.T., 2009, Bajkalovedenije: učebnoje posobije, Irkutskij Gosudarstvennyj Universitet, Irkutsk.
4. Brown J., Ferrians Jr. O.J., Heginbottom J.A., Melnikov E.S., 1998, revised February 2001, Circum-arctic Map of Permafrost and Ground Ice Conditions, Boulder, CO: National Snow and Ice Data Center. Digital media. http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/#5. (7.09.2015)
5. Choma-Moryl K., 2007, Ocena wpływu ujemnych temperatur na plastyczność i pęcznienie wybranych gruntów spoistych, Geologos, 11, s. 439-446.
6. Crozier M.J., 2010, Deciphering the effect of climate change on landslide activity: a review, Geomorphology, 124, 3-4, s. 260-267. doi: 10.1016/j.geomorph.2010.04.009
http://dx.doi.org/10.1016/j.geomorph.2010.04.009 -
7. Dyke L.D., 2004, Stability of frozen and thawing slopes in the Mackenzie Valley, Northwest Territories, [w:] Proceedings of the 57th Canadian Geotechnical Conference, Quebec City, Quebec, Session 1G, ISSMGE, Quebeck City, s. 31-38.
8. Dyke L.D., Brooks G.R. (red.), 2000, The Physical Environment of the Mackenzie Valley, Northwest Territories: A Base Line for the Assessment of Environmental Change, Geological Survey of Canada Bulletin, 547.
9. Ežednevnyje srednije urovni vody ozera Bajkal; http://sputnik.irk.ru/alt/baikal_level/html/201502.html (7.09.2015)
10. Galazij G.I. (red.), 1993, Bajkal atlas, Izdatelstvo Federalnoj služby geodezii i kartografii Rossii, Moskwa.
11. Gavrilova M., 2007, Air temperature change in permafrost regions: East Siberia–Mongolia– China, [w:] Proceedings of the International Symposium, Asian Collaboration in IPY 2007-2008, 1st March 2007, Tokyo, Japan.
12. Glossary of permafrost and related ground-ice term, 1988, National Research Council of Canada, Associate Committee on Geotechnical Research, Technical Memorandum, 142.
13. Gosudarstvennyj doklad o sostojanii ozera Bajkal i mierach po ego ochranie v 2008 godu, http://geol.irk.ru/baikal/baikal/rep_2008/pdf/baikal2008_p1-1-1-1.pdf (7.09.2015)
14. GSHAP, Global Seismic Hazard Assessment Program, http://www.seismo.ethz.ch/static/gshap/neurasia/ (7.09.2015)
15. Head K.H., 1992, Manual of Soil Laboratory Testing. Vol. 1, Soil Classification and Compaction Tests, Pentech Press, London.
16. Hughes O.L., 1972, Surficial geology and land classification, Mackenzie Valley transportation corridor, [w:] Proceedings of the Canadian North Pepeline Research Conference, Ottawa, February 1972, Associate Committee on Geotechnical Research, National Research Council of Canada, Technical Memorandum, 104, s. 17-24.
17. Huscroft C.A., Lipovsky P., Bond J.D., 2004, Permafrost and landslide activity: case studies from southwestern Yukon Territory, [w:] D.S. Emond, L.L. Lewis (red.), Yukon Exploration and Geology 2003, Yukon Geological Survey, Whitehorse, Yukon, s. 107-119.
18. Ivanov A.V., Gladkochub D.P., Déverchère J., Ernst R.E., 2013, Introduction to special issue: geology of the Lake Baikal region, Journal of Asian Earth Sciences, 62, s. 1-3. doi: 10.1016/j.jseaes.2012.12.010.
http://dx.doi.org/10.1016/j.jseaes.2012.12.010 -
19. Kaczmarek H., Mazaeva O.A., Kozyreva E. A., Khak V., 2012, Stacjonarne badania procesów egzogenicznych w strefie brzegowej Zbiornika Brackiego (południe Syberii Wschodniej), Landform Analysis, 20, s. 47-59.
20. Khomutov A., Leibman M., 2014, Assessment of landslide hazards in a typical tundra of Central Yamal, Russia, [w:] W. Shan, Y. Guo, F. Wang, H. Marui, A. Strom (red.), Landslides in Cold Regions in the Context of Climate Change, Environmental Science and Engineering, Springer International Publishing, Switzerland, s. 271-290. doi: 10.1007/978-3-319-00867-7_20.
http://dx.doi.org/10.1007/978-3-319-00867-7_20 -
21. Konoplev S.P. (red.), 1964, Geologičeskaja karta SSSR, masštab 1:200 000, Pribajkalskaja serija, Gosudarstvennyj geologičeskij komitet SSSR, Nedra, Moskva.
22. Koven C.D., Riley W.J., Stern A., 2012, Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models, Journal of Climate, 26, 6, s. 1877-1900. doi: 10.1175/JCLI-D-12-00228.1
http://dx.doi.org/10.1175/JCLI-D-12-00228.1 -
23. Kumor M.K., 1985, Zmiany wytrzymałości i struktury iłu plioceńskiego pod wpływem zamrażania, Archiwum Hydrotechniki, 32, 3/4.
24. Kumor M.K., 1989, Zmiany mikrostruktury iłów monomineralnych i iłu plioceńskiego pod wpływem cyklicznego przemrażania i odmrażania, Rozprawy, 34, Akademia Techniczno-Rolnicza, Bydgoszcz.
25. Leibman M.O., 1995, Cryogenic landslides on the Yamal Peninsula, Russia: preliminary observations, Permafrost Periglacial Processes, 6, 3, s. 259-264. doi: 10.1002/ppp.3430060307.
http://dx.doi.org/10.1002/ppp.3430060307 -
26. Leibman M.O., 1997, Kriolitologičeskije osobennosti sezonntalogo sloja na sklonach s processom kriogennogo opolzanija, Kriosfera Zemli, 1, 2, s. 50-55.
27. Lewkowicz A.G., 1988, Slope processes, [w:] M.J. Clark (red.), Advances in Periglacial Geomorphology, Wiley, Chichester, UK, s. 325-368.
28. Lunina O.V., Gladkov A.S., Szerstiankin P.P., 2010, Novaja elektronnaja karta aktivnych razlomov juga Vostočnoj Sibiri, Doklady RAN, 433, 5, s. 662-667.
29. Lyle R.R., Hutchinson D.J., Preston Y., 2004, Landslide processes in discontinuous permafrost, Little Salmon Lake (NTS 105L/1 and 2), south-central Yukon, [w:] D.S. Emond, L.L. Lewis, G.D. Bradshaw (red.), Yukon Exploration and Geology 2004, Yukon Geological Survey, s. 193-204.
30. Mel'nikova V.I., Gileva N.A., Radziminovich N.A., Masal'skii O.K., Chechel'nitskii V.V., 2010, Seismicity of the Baikal rift zone for the digital recording period of earthquake observation (2001-2006), Seismic Instruments, 46, 2, s. 193-206. doi: 10.3103/S0747923910020076
http://dx.doi.org/10.3103/S0747923910020076 -
31. Nadim F., Kjekstad O., Peduzzi P., Herold C., Jaedicke C., 2006, Global landslide and avalanche hotspots, Landslides, 3, 2, s. 159-173. doi:10.1007/s10346-006-0036-1.
http://dx.doi.org/10.1007/s10346-006-0036-1 -
32. Pal'šin G.B., 1968, Inženernaja geologija Pribajkalja, Nauka, Moskva.
33. Pulina M., 1968, The Eastern Siberian karst, Geographia Polonica, 14, s. 109-118.
34. Raspisanije pogody, http://rp5.ru (7.09.2015)
35. Seed H.B., Woodward R.J., Lundgren R., 1962, Prediction of swelling potential for compacted clays, Journal of the Soil Mechanics and Foundations Division, ASCE, 88, SM-3, 1, s. 53-87.
36. Šerstûkov A.B., 2008, Korrelacija temperatury počvogruntov s temperaturoj vozduha i vysotoj snežnogo pokrova na territorii Rossii, Kriosfera Zemli, 12, 1, s. 79-87.
37. Sherstyukov A.B., Sherstyukov B.G., Groisman P.Y., 2008, Impact of surface air temperature and snow cover depth on the upper Soil temperature variations in Russia, [w:] D.L. Kane, K. M. Hinkel, Proceedings of the Ninth International Conference on Permafrost, University of Alaska Fairbanks, June 29–July 3, 2008, 2, s. 1643-1646.
38. Smith L.C., Sheng Y., MacDonald G.M., Hinzman L.D., 2005, Disappearing arctic lakes, Science, 308, s. 1429. doi: 10.1126/science.1108142.
http://dx.doi.org/10.1126/science.1108142 -
39. Szczypek T., Wika S., Snytko W. A., 2004, Bajkał, Beskidzka Wyższa Szkoła Turystyki, Żywiec.
40. Trofimova I.E., 2006, Sovremennoje sostojanije i tendencii mnogoletnich izmenenij merzlotno-termičeskogo režima počv Pribajkalja, Geografia i prirodnyje resursy, 4, s. 38-45.
41. Trzcinskij J.B., Kozyriewa E.A., Szczypek T., 2009, Wahania poziomu Bajkału a proces zabagniania jego wybrzeży (na przykładzie przesmyku Czewyrkujskiego – Miagkaja Karga – i jego okolic, [w:] A.T. Jankowski, D. Absalon, R. Machowski, M. Ruman (red.), Przeobrażenia stosunków wodnych w warunkach zmieniającego się środowiska, Sosnowiec University, Sosnowiec, s. 279-291.
42. Tyszkowski S., Kaczmarek H., Słowiński M., Kozyreva E., Brykała D., Rybchenko A., Babicheva V.A., 2015, Geology, permafrost, and lake level changes as factors initiating landslides on Olkhon Island (Lake Baikal, Siberia), Landslides, 12, s. 573-583. doi: 10.1007/s10346-014-0488-7.
http://dx.doi.org/10.1007/s10346-014-0488-7 -
43. Uroven' ozera Bajkal, Ocenka kolebanij ozera v 2008 godu, 2008, Bulleten GEM, http://geol.irk.ru/baikal/baikal/bulletins/levelbaik_08/public.htm
44. Uroven ozera, 2012, [w:] O sostojanii ozera Bajkal i mierach po ego ochrane v 2011 godu – gosudarstvennyj doklad, Moskva, s. 11-16; http://geol.irk.ru/baikal/baikal.htm
45. Van Everdingen R. O. (red.), 2005, Multi-language glossary of permafrost and related ground-ice terms, International Permafrost Association, The Arctic Institute of North America, University of Calgary, Calgary, Alberta, Kanada.
46. Van der Merwe D.H., 1964, The prediction of heave from the plasticity index and percentage clay fraction of soils, Civil Engineering, South Africa, 6, 6, s. 103-106.
47. Voropay N.N., Maksyutova E.V., Balybina A.S., 2011, Contemporary climatic changes in the Predbaikalie region, Environmental Research Letters, 4, 045209. doi: 10.1088/1748-9326/6/4/045209.
http://dx.doi.org/10.1088/1748-9326/6/4/045209 -
48. Wang B., Paudel B., Li H., 2009, Retrogression characteristics of landslides in fine-grained permafrost soils, Mackenzie Valley, Canada, Landslides, 6, 2, s. 121-127. doi: 10.1007/s10346-009-0150-y.
http://dx.doi.org/10.1007/s10346-009-0150-y -
49. Wei M., Fujun N., Satoshi A., Dewu J., 2006, Slope instability phenomena in permafrost regions of Qinghai-Tibet Plateau, China, Landslides, 3, 3, s. 260-264. doi:10.1007/s10346-006-0045-0.
http://dx.doi.org/10.1007/s10346-006-0045-0 -

Relation:

Przegląd Geograficzny

Volume:

87

Issue:

3

Start page:

457

End page:

476

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 2 MB ; application/pdf

Resource Identifier:

0033-2143 ; 10.7163/PrzG.2015.3.3

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY-ND 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-ND 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-ND 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: